
Assiut Univ. J. of Mathematics and Computer Science Printed ISSN 1687-4897
49(1), pp.1-17 (2020)

MEMETIC PROGRAMMING WITH THE ATOMIC

REPRESENTATION FOR EXTRACTING LOGICAL

CLASSIFICATION RULES

Eman Baky, Emad Mabrouk1, I.E. Elsemman

Received: 22/9/2019 Accepted: 2/12/2019 Available Online: 1/12/2020

Classification is one of the most popular techniques of data mining. This paper presents

an evolutionary approach for designing classifiers for two-class classification problems

using an enhanced version of the genetic programming (GP) algorithm, called the

Memetic Programming (MP) algorithm. MP can discover relationships between

observed data and express them logically. MP aims to obtain a classifier with the

largest area under the ROC curve, which has been proved a better performance than

traditionally metrics. The proposed approach is being demonstrated by experimenting

on some UCI Machine Learning data sets. Results obtained in these experiments reflect

the efficiency of the proposed algorithm.

Keywords: Classification, Evolutionary Algorithm, Local Search Procedure,

Memetic Programming, ROC Curves.

1. INTRODUCTION

The massive growth of data in the real-life applications has driven to

development of data mining techniques. Data mining can be defined as the

process of discovering knowledge and information from large amounts of

data stored in databases [1]. Therefore, researchers considered the data

mining as a core step in the process of knowledge discovery from databases

[2]. Data mining used many techniques to extract patterns from information,

these techniques can be classified into two majors; prediction techniques and

description techniques [3]:

Prediction techniques: Use some variables to predict unknown or future

values of other variables, such as classification, regression and deviation

detection.

2 Eman Baky, Emad Mabrouk1, I.E. Elsemman

Description techniques: Find human-interpretable patterns that de- scribe

the data, such as association rules, clustering and outlier analysis.

Classification is a data mining technique used to predict group member-

ships for data instances. Specifically, data classification can be defined as

allocating class labels to given data instances through two steps [4]:

Building the classifier: In this step, the proposed algorithm finds the re-

lationship between values of predictors and values of the target through the

training data in which the class assignments are known. We can call this step

as the learning step or the learning phase.

Using the classifier: In this step, the algorithm uses a set of testing data to

estimate the accuracy of the resulting classification rules. Con- sequently, the

classification rules can be applied for the new data if the accuracy is

considered acceptable.The genetic classifier is looking for the rule relies on

Darwin’s principle of natural selection and operations that mimic naturally

occurring genetic operations, such as sexual recombination (crossover) and

mutation, see [5, 6, 7]. In this paper, the memetic programming (MP)

algorithm will be used to generate rules for a set of classification problems

[8, 9].

The rest of the paper is organized as follows: In the next section, we

introduce more details about the MP algorithm. The main model for the

classification problems are presented in Section 3. In Section 4, we report

numerical results for a set of benchmark classification problems. Finally,

conclusions make up Section 5.

2. MEMETIC PROGRAMMING

The memetic programming algorithm hybridizes the genetic programming

method [10] with a set of local search procedures over a tree space to

improve good programs with the highest fitness values. MP inherits the basic

idea of memetic algorithms [11, 12, 13, 14], however, MP deals with

computer programs. These computer programs are expressed as sparse trees,

where internal nodes are called functions and leaf nodes are called terminals,

see Figure 1. The user specifies the sets of terminals and functions based on

the problem at hand.

 MEMETIC PROGRAMMING WITH THE ATOMIC… 3

Figure 1: Examples of MP representation.

The main loop of the MP algorithm can be divided into two phases, the

diversification phase and the intensification phase. The diversification phase

follows the GP algorithm using a suitable selection strategy along with the

mutation and crossover operations to guarantee the diversity in the current

population. Figure 2 explains an example of applying crossover and mutation

operators for some trees. On the other hand, the intensification phase uses a

set of local search procedures to intensify promising programs resulting from

the diversification phase.

Figure 2: Generating a new offspring using mutation and crossover operators

2.1 Local searches over the tree space

The main objective of the local search operators is to generate new trees in a

neighborhood of the selected tree. This subsection discusses two types of

local searches; static structure search and dynamic structure search, see

Mabrouk et al [8, 9]. The static structure search explores the neighborhood

of a tree and modifies some nodes without changing the structure of the

original tree, where the shaking operator is employed to perform this job

during the static structure search. On the other side, dynamic structure search

changes the structure of the tree by extending its terminal nodes or cutting its

4 Eman Baky, Emad Mabrouk1, I.E. Elsemman

subtrees, where grafting and pruning operators are used to fulfill the job in

the dynamic structure search.

Shaking search is a condensation search procedure that generates a new tree

X˜from a tree X by altering some terminals or/and some functions chosen

randomly, without changing the structure of X. Specifically, the terminal

node is altered by another terminal and the function node is altered by

another function node with the same number of arguments.

Grafting search is a diverse local search procedure that generates a new tree

X ˜ from a tree X by extending some of its terminals to be branches , where

the terminals are chosen randomly and the new branches are generated

randomly with depth ζ . Pruning search is another diverse local search

procedure. In converse with the grafting search, the pruning search generates

a new tree X˜ from a tree X by cutting some of its branches of depth ζ ≥ 1

and replacing them by new terminals, where the branches and terminals are

chosen randomly. Figure 3 shows three examples of generating set of new

trees by applying shaking, grafting and pruning procedures.

Figure 3: Generating new trees using shaking, grafting and pruning procedures

2.2 Local search programming algorithm

 MEMETIC PROGRAMMING WITH THE ATOMIC… 5

A local search algorithm over a tree space, called the local search

program- ming (LSP) algorithm is proposed to find the best program in the

neighbor- hood of a given tree. The LSP algorithm employs the local search

procedures, in Subsection 2.1, to generate new solutions in the neighborhood

of an elected solution and iterates the process as long as it improves the

solution under consideration. The LSP process will be terminated if no better

solutions can be found in the neighborhood of the current one. Figure 4

shows the flowchart of the LSP algorithm.

Figure 4: The flowchart of LSP.

3. THE PROPOSAL MODEL

In this section we introduce the proposed model for solving two-class

classification problems. Mainly, the model is consisting of three stages; data

preprocessing, data cross-validation and generating the classifier, Figure 5.

6 Eman Baky, Emad Mabrouk1, I.E. Elsemman

Subsection 3.1 introduces some necessary preparations for data under con-

sideration. Using the new dataset, MP will be applied to generate a classifier

with highest fitness value. Then, the accuracy of this classifier will be mea-

sured using the testing dataset as discussed in Subsection 3.2.

3.1 Data preprocessing

All classification algorithms make some special preparations on the given

datasets before using it in the search process. In this subsection we introduce

some of these data preprocessing techniques that will be used through the

experimental results in this paper.

Data cleaning: In the real-life applications we sometimes must deal with

incomplete, noisy, and inconsistent data. Therefore, additional treatments

must be apply before using the dataset by the data mining techniques. Data

cleaning aims to clean up the dataset under con- sideration by filling in

missing values, smoothing out noisy data and correcting inconsistency in the

given data, if any.

Data transformation: Many machine learning models require trans-

forming nominal variables in the given dataset to numeric variables. Indeed,

values of a nominal attribute are given as strings and represent different

names, i.e., zip codes and eye color. To solve this problem, we transform the

set of nominal values to a new set of binary attributes. Therefore, N different

nominal values can be represented as N different binary numbers.

Data normalization: Normalization refers to scale all values of numeri- cal

attributes under consideration to fall within a predefined min-max range. In

this paper, the following equation used to transform the at- tribute x to the

new attribute z, where all values of z lie in the interval [0, 1]:

 MEMETIC PROGRAMMING WITH THE ATOMIC… 7

Figure 5: The flowchart of proposed model

8 Eman Baky, Emad Mabrouk1, I.E. Elsemman

Data cross-validation: Cross-validation is a statistical technique used to

assess the ability and stability of machine learning models. Cross- validation

technique divides the given dataset into two complementary subsets, the

training set and the testing set. The training set will be em- ployed to train the

model to generate the required classifier. Then, the testing set can be used to

validate the stability of the model. K fold cross-validation is one of the most

famous cross-validation techniques. In K fold cross-validation, the entire

dataset is randomly split into K folds, with K 1 folds are used as the training

dataset, and the remaining fold is retained as the validation or testing dataset.

Then the model can generate a classifier using the training dataset and the

error will be estimated using the testing dataset. This process is then repeated

K times until each of the K folds is used exactly once as the testing dataset.

The average of the resulting K recorded errors, called the cross-validation

error, will be considered as the performance metric for the model. During the

experimental results of this paper, the K−fold cross-validation technique will

be used with K = 5.

3.2 Creating a classifier

The MP algorithm will be used to generate the required classifier accord-

ing to procedures in Section 2. In this subsection, we explains the representa-

tion of a solution in MP, and the fitness function used in this implementation.

3.2.1 Solution representation

For each classification problems the set of functions and the set of ter-

minals must be determined before calling the algorithm. The MP algorithm

proposed in this paper use the atomic representation, where each terminal

node of a tree is an atom contains three arguments, attribute name, rela-

tional operator (<,>,=), and an attribute value. It means that, the atom is

syntactically a predicate of the form operator(variable, operator, value).

Figure 6 show the atomic representation, where the atom returns true if the

condition is satisfied and false otherwise.

 MEMETIC PROGRAMMING WITH THE ATOMIC… 9

Figure 6: Atomic representation.

3.2.2 Fitness function

The fitness function plays an important role and guides the search process in

evolutionary algorithms (EAs). The main objective of defining a fitness

function is to evaluate the quality of generated solutions of the proposed

algorithm. Many fitness function formulas can be defined for the

classification problem, however the most famous one [6, 15][9,10] is as the

following:

Fitness = SE ∗ SP, (2)

 SE =TP/(TP + FN) (3)

SP =TN/(TN + FP), (4)

where:

True positive (TP): The number of examples for which the rule returns true

and the class label is positive.

False positive(FP): The number of examples for which the rule returns true

and the class label is negative.

True negative(TN): The number of examples for which the rule returns false

and the class label is negative.

10 Eman Baky, Emad Mabrouk1, I.E. Elsemman

False negative(FN): The number of examples for which the rule returns false

and the class label is positive.

4. NUMERICAL EXPERIMENTS

In this section, a set of benchmark problems are considered and tested to

estimate the efficiency of the proposed version of MP algorithm.

4.1 Dataset evaluations

To validate our algorithm, 10 datasets of the two-class classification prob-

lem are used from the UCI datasets [16], see Table 1. Three datasets, the

Monk’s problems, are consisting of nominal attributes, and the remaining

datasets are consisting of nominal and continuous attributes. Some data

preprocessing are applied for these datasets before running the MP algo-

rithm. All missing values are replaced with statistical values, the average

values for continuous attributes and the mode values for binary and nominal

attributes. We filled 16 and 25 continuous attributes in the breast cancer

and credit datasets, respectively. Additionally, We filled 30, 2480 nominal

attributes in credit and mushroom datasets, respectively. The parameter

values of the MP algorithm are chosen based on several experiments as in

Table 2. These set of parameters of the MP algorithm can be summarized

as the following:

• nPop: The population size.

• nGnrs: The maximum number of generations.

• nLs: The number of programs selected to apply local search.

nTrs: The number of trial programs generated in the neighborhood of the

selected program.

nFails: The maximum number of non-improvements for each call of the LSP

algorithm.

• MaxDepth: The maximum depth of a tree.

The 4-way tournament selection is used as the main selection strategy of

the MP algorithm, where the algorithm selects four classifiers randomly and

run a tournament among them. The fittest classifier of those selected

classifiers is chosen to generate some offspring for the next generation.

 MEMETIC PROGRAMMING WITH THE ATOMIC… 11

Table 1: UCI Data Sets.

Data Set No.
Attributes

No.
Instances

Credit Approval 15 690

Breast Cancer Wisconsin 10 699

Statlog (Heart) 13 270

MONK’s Problems 7 432

Mushroom 22 8124

Voting Records 16 435

Pima Indians Diabetes 8 768

Tic-Tac-Toe Endgame 9 958

Table 2: The parameter values for MP algorithm

Parameter Value

nPop 500

nGnrs 500

nLs 2

nTrs 3

nFails 4

MaxDepth 5

4.2 Logical classifier for the Monk’s problems

The Monk’s problems appear in the artificial robot domain, where robots are

described by six different nominal attributes; a1, a2, a3, a4, a5, a6 and the 7th

attribute is the class label of each sample [17]. The exact solutions for each

Monk’s problem is known, therefore these problems can be used to estimate

the performance of a classifier precisely. For Monk 1 problem the exact

solution is (a1 = a2) or (a5 = 1) , and the exact solution of Monk 2 problem

is exactly two of its six attributes have their first value, i.e. two

the exact solutiΣon of Monk 3 problem is { (a5 = 3) and (a4 = 1) or (a5 ƒ=

In this experiment, 10 independent runs of the proposed classifier are per-

formed for each one of Monk’s problems and best solutions found are shown

12 Eman Baky, Emad Mabrouk1, I.E. Elsemman

in Figures 7, 8 and 9. These solutions can be reduced and simplified to get

the exact solutions for Monk 1, Monk 2 and Monk 3 problems, respectively.

Moreover, training datasets of Monk 2 and Monk 3 contain 5% noise. The

accuracy of these solutions are shown in Table 3 along with some results in

the literature.

Figure 7: Best solution of Monk 1 problem.

To the best of our knowledge, results of our classifier is the highest clas-

sifier extracting logical classification rules for Monk #2. Wong and Leunga

applied Grammar-GP and found 65% accuracy [19]. El-Semman and Hassan

reported 65%, 65.2% and 71.52% accuracy using C4.5, C4.5 Rules and GEP

methods [17]. Marghny reported 100%, 99.40%, 95.90% accuracy using

Neu- ral network with genetic algorthim. MPC was applied by Farhat et

al.[20] found 91.66%, 81.01%, 88.88% accuracy. However, Pan and Jiao

extracted mathematical classification rules found with the GAEC method

with 79.28% accuracy [21].

 MEMETIC PROGRAMMING WITH THE ATOMIC… 13

Figure 8: Best solution of Monk 2 problem.

Figure 9: Best solution of Monk 3 problem Table 3: Results and comparisons for Monk’s

problems.

3.4 Logical classifier for problems with continues attributes

In the previous Subsection, we applied the proposed classifier for Monk’s

problems with nominal attributes. To validate our classifier on problems with

continues attributes, 7 datasets are selected from the UCI website. Table 1

shows the features of these datasets. However, Table 4 shows the accuracy

of the best solution found by the proposed classifier for each dataset.

14 Eman Baky, Emad Mabrouk1, I.E. Elsemman

Results and comparisons for Monk’s problems

Methods Monk 1 Monk 2 Monk 3
C4.5 75.70% 65% 97.90%
C4.5Rules 100% 65.20% 96.3%
Grammar-GP 100% 65% 95.4%
GEP 100% 71.52% 97.22%
GAEC 100% 79.28% 100%
MPC 91.66% 81.01% 88.88%
Neural network with genetic algorthim [18] 100% 99.40% 95.90%
Proposed MP 100% 99.07% 100%

Table 4: Results of the MP algorithm for the UCI datasets.

Datasets Accurac
y

S. Deviation

credit 98.55 0.63

breast cancer 100 1.47

heart 100 0.79

monk1 100 5.72

monk2 99.07 4.45

monk3 100 1.86

mushroom 100 0.52

vote 100 0.35

pima 83.12 1.20

tic-tac-toe 96.88 2.80

Figure 10 illustrates the ROC curves for datasets under consideration. These

curves reflect the ability of the generated model to distinguish between

classes [22]. The ROC curve is plotted based on the true positive rate (TPR)

on the Y-axis against the false positive rate (FPR) on the X-axis, where TPR

= SE and FPR = 1 SP . From these ROC curves, we can argue that the

proposed algorithm can produce excellent and efficient classifiers since the

area under the ROC curves near to 1.

5. CONCLUSIONS

In this paper, the Memetic Programming (MP) algorithm has been used for

producing mathematical rules for the two-class classification problems.

 MEMETIC PROGRAMMING WITH THE ATOMIC… 15

Figure 10: ROC curves for UCI datasets.

The proposed algorithm has been tested to generate new classifiers for a

set of benchmark problems from UCI datasets. These datasets have been

classified to two types of classification problems, datasets with nominal

attributes and dataset with continues attributes. The results of these

experiments reflects the efficiency of the MP algorithm compared with other

algorithms in the literature at least for the considered benchmark problems.

16 Eman Baky, Emad Mabrouk1, I.E. Elsemman

REFERENCES

1. J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier,

2011.

2. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, et al.,

Advances in knowledge discovery and data mining, Vol. 21, AAAI press

Menlo Park, 1996.

3. M. Kantardzic, Data mining: concepts, models, methods, and algo- rithms,

John Wiley & Sons, 2011.

4. L. Breiman, Classification and regression trees, Routledge, 2017.

5. P. J. Rauss, J. M. Daida, S. Chaudhary, Classification of spectral im- agery

using genetic programming, Ann Arbor 1001 (2000) 48109.

6. C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, Genetic programming for

knowledge discovery in chest-pain diagnosis, IEEE Engineering in

Medicine and Biology Magazine 19 (4) (2000) 38–44.

7. N. S. Chaudhari, A. Purohit, A. Tiwari, Genetic programming for classi-

fication, International Journal of Computer and Electronics Engineering,

IJCEE 1 (2009) 69–76.

8. E. Mabrouk, A.-R. Hedar, M. Fukushima, Memetic programming with

adaptive local search using tree data structures, in: Proceedings of the 5th

international conference on Soft computing as transdisciplinary sci- ence

and technology, ACM, 2008, pp. 258–264.

9. E. Mabrouk, A. Hedar, M. Fukushima, Memetic programming algo- rithm

with automatically defined functions, Tech. rep., Technical Re- port 2010-

015, Department of Applied Mathematics and Physics, Kyoto University,

Japan (2010.)

10. J. R. Koza, Genetic programming: on the programming of computers by

means of natural selection, Vol. 1, MIT press, 1992.

11. W. E. Hart, N. Krasnogor, J. E. Smith, Recent advances in memetic

algorithms, Vol. 166, Springer Science & Business Media, 2004.

12. O. Kramer, Iterated local search with powells method: a memetic al-

gorithm for continuous global optimization, Memetic Computing 2 (1)

(2010) 69–83.

13. N. Krasnogor, J. Smith, A tutorial for competent memetic algorithms:

model, taxonomy, and design issues, IEEE Transactions on Evolutionary

Computation 9 (5) (2005) 474–488.

14. P. Moscato, et al., On evolution, search, optimization, genetic algorithms

and martial arts: Towards memetic algorithms, Caltech concurrent com-

putation program, C3P Report 826 (1989) 1989.

 MEMETIC PROGRAMMING WITH THE ATOMIC… 17

15. C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, E. L. Michalkiewicz, A

constrained-syntax genetic programming system for discovering classifi-

cation rules: application to medical data sets, Artificial Intelligence in

Medicine 30 (1) (2004) 27–48.

16. A. Asuncion, D. Newman, Uci machine learning repository (2007.)

17. M. Marghny, I. El-Semman, Extracting logical classification rules with gene

expression programming: microarray case study, in: Proceedings of the

International Conference on Artificial Intelligence and Machine Learning

(AIML 05), 2005, pp. 11–16.

18. [M. H. Mohamed, Rules extraction from constructively trained neural

networks based on genetic algorithms, Neurocomputing 74 (17) (2011)

3180–3192.

19. M. L. Wong, K. S. Leung, Data mining using grammar based genetic

programming and applications, Vol. 3, Springer Science & Business Me-

dia, 2006.

20. A. A. Farhat, I. El-Semman, E. Mabrouk, Solving two-class classification

problem using memetic programming, Assiut Univ. J. of Mathematics and

Computer Science (14.)

21. X. Pan, L. Jiao, A granular agent evolutionary algorithm for classifica- tion,

Applied Soft Computing 11 (3) (2011) 3093–3105.

22. W. J. Krzanowski, D. J. Hand, ROC curves for continuous data, Chap- man

and Hall/CRC, 2009.

