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Abstract: Elastic properties of manoeuvring object orbiting earth is discussed herein. 

Deflections in an elastic beam produced as a result of its motion and external forces are 

determined using Kane’s dynamical equations. Inertia, internal, control, and gravity forces are 

included to develop modes shapes of vibrations. Deflections at end points are then 

determined, consequently mass centre position along with beam orientation is amended to 

have precise positions of end point, where docking with other objects are attained. 
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Introduction 
A growing concern has been rosin during the last decade in assembling large structures on 

orbit. These structures are ranging from mirrors to reflect the sun light on solar arrays [1], 

antennae [2,3,4], manipulators, [5], up to the ISS [6]. It is essentially to use light, 

consequently flexible, structure elements. Due to this flexibility, significant deflection and 

vibration assist. Accurate rendezvous and docking operations requires a complete knowledge 

about positions and velocities of connection points, normally end points [7]. 

 

Motion planning of a manoeuvring object usually considers the translation of mass centre and 

rotation about it. These manoeuvres are generated due to the requirements of reaching goal 

positions and orientation in the mean time avoiding obstacles which are in fact others 

manoeuvring objects. Goal configuration are determine through constructing the layout of the 

assembled structures based on all elements remain straight, which of course not the case [8]. 

 

A general dynamics of the beam are modelled by using Lagrangian approach. Position and 

velocity of end points relative to a body reference frame centred at the manoeuvring object 

mass centre is presented in this paper using Kanne’s dynamical equations. Equations 

governing motions of the manoeuvring object is obtained by utilizing generalized speeds 

related to vibration modes [9,10].     

 

 

Mode Shapes of Free-Vibration 
A free-flying elastic beam of length, L, constant flexural rigidity EI, and constant mass per 

unit length,, is vibrated freely under the action of its own velocity and angular velocity. The 

governing partial differential equation for this case is defined as [11]: 

 

 

                                                 
*
 Egyptian Armed Forces, Egypt, ahmed.badawy@lycos.com 



Paper: ASAT-15-000-XX 

 

 

2 

 0
2

2

4

4











t

y

x

y
EI   (1) 

The general solution has a form of 
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The free-free boundary conditions are then defined as: 
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Normal functions for free-free vibration are: 
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where i are the roots of the following transcendental equation: 
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Whereas i and i are constants depend on initial conditions. Normal functions satisfy the 

orthogonality condition. 
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where 

m  … beam mass 

ij … Kronecker delta 
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Motion in Earth Orbit 
The maneuvering beam is placed in earth gravitational field. Earth is considered as a fixed 

particle in an inertial frame of reference and is designated as particle E of mass mE. Two 

external systems of forces are considered: gravitational force due to the existence of particle E 

and control actions, Fig. 1. 

 

Centre of gravity of the beam, point A, is characterized by three generalized speeds in the 

inertial frame of reference u1, u2 and u3 where [10]: 
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Fig. 1 Maneuvering beam-like object 

 

where N

Av is the velocity of point A in the inertial frame, N, and ai are unit vectors of frame N 

and also fixed to point A, then 
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Deformation of any point at distance x from A, and generalized speeds are expressed 

considering n-normal functions as: 
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Velocity of a generic point P at distance x from point A is proved to be [10]: 
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The angular acceleration of the beam is: 

 33aα uN   (15) 

The acceleration of point A is expressed as: 
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Acceleration of a generic point P at distance x from point A is proved to be:  
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Generalized Inertia Force 
Total generalized inertia force for a beam of length, L, is defined as: 
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Substituting from eqs. (14, 18) in the previous equation gives: 
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These generalized inertia forces are produced by internal, gravitational, and control forces. 

 

 

Internal Actions in the Beam 
Consider an element at distance, x, from point A, and of length dx, internal force is then 

described as: 
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Total internal force is then defined as: 
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Apply boundary conditions as: 
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Gravitational Force Exerts on the Beam 
Consider the sole attraction exerts the beam is due to the earth as a central body. The position 

vector of the centre of gravity, point A in our case of homogeneous beam, is termed R. 

Position of any generic point P from P toward earth is then defined as: 
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Total gravitational force is then expressed as: 
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Control Actions 
Consider the maneuvering beam is controlled through couple moment at point A and force at 

the same point in a general direction in the plane of motion. These actions are then expressed 

as: 

 3aT Tc   (31) 

and 2211 aaF FFc   (32) 

Equivalent control force is expressed as: 

 nj
uu

c

j

A
N

c

j

N
c
j 









 3,...,1,            .. F

v
T

ω
F  (33) 

 

Kane’s Dynamical Equations 
For a system in an inertial frame of reference, the summation of generalized active forces and 
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Analysis of Kane’s Equations 
Kane’s dynamical equations give (3+n) equations in the following unknowns  

(T1, …, Tn, u1, …, u3+n). Additional kinematical equations are needed to solve this system of 

equations. These equations are provided as: 

 niTu ii ,...,1,                  3 
  (40) 

Using eq. (4) and performing integrations throughout eqs. (36-39) lead to the following: 
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Numerical Results 
For a maneuvering elastic beam like structure, the control algorithm provides us with 

controller interventions as impulses. These impulsive forces are only applied when the natural 

motion of the maneuvering elements does not provide the required rate of approaching the 

goal configuration and avoiding obstacles, Fig. 2. 

 

 
Object maneuver in plane  

 
Impulsive force 

 

Fig. 2 Control demand (courtesy of [8]) 

 

 

Impulsive forces produced from control algorithm is now provided to the dynamic model to 

calculate the deflection and velocity of end points for the manoeuvring beam like object with 

the data given in Table 1. 

 

 

Table. 1 Object properties 

 

length [m] Density, [kg/m] Altitude, [km] Flexural rigidity, [N m
2
] 

20 0.2 1000 5 

 

Results for beam deflections are presented in fig. 3. These results are provided to the 

controller to amend its goal position to make these variations in end position with docking 

mechanism tolerance. 
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Fig. 3 End point Deflection and Rotation 

 

Mass centre velocity and angular velocity are also provided to the controller to estimate the 

actual position and orientation to be forwarded to the next phase on control action when 

demanded. 
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Fig. 4 Mass Centre Velocity and Angular Velocity 
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Conclusions 
Dynamic model along with control algorithm prove their ability to perform successful on-

orbit mission for flexible beam-like structure. Determination of the required controller 

intervention for a rigid body is the first step in mission accomplishment, which is considered 

herein as a preliminary estimation for the required force and velocity. The dynamic model is 

then thriving efficiently in estimating the consequences of applying such control forces on 

both end and mass centre points. These data are now sent back to the controller to adjust 

thruster performance according to the actual flexible maneuvering object status. 
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