
Assiut Univ. J. of Mathematics and Computer Science Printed ISSN 1687-4897
48(1), pp58-71 (2019)

SOLVING TWO-CLASS CLASSIFICATION PROBLEM USING

MEMETIC PROGRAMMING

Amal A. Farhat, I.E. El-Semman, Emad Mabrouk

Department of Mathematics, Faculty of Science, Assiut University, Assiut

71516, Egypt

Received: 10/12/2019 Accepted: 9/4/2019 Available Online: 7/7/2019

The main target of the two-class classification problem is to design a classifier that

discriminates between two objects from a seen dataset, then use this classifier to

predict the object’s class for unseen instances. Different methods have been used to

solve the two-class classification problem, such as Genetic algorithm (GA) and

Genetic Programming (GP). However, there is still a need to design new methods

that can overcome some limitations in evolutionary algorithms, e.g., the high

disruption of the breading operations; mutation and crossover. Recently, the

Memetic Programming (MP) algorithm was proposed as an improvement to the

GP algorithm. In this paper, we adapt the MP algorithm to produce a new

classifier algorithm called the Memetic Programming Classifier (MPC) algorithm

to solve the two-class classification problem. The performance of MPC is validated

through different datasets from the UCI database and the accuracy is compared

along with different methods. As a result, the proposed MPC algorithm shows a

competitive performance compared with 179 classifiers in the literature.

Keywords: Classifier; Classification Problem, Genetic Programming;

Local Search; Memetic Programming;

1 INTRODUCTION

Machine learning (ML) is one of the most interesting branches of

artificial intelligence [6, 11]. ML can be defined as the task of

programming computers that is dependable of building a learning model

from past experiences or from training datasets. Therefore, this model

can be used to gain information from the given data, make predictions in

the future, or both. Recently, several ML techniques enabled computers

to outperform human-level execution at image classification [10], to

teach mobile robots the visual perception in forest paths [8], to beat

people in complex games [2, 19]. Moreover, several ML techniques used

to give deep speech to text applications in popular mobile phones [9].

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 59

Indeed, one of the most important applications of ML appears in the

classification problems.

Classification plays a significant role in real life applications, e.g.

computational biology and text and sound categorization [1, 7]. In such

problems, a set of patterns or examples are given, where each example

has some features. These features represent the inputs and one label

refers to the output class of this example. The desired classifier attempts

to build a simple mathematical model that can identify the label for seen

examples with higher accuracy. Then, this classifier can be used to

identify the label of unseen examples. Genetic Programing (GP) is

introduced as one of Artificial Intelligence techniques [12], which

considered as a developed version of the well-known Genetic Algorithm

(GA). Moreover, GA as an evolutionary algorithm is evolved based on

Darwin’s theory of survival of the fittest [17]. Utilization of GP in the

field of classification received considerable attention in the recent years.

Mabrouk et al. [16] produced a new algorithm called the Memetic

Programming (MP) algorithm by extending the GP algorithm using a set

of local search techniques to improve its performance. The aim of the

present paper is to build a suitable classifier for two-class classification

problem using a modified version of the MP algorithm.

The paper is organized out as follows: The proposed Memetic

Programming Classifier (MPC) algorithm will be introduced in the next

section. In Section 3, we report some results of the MPC algorithm for

different benchmark problems. Finally, the conclusion will be presented

in Section 4.

2. METHODS

2.1. Two-class classification problem definition

 A classifier is a function F that assigns a class label y to a feature

vector x [3]. If we have a training set *() () ()+,

where

 . In addition, is a -dimensional space

that represents the feature vector and is the two-dimensional binary

space that represents the label vector of a given training set. Therefore,

60 Amal A. Farhat, I.E. El-Semman, Emad

Mabrouk

the classifier is defined as , where is the set of label

vectors for two classes and defined as:

 {
 * + ∑

} ()

where is a vector in , represents the first class, while

represents the second class. The classification method finds the classifier

 that minimize | () |. After building the classifier, the quality of

this classifier can be emphasized using its result for the testing set.

2.2. Classifier design

 The MP algorithm searches the proposed solution space to find the

best solution. This solution represents the best individual found through

the search process. Each individual in the MP algorithm is a tree in which

external nodes are terminals and internal nodes are functions, see Figure

(1a). The domains of terminals and functions are problem dependent.

Mainly, the algorithm starts with a population of individuals generated

randomly then iterates three steps many times, Figure (1b). In the first

step, the algorithm selects a pool of parents according to their

performance to generate new individuals using the diversification and

intensification strategies. In the diversification step, the algorithm uses

cross-over and mutation operators as in GP to guarantee the diversity in

the new population. However, in the intensification step, a local search

algorithm is used to intensify elite programs from the current population.

The MP algorithm repeats these steps until reaching a predefined

termination condition [16]. In this application, we represent the classifier

as a large tree, , with a specific structure, see Figure (1a). This tree is

encoded in MPC as a code representation as in Figure (1a). After

evaluating the value of the tree, we can use this value to create a

corresponding rule as in Figure (1a). According to the resulting value of

 , a pattern can be classified into one of the available classes.

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 61

Figure 1: (a) A tree representation that illustrates how the code

representation is converted to a two-class classification

 During the search process, the MP evaluates the fitness value for each

classifier using a predefined training dataset. Then, the algorithm

performs the breading operations on these classifiers to improve their

performance. Finally, the best classifier (with higher accuracy) found in

all generations will be considered as the output of the algorithm.

Therefore, the testing dataset can be used to compute the accuracy of the

resulting classifier. The following steps summarize how to generate the

best classifier.

Step 1: The tree structure

 Each tree in the MPC algorithm consists of some internal nodes

generated from the set of functions, and some leave nodes generated from

the set of terminals. In this study, the function set FS contains a

combination of arithmetic and Boolean functions to extract the desired

62 Amal A. Farhat, I.E. El-Semman, Emad

Mabrouk

mathematical rules. Specifically, *

 + where if ; otherwise, .

 and are Boolean functions of two parameters, where ()

returns if and , otherwise, it returns zero. However,

 () returns zero if and , otherwise, it returns .

Moreover, is a Boolean function of three arguments and ()

returns if , otherwise, it returns . In addition, the terminal

set * +, where the feature_variables is the list

of all attributes of the given problem and is a list of numbers, e.g.

 * +

 Suppose that is a pattern taken from a dataset with two classes with

four attributes. Let * + and * + then Figure

(1a) explains how the generated classifier classifies the pattern .

Step 2: Fitness function

A set of samples * + are used as the training dataset

during the search process of the MPC algorithm to evolve the generated

classifiers. The MPC algorithm estimates the performance of each

classifier using the fitness function. The fitness function takes the

classifier with the training dataset, then the value g of the classifier will

be evaluated for each pattern (raw) in the training dataset. If for a

pattern , then it will be classified as Class 1, otherwise will be

classified as Class 2. Finally, the fitness value of that classifier can be

specified using the following equation:

 ()
 ()

Accordingly, a classifier with fitness value one will be considered as the

optimal solution for the given problem since all patterns are classified

correctly.

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 63

Step 3: Crossover and mutation

Crossover and mutation are essential operators in the evolution of the

MPC algorithm. Both operators are applied on some classifiers chosen

using the c-way tournament selection method, where c classifier is

chosen randomly and the fittest one will be the winner [21]. The

crossover operator is applied for two classifiers where the algorithm

chooses two nodes randomly, one from each tree, and interchanges the

two sub-trees rooted at these nodes to result new two classifiers. On the

other hand, the mutation operator is applied for one classifier, selected

using the tournament selection. Then, the new classifier is generated by

replacing a sub-tree chosen randomly by a new one which created

randomly.

Step 4: Local search procedures

Several local search procedures are used to generate new classifiers in a

neighborhood of the current one. The shaking procedure is used to alter

classifier nodes without changing its structure. On the other hand,

expanding terminal nodes or cutting sub-trees of the original classifier are

used to change the structure of the classifier using the grafting and

pruning procedures. The local search procedures are applied at each

generation on some promising classifiers to generate new classifiers in

the neighborhood of the selected classifier. For more details about

shaking, grafting and pruning procedures and their applications see [16].

Step 5: Termination of the MPC algorithm

There are two termination conditions to terminate the algorithm:

1. Finding a classifier that can classify all training samples correctly, i.e.

its fitness value is 1.

2. Reaching to the maximum number of fitness evaluations.

In other words, if an individual correctly classifying all training

samples then the algorithm will terminate and produce that individual as

the output classifier. Otherwise, if the algorithm accesses the maximum

64 Amal A. Farhat, I.E. El-Semman, Emad

Mabrouk

number of fitness evaluations, the output classifier will be the individual

with the highest fitness value.

3. Numerical Experiments

 To demonstrate the ability of the proposed algorithm in producing

high-efficiency rules for classification problems, we applied the MPC

algorithm for 4 benchmark datasets from the UCI repository [13].

Additionally, the MPC algorithm maximizes the fitness function in

Equation 2, so it returns with the highest accuracy classifier. The next

subsection shows the details and properties of all datasets under

consideration. The proposed settings for the MPC algorithm are

introduced in Subsection 3.2. In Subsection 3.3, the numerical results of

the MPC algorithm are introduced along with different results for set of

algorithms in the literatures.

3.1. Datasets

In this study, four different problems are used: The Hill-Valley

problem and three different versions of the Monks problems. Table 1

exhibits properties of these datasets in terms of the number of patterns

(No.cases), the number of attributes (No.attr.), attributes type (Attr.type)

and the number of classes in each dataset (No.classes). More details of

the datasets can be found in [13].

To prepare the datasets for being used by the MPC algorithm, some

data preprocessing approaches are applied. Specifically, the binarization

approach is used to enumerate the nominal attributes for the Monks

datasets, while for the Hill-Valley dataset, the normalization approach is

used to make all attributes having the same interval.

Table 1: Properties of the benchmark datasets

DataSets No.cases No.attr. Attr.type No.classes

Hill-Valley 606 100 continuous 2

Monk1 432 6 nominal 2

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 65

Monks2 432 6 nominal 2

Monks3 432 6 nominal 2

3.2. MPC settings

To run the MPC algorithm, according to the previous sections, the

following set of parameters must be determined before calling the

algorithm:

 nPop: Population size.

 nGnrs: Maximum number of generations.

 iDepth: Depth of trees in the initial population.

 mDepth: Maximum depth for each tree during the search process.

 nLsp: Number of trees using in the local search algorithm at each

generation.

 nTrial: Number of trial trees produced from the current tree.

 nShaking: Number of nodes that will be changed in the shaking

search.

 nBranch: Number of branches that will be changed in the

grafting/pruning search.

 bDepth: Depth of branches that will be changed in the

grafting/pruning search.

 nFail: Maximum number of failures (non-improvements) in the

local search algorithm.

 In evolutionary algorithms, a set of values for each parameter is

tested through several independent runs of the algorithm. Therefore, the

parameter value that produces the highest fitness values can be used as

the best value for that parameter [4, 14, 18, 20]. The best values of the

MPC parameters are shown in Table 2. These values are selected as

shown in [15, 16] and based on a lot of pilot experiments of the proposed

MPC algorithm.

66 Amal A. Farhat, I.E. El-Semman, Emad

Mabrouk

Table 2: Common parameters for all datasets

Parameter Value Parameter Value

nPop 1000 nTrial 3

nGnrs 1000 nShaking 2

iDepth 3 nBranch 2

mDepth 5 bDepth 1

nLsp 5% nFail 1

3.3. MPC results

 To assess the performance of the MPC algorithm, we used the

parameter values in Table 2. Moreover, 1000 individuals are used as the

population size and 1000 generations are used as the maximum number

of iterations. For each dataset, the algorithm stops when the maximum

fitness reaches 1, i.e. at least one individual can classify all patterns in the

training dataset correctly.

 Nevertheless, whenever the maximum fitness is less than 1, the

algorithm continue the search process for 1000 iterations at most. The

function set used for both problems is * +

and the terminal set * +.

 During the experimental results of this paper, the 4-fold

cross-validation technique is used to assess the ability and stability of the

MPC algorithm to compare the results with Fernández-Delgado et al. [5].

The 4-fold cross-validation technique divides the given dataset into two

complementary subsets, the training set to train the algorithm and the

testing set used to validate the stability and evaluate the accuracy of the

resulting classifier. In 4-fold cross-validation, the entire dataset is

randomly split into 4 folds, with 3 folds are used as the training dataset,

and the remaining fold is retained as the testing dataset. The classifier

will be evolved using the training dataset and the accuracy will be

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 67

estimated using the testing dataset. This process is then repeated 4 times

until each of the 4 folds is used exactly once as the testing dataset. The

average of the resulting 4 recorded accuracies, called the cross-validation

accuracies, will be considered as the accuracy of the resulting classifier.

 Fernández-Delgado et al. [5] studied 179 classifiers on various types

of datasets and they concluded that the parRF_t, rf_t and svm_C

algorithms are the best classifiers for these datasets. We performed 50

independent runs and the best rule found was considered. In Table 3, we

show results of MPC with results of the three classifiers parRF_t, rf_t,

svm_C and the maximum accuracies (Max) founded through 179

classifier, see [5].

Table 3: Results of the MPC algorithm and different algorithms in the

literature.

Problem MPC parRF_t rf_t svm_C Max

Hill-

Valley

75.5776 55.3 54.1 53.6 74.3

Monk1 91.6667 61.1 61.1 51.9 79.9

Monk2 81.0185 65.7 65.7 65.3 67.8

Monk3 88.8889 53.7 53.7 53.2 77.3

From the obtained results of Table 3, we can conclude that our

classifier rules achieved the highest accuracy for all problem under

consideration. Moreover, there is 5% misclassification in the Monk3

problem due to the noise in the training dataset. After 50 independent

runs on each one of the Monks problems, the following three rules are the

best rules founded by the MPC algorithm in terms of the fitness value and

the accuracy.

Monk1 Problem:

 ((()) ()

(())

68 Amal A. Farhat, I.E. El-Semman, Emad

Mabrouk

Monk2 Problem:

 ((() () ()) () ()

 ((())))

Monk3 Problem:

 (() ((() ())))

4. CONCLUSION AND FUTURE WORK

 In this paper, we introduced a new evolutionary algorithm for the

classification problems. The proposed MPC can be used to classify the

2�class classification problems efficiently. Moreover, the proposed

algorithm succeeded in providing only one rule to classify patterns of the

given problem without overlaps.

 We compared the resulting classifiers generated by the MPC

algorithm with 179 other classifier published by Fernández-Delgado et al.

[5] and our algorithm outperformed all of these algorithms. Based on this

comparison, we may conclude that the MPC algorithm shows a great

achievement for considered datasets.

 An area of future work is to apply the proposed algorithm for more

datasets in the literature and applied problems. Various modifications,

experiments and parameter settings have been left for the future due to

lack of time, since the experiments with large datasets take time and

require days to finish a single run of the algorithm.

 Another area of future work is to introduce a modified version of the

MPC algorithm to solve the c-class classification problems, where c >=

2. Further, we aim to produce a parallel version of the MPC algorithm

and use the cloud computing machine, which will reflect significant

improvements to the results.

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 69

REFERENCES

[1] Angermueller, C., P¨arnamaa, T., Parts, L., Stegle, O., 2016. Deep

learning for computational biology. Molecular Systems Biology 12 (7),

878.

[2] Baier, H., Winands, M., 2011. Active opening book application for

monte-carlo tree search in 19_ 19 go. In: Benelux Conference on

Artificial Intelligence. pp. 3–10.

[3] Chaudhari, N. S., Purohit, A., Tiwari, A., 2009. Genetic programming

for classification. International Journal of Computer and Electronics

Engineering, IJCEE 1, 69–76.

[4] Eiben, A. E., Smit, S. K., 2011. Parameter tuning for configuring and

analyzing evolutionary algorithms. Swarm and Evolutionary

Computation 1 (1), 19–31.

[5] Fern´andez-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 2014.

Do we need hundreds of classifiers to solve real world classification

problems. J. Mach. Learn. Res 15 (1), 3133–3181.

[6] Ghahramani, Z., 2015. Probabilistic machine learning and artificial

intelligence. Nature 521 (7553), 452.

[7] Gibaja, E., Ventura, S., 2015. A tutorial on multilabel learning. ACM

Computing Surveys (CSUR) 47 (3), 52.

[8] Giusti, A., Guzzi, J., Cires¸an, D. C., He, F.-L., Rodr´ıguez, J. P.,

Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G.,

2016. A machine learning approach to visual perception of forest trails

for mobile robots. IEEE Robotics and Automation Letters 1 (2), 661–667.

[9] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen,

E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., Others, 2014.

Deep speech: Scaling up end-to-end speech recognition. arXiv preprint

arXiv:1412.5567.

[10] He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

70 Amal A. Farhat, I.E. El-Semman, Emad

Mabrouk

classification. In: Proceedings of the IEEE international conference on

computer vision. pp. 1026-1034.

[11] Kononenko, I., 2001. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence in medicine

23 (1), 89–109.

[12] Koza, J. R., 1992. Genetic programming: on the programming of

computers by means of natural selection. Vol. 1. MIT press.

[13] Lichman, M., 2013. UCI machine learning repository. URL

http://archive.ics.uci.edu/ml

[14] Lobo, F., Lima, C. F., Michalewicz, Z., 2007. Parameter setting in

evolutionary algorithms. Vol. 54. Springer Science & Business Media.

[15] Mabrouk, E., Hedar, A., Fukushima, M., 2010. Memetic

programming algorithm with automatically defined functions. Tech. rep.,

Technical Report 2010-015, Department of Applied Mathematics and

Physics, Kyoto University, Japan.

[16] Mabrouk, E., Hedar, A.-R., Fukushima, M., 2008. Memetic

programming with adaptive local search using tree data structures. In:

Proceedings of the 5th international conference on Soft computing as

transdisciplinary science and technology. ACM, pp. 258–264.

[17] Morse, H., 2018. Where Do We Come From? Is Darwin Correct?: A

Philosophical and Critical Study of Darwin’s Theory of Natural

Selection. Routledge.

[18] Rojas, I., Gonz´alez, J., Pomares, H., Merelo, J., Castillo, P.,

Romero, G., 2002. Statistical analysis of the main parameters involved in

the design of a genetic algorithm. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 32 (1), 31–37.

[19] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den

Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,

Lanctot, M., 2016. Mastering the game of go with deep neural networks

and tree search. nature 529 (7587), 484–489.

SOLVING TWO-CLASS CLASSIFICATION PROBLEM… 71

[20] Smit, S. K., Eiben, A. E., 2009. Comparing parameter tuning

methods for evolutionary algorithms. In: 2009 IEEE congress on

evolutionary computation. IEEE, pp. 399–406.

[21] Xie, H., 2009. An analysis of selection in genetic programming. PhD

thesis, Victoria University of Wellington, New Zealand.

 ثنائية الفئه بإستخدام البرمجة الجينية المتطورةحل مشكلة التصنيف

الهدف الرئٌسً لحل مشاكل التصنٌف ذي الفئتٌن هو تصمٌم مصنف ٌستطٌع أن

ٌمٌز بٌن الفئتٌن من خلال مجموعة أمثلة مخصصة للتدرٌب واستخدام المصنف

الناتج للتنبؤ بفئة أمثلة غٌر مرئٌة. ٌوجد العدٌد من الطرق التً استخدمت لحل

. ولكن تظل الحاجة (GP) مشاكل التصنٌف ذي الفئتٌن مثل البرمجة الجٌنٌة

لتصمٌم طرق جدٌدة تستطٌع التغلب على بعض القٌود فً الخوارزمٌات التطورٌة

مثل الاضطراب العالً لعملٌات الفرز، الطفرة و التزاوج. خوارزمٌة البرمجة

(MP)الجٌنٌة المتطورة اقترحت مؤخرا كتحسٌن لخوارزمٌة (GP) فً هذه .

وارزمٌةالورقة البحثٌة، قمنا بتمدٌد خ MP لإنتاج خوارزمٌة جدٌدة تسمى

(MPC)خوارزمٌة مصنف البرمجة الجٌنٌة المتطورة لحل مشاكل التصنٌف ذي

تم التحقق من أداء الفئتٌن. MPC بٌانات مختلفة من قاعدة ةمن خلال مجموع

UCIبٌانات طرق مختلفة. وجدنا أن بوتمت مقارنة الدقة MPC تظهر أداء

مصنف فً الأدبٌات. 197تنافسً مقارنة بـ

