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The main target of the two-class classification problem is to design a classifier that 

discriminates between two objects from a seen dataset, then use this classifier to 

predict the object’s class for unseen instances. Different methods have been used to 

solve the two-class classification problem, such as Genetic algorithm (GA) and 

Genetic Programming (GP). However, there is still a need to design new methods 

that can overcome some limitations in evolutionary algorithms, e.g., the high 

disruption of the breading operations; mutation and crossover. Recently, the 

Memetic Programming (MP) algorithm was proposed as an improvement to the 

GP algorithm. In this paper, we adapt the MP algorithm to produce a new 

classifier algorithm called the Memetic Programming Classifier (MPC) algorithm 

to solve the two-class classification problem. The performance of MPC is validated 

through different datasets from the UCI database and the accuracy is compared 

along with different methods. As a result, the proposed MPC algorithm shows a 

competitive performance compared with 179 classifiers in the literature. 

Keywords: Classifier; Classification Problem, Genetic Programming; 

Local Search; Memetic Programming; 

1   INTRODUCTION 

Machine learning (ML) is one of the most interesting branches of 

artificial intelligence [6, 11]. ML can be defined as the task of 

programming computers that is dependable of building a learning model 

from past experiences or from training datasets. Therefore, this model 

can be used to gain information from the given data, make predictions in 

the future, or both. Recently, several ML techniques enabled computers 

to outperform human-level execution at image classification [10], to 

teach mobile robots the visual perception in forest paths [8], to beat 

people in complex games [2, 19]. Moreover, several ML techniques used 

to give deep speech to text applications in popular mobile phones [9]. 
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Indeed, one of the most important applications of ML appears in the 

classification problems. 

Classification plays a significant role in real life applications, e.g. 

computational biology and text and sound categorization [1, 7]. In such 

problems, a set of patterns or examples are given, where each example 

has some features. These features represent the inputs and one label 

refers to the output class of this example. The desired classifier attempts 

to build a simple mathematical model that can identify the label for seen 

examples with higher accuracy. Then, this classifier can be used to 

identify the label of unseen examples. Genetic Programing (GP) is 

introduced as one of Artificial Intelligence techniques [12], which 

considered as a developed version of the well-known Genetic Algorithm 

(GA). Moreover, GA as an evolutionary algorithm is evolved based on 

Darwin’s theory of survival of the fittest [17]. Utilization of GP in the 

field of classification received considerable attention in the recent years. 

Mabrouk et al. [16] produced a new algorithm called the Memetic 

Programming (MP) algorithm by extending the GP algorithm using a set 

of local search techniques to improve its performance. The aim of the 

present paper is to build a suitable classifier for two-class classification 

problem using a modified version of the MP algorithm.  

The paper is organized out as follows: The proposed Memetic 

Programming Classifier (MPC) algorithm will be introduced in the next 

section. In Section 3, we report some results of the MPC algorithm for 

different benchmark problems. Finally, the conclusion will be presented 

in Section 4. 

2. METHODS 

2.1. Two-class classification problem definition 

 A classifier is a function F that assigns a class label y to a feature 

vector x [3]. If we have a training set *(     ) (     )   (     )+,  

where     
           

  . In addition,    is a  -dimensional space 

that represents the feature vector and     is the two-dimensional binary 

space that represents the label vector of a given training set. Therefore, 
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the classifier   is defined as         , where    is the set of label 

vectors for two classes and defined as: 

 

   {    
     *   + ∑  

 

   

}      ( ) 

 

where   is a vector in   ,    represents the first class, while    

represents the second class. The classification method finds the classifier 

  that minimize | ( )   |. After building the classifier, the quality of 

this classifier can be emphasized using its result for the testing set. 

2.2. Classifier design 

 The MP algorithm searches the proposed solution space to find the 

best solution. This solution represents the best individual found through 

the search process. Each individual in the MP algorithm is a tree in which 

external nodes are terminals and internal nodes are functions, see Figure 

(1a). The domains of terminals and functions are problem dependent. 

Mainly, the algorithm starts with a population of individuals generated 

randomly then iterates three steps many times, Figure (1b). In the first 

step, the algorithm selects a pool of parents according to their 

performance to generate new individuals using the diversification and 

intensification strategies. In the diversification step, the algorithm uses 

cross-over and mutation operators as in GP to guarantee the diversity in 

the new population. However, in the intensification step, a local search 

algorithm is used to intensify elite programs from the current population. 

The MP algorithm repeats these steps until reaching a predefined 

termination condition [16]. In this application, we represent the classifier 

as a large tree,  , with a specific structure, see Figure (1a). This tree is 

encoded in MPC as a code representation as in Figure (1a). After 

evaluating the value of the tree, we can use this value to create a 

corresponding rule as in Figure (1a). According to the resulting value of 

 , a pattern   can be classified into one of the available classes. 
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Figure 1: (a) A tree representation that illustrates how the code 

representation is converted to a two-class classification 

 

 During the search process, the MP evaluates the fitness value for each 

classifier using a predefined training dataset. Then, the algorithm 

performs the breading operations on these classifiers to improve their 

performance. Finally, the best classifier (with higher accuracy) found in 

all generations will be considered as the output of the algorithm. 

Therefore, the testing dataset can be used to compute the accuracy of the 

resulting classifier. The following steps summarize how to generate the 

best classifier. 

 

Step 1: The tree structure 

 Each tree in the MPC algorithm consists of some internal nodes 

generated from the set of functions, and some leave nodes generated from 

the set of terminals. In this study, the function set FS contains a 

combination of arithmetic and Boolean functions to extract the desired 
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mathematical rules. Specifically,    *               

         + where           if      ; otherwise,              . 

    and    are Boolean functions of two parameters, where    (   ) 

returns   if       and      , otherwise, it returns zero. However, 

  (    ) returns zero if       and      , otherwise, it returns  . 

Moreover,    is a Boolean function of three arguments and   (     ) 

returns   if      , otherwise, it returns  . In addition, the terminal 

set    *                   +, where the feature_variables is the list 

of all attributes of the given problem and    is a list of numbers, e.g. 

   *         +  

 Suppose that   is a pattern taken from a dataset with two classes with 

four attributes. Let    *     + and    *           + then Figure 

(1a) explains how the generated classifier classifies the pattern  . 

Step 2: Fitness function  

A set of samples     *          + are used as the training dataset 

during the search process of the MPC algorithm to evolve the generated 

classifiers. The MPC algorithm estimates the performance of each 

classifier using the fitness function. The fitness function takes the 

classifier with the training dataset, then the value g of the classifier will 

be evaluated for each pattern (raw) in the training dataset. If       for a 

pattern  , then it will be classified as Class 1, otherwise   will be 

classified as Class 2. Finally, the fitness value of that classifier can be 

specified using the following equation: 

 

        
                                   

                                         ( )
        ( ) 

Accordingly, a classifier with fitness value one will be considered as the 

optimal solution for the given problem since all patterns are classified 

correctly. 



SOLVING TWO-CLASS CLASSIFICATION PROBLEM…         63 

 

 
 

Step 3: Crossover and mutation 

Crossover and mutation are essential operators in the evolution of the 

MPC algorithm. Both operators are applied on some classifiers chosen 

using the c-way tournament selection method, where c classifier is 

chosen randomly and the fittest one will be the winner [21]. The 

crossover operator is applied for two classifiers where the algorithm 

chooses two nodes randomly, one from each tree, and interchanges the 

two sub-trees rooted at these nodes to result new two classifiers. On the 

other hand, the mutation operator is applied for one classifier, selected 

using the tournament selection. Then, the new classifier is generated by 

replacing a sub-tree chosen randomly by a new one which created 

randomly. 

Step 4: Local search procedures 

Several local search procedures are used to generate new classifiers in a 

neighborhood of the current one. The shaking procedure is used to alter 

classifier nodes without changing its structure. On the other hand, 

expanding terminal nodes or cutting sub-trees of the original classifier are 

used to change the structure of the classifier using the grafting and 

pruning procedures. The local search procedures are applied at each 

generation on some promising classifiers to generate new classifiers in 

the neighborhood of the selected classifier. For more details about 

shaking, grafting and pruning procedures and their applications see [16]. 

Step 5: Termination of the MPC algorithm 

There are two termination conditions to terminate the algorithm: 

1. Finding a classifier that can classify all training samples correctly, i.e. 

its fitness value is 1. 

2. Reaching to the maximum number of fitness evaluations. 

 

In other words, if an individual correctly classifying all training 

samples then the algorithm will terminate and produce that individual as 

the output classifier. Otherwise, if the algorithm accesses the maximum 
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number of fitness evaluations, the output classifier will be the individual 

with the highest fitness value. 

 

3. Numerical Experiments 

 To demonstrate the ability of the proposed algorithm in producing 

high-efficiency rules for classification problems, we applied the MPC 

algorithm for 4 benchmark datasets from the UCI repository [13]. 

Additionally, the MPC algorithm maximizes the fitness function in 

Equation 2, so it returns with the highest accuracy classifier. The next 

subsection shows the details and properties of all datasets under 

consideration. The proposed settings for the MPC algorithm are 

introduced in Subsection 3.2. In Subsection 3.3, the numerical results of 

the MPC algorithm are introduced along with different results for set of 

algorithms in the literatures. 

3.1. Datasets 

In this study, four different problems are used: The Hill-Valley 

problem and three different versions of the Monks problems. Table 1 

exhibits properties of these datasets in terms of the number of patterns 

(No.cases), the number of attributes (No.attr.), attributes type (Attr.type) 

and the number of classes in each dataset (No.classes). More details of 

the datasets can be found in [13]. 

To prepare the datasets for being used by the MPC algorithm, some 

data preprocessing approaches are applied. Specifically, the binarization 

approach is used to enumerate the nominal attributes for the Monks 

datasets, while for the Hill-Valley dataset, the normalization approach is 

used to make all attributes having the same interval. 

 

Table 1: Properties of the benchmark datasets 

DataSets No.cases No.attr. Attr.type No.classes 

Hill-Valley 606 100 continuous 2 

Monk1 432 6 nominal 2 
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Monks2 432 6 nominal 2 

Monks3 432 6 nominal 2 

 

 

3.2. MPC settings 

To run the MPC algorithm, according to the previous sections, the 

following set of parameters must be determined before calling the 

algorithm: 

 nPop: Population size. 

  nGnrs: Maximum number of generations. 

  iDepth: Depth of trees in the initial population. 

  mDepth: Maximum depth for each tree during the search process. 

  nLsp: Number of trees using in the local search algorithm at each 

generation. 

  nTrial: Number of trial trees produced from the current tree. 

  nShaking: Number of nodes that will be changed in the shaking 

search. 

  nBranch: Number of branches that will be changed in the 

grafting/pruning search. 

  bDepth: Depth of branches that will be changed in the 

grafting/pruning search. 

  nFail: Maximum number of failures (non-improvements) in the 

local search algorithm. 

 

 In evolutionary algorithms, a set of values for each parameter is 

tested through several independent runs of the algorithm. Therefore, the 

parameter value that produces the highest fitness values can be used as 

the best value for that parameter [4, 14, 18, 20]. The best values of the 

MPC parameters are shown in Table 2. These values are selected as 

shown in [15, 16] and based on a lot of pilot experiments of the proposed 

MPC algorithm. 
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Table 2: Common parameters for all datasets 

Parameter Value Parameter Value 

nPop 1000 nTrial 3 

nGnrs 1000 nShaking 2 

iDepth 3 nBranch 2 

mDepth 5 bDepth 1 

nLsp 5% nFail 1 

 

3.3. MPC results 

 To assess the performance of the MPC algorithm, we used the 

parameter values in Table 2. Moreover, 1000 individuals are used as the 

population size and 1000 generations are used as the maximum number 

of iterations. For each dataset, the algorithm stops when the maximum 

fitness reaches 1, i.e. at least one individual can classify all patterns in the 

training dataset correctly. 

 Nevertheless, whenever the maximum fitness is less than 1, the 

algorithm continue the search process for 1000 iterations at most. The 

function set used for both problems is    *                + 

and the terminal set    *                           +. 

 During the experimental results of this paper, the 4-fold 

cross-validation technique is used to assess the ability and stability of the 

MPC algorithm to compare the results with Fernández-Delgado et al. [5]. 

The 4-fold cross-validation technique divides the given dataset into two 

complementary subsets, the training set to train the algorithm and the 

testing set used to validate the stability and evaluate the accuracy of the 

resulting classifier. In 4-fold cross-validation, the entire dataset is 

randomly split into 4 folds, with 3 folds are used as the training dataset, 

and the remaining fold is retained as the testing dataset. The classifier 

will be evolved using the training dataset and the accuracy will be 
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estimated using the testing dataset. This process is then repeated 4 times 

until each of the 4 folds is used exactly once as the testing dataset. The 

average of the resulting 4 recorded accuracies, called the cross-validation 

accuracies, will be considered as the accuracy of the resulting classifier. 

 Fernández-Delgado et al. [5] studied 179 classifiers on various types 

of datasets and they concluded that the parRF_t, rf_t and svm_C 

algorithms are the best classifiers for these datasets. We performed 50 

independent runs and the best rule found was considered. In Table 3, we 

show results of MPC with results of the three classifiers parRF_t, rf_t, 

svm_C and the maximum accuracies (Max) founded through 179 

classifier, see [5]. 

 

Table 3: Results of the MPC algorithm and different algorithms in the 

literature. 

Problem MPC parRF_t rf_t svm_C Max 

Hill-

Valley 

75.5776 55.3 54.1 53.6 74.3 

Monk1 91.6667 61.1 61.1 51.9 79.9 

Monk2 81.0185 65.7 65.7 65.3 67.8 

Monk3 88.8889 53.7 53.7 53.2 77.3 

 

From the obtained results of Table 3, we can conclude that our 

classifier rules achieved the highest accuracy for all problem under 

consideration. Moreover, there is 5% misclassification in the Monk3 

problem due to the noise in the training dataset. After 50 independent 

runs on each one of the Monks problems, the following three rules are the 

best rules founded by the MPC algorithm in terms of the fitness value and 

the accuracy. 

Monk1 Problem: 

  (   (  (       )    )         (       )      

(    (       ))                   
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Monk2 Problem: 

  (  (  (       ) (       ) (       ))  (       )    (       )     

 (  (  (       )    ))     )                 

             

Monk3 Problem: 

  ((       )  (   ((       ) (     ))     ))                  

              

4. CONCLUSION AND FUTURE WORK 

 In this paper, we introduced a new evolutionary algorithm for the 

classification problems. The proposed MPC can be used to classify the 

2�class classification problems efficiently. Moreover, the proposed 

algorithm succeeded in providing only one rule to classify patterns of the 

given problem without overlaps. 

 We compared the resulting classifiers generated by the MPC 

algorithm with 179 other classifier published by Fernández-Delgado et al. 

[5] and our algorithm outperformed all of these algorithms. Based on this 

comparison, we may conclude that the MPC algorithm shows a great 

achievement for considered datasets. 

 An area of future work is to apply the proposed algorithm for more 

datasets in the literature and applied problems. Various modifications, 

experiments and parameter settings have been left for the future due to 

lack of time, since the experiments with large datasets take time and 

require days to finish a single run of the algorithm. 

 Another area of future work is to introduce a modified version of the 

MPC algorithm to solve the c-class classification problems, where c >= 

2. Further, we aim to produce a parallel version of the MPC algorithm 

and use the cloud computing machine, which will reflect significant 

improvements to the results. 

_____________________________________ 
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 ثنائية الفئه بإستخدام البرمجة الجينية المتطورةحل مشكلة التصنيف 

 

 

الهدف الرئٌسً لحل مشاكل التصنٌف ذي الفئتٌن هو تصمٌم مصنف ٌستطٌع أن 

ٌمٌز بٌن الفئتٌن من خلال مجموعة أمثلة مخصصة للتدرٌب واستخدام المصنف 

الناتج للتنبؤ بفئة أمثلة غٌر مرئٌة. ٌوجد العدٌد من الطرق التً استخدمت لحل 

. ولكن تظل الحاجة (GP) مشاكل التصنٌف ذي الفئتٌن مثل البرمجة الجٌنٌة 

لتصمٌم طرق جدٌدة تستطٌع التغلب على بعض القٌود فً الخوارزمٌات التطورٌة 

مثل الاضطراب العالً لعملٌات الفرز، الطفرة و التزاوج. خوارزمٌة البرمجة 

(MP)الجٌنٌة المتطورة  اقترحت مؤخرا كتحسٌن لخوارزمٌة   (GP)  فً هذه .

وارزمٌةالورقة البحثٌة، قمنا بتمدٌد خ MP   لإنتاج خوارزمٌة جدٌدة تسمى

(MPC)خوارزمٌة مصنف البرمجة الجٌنٌة المتطورة  لحل مشاكل التصنٌف ذي  

تم التحقق من أداء الفئتٌن.  MPC بٌانات مختلفة من قاعدة  ةمن خلال مجموع 

UCIبٌانات  طرق مختلفة. وجدنا أن بوتمت مقارنة الدقة   MPC تظهر أداء  

مصنف فً الأدبٌات. 197تنافسً مقارنة بـ   


