Assiut University Journal of Chemistry (AUJC) 48(2019) 42-50

Journal homepage: www.aujc.org

Synthesis and Crystal Structures of 5-Acetyl-4-(4-methoxyphenyl)-6-methyl-2-(methylsulfanyl)pyridine-3-carbonitrile and 5-Acetyl-2-[(cyanomethyl)sulfanyl]-4-(4-methoxyphenyl)-6-methylpyridine-3-carbonitrile

Elham A. Al-Taifi, ${ }^{1 *}$ Shaaban K. Mohamed, ${ }^{2}$ Necmi Dege ${ }^{3}$ and Etify A. Bakhite ${ }^{4}$
${ }^{1}$ Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen, ${ }^{2}$ Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ${ }^{3}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayls University, Samsun, Turkey, ${ }^{4}$ Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.

Correspondence e-mail: ebakhite@yahoo.com
Keywords: Crystal structure, Pyridine ring, Carbonitrile, Hydrogen bond.
Article history: Received: 8/4/2019; Revised: 25/4/2019; Accepted: 27/4/2019;
Available Online : 27/5/2019;

Abstract

The first one (I) of the two related compounds, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ with $\mathrm{Z}=4$, while the second one $(\mathbf{I I}), \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, crystallizes in the monoclinic space group $P-1$ with $\mathrm{Z}=4$. There are two independent molecules in the asymmetric unit of compound (II). As expected, the pyridine rings are almost planar (r.m.s. deviation = $0.002 \AA$ Å). In the molecules \mathbf{A} and \mathbf{B} of the compound II, the substituents (except methyl and cyano groups) attached to the pyridine ring, are inclined to the different directions. In the crystal of compound \mathbf{I}, molecules are arranged into the parallel layers to the (001) plane which there exist weak $\pi-\pi$ interactions in the c-direction. In the crystal of compound II, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming infinite $\mathrm{C}(9)$ chains along the b-axis. Furthermore, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions contribute to the stabilization of molecular packing.

Introduction

Pyridine ring system is very widely distributed in nature, especially in plant kingdom. It is used as a precursor to agrochemicals and pharmaceuticals and is also an important solvent and reagent [1,2]. It plays a key role catalyzing both biological and chemical systems [3]. In the pharmaceutical industry, pyridine forms the nucleus of over 7000 existing drugs [1]. Also, pyridine framework is a key structural fragment of many heterocyclic compounds showing a broad spectrum of pharmacological properties, such as: antimicrobial [4], anti-convulsant [5], anti-viral [6], anti-HIV [7], anti-fungal and antimycobacterial activities [8]. In this context, we report the synthesis and crystal structures of the title compounds (I and II).

2. Results and discussion

a) Structural commentary

The compounds I and II are shown in Figs. 1 and 3, respectively. Compound I crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ with Z $=4$, while compound II crystallizes in the monoclinic space group $P-1$ with $\mathrm{Z}=4$. There are two independent molecules in the asymmetric unit of compound II. As expected, the pyridine rings are almost planar (r.m.s. deviation $=0.002 \AA$ in (\mathbf{I}), and for molecules \mathbf{A} and \mathbf{B} in (II)). The dihedral angle between the planes of the pyridine ring and the benzene ring is 51.47 $(8)^{\circ}$ in (I), and $45.55(11)^{\circ}$ for molecule \mathbf{A}
in (II) and 53.59 (12) ${ }^{\circ}$ for molecule \mathbf{B} in (II). In the molecules \mathbf{A} and \mathbf{B} of the compound II, the substituents (except methyl and cyano groups) attached to the pyridine ring, are inclined to the different directions (Fig 3). All bond lengths and bond angles in (I) and (II) are normal and comparable to those observed in similar structures, v.z.: 2-benzylamino-4-p-tolyl-6,7-dihydro-5H-cyclopenta[b]pyridine-3-
carbonitrile [9], 2-(2-bromophenyl)-4-(1H-indol-3-yl)-6-(2-thienyl)pyridine-3-
carbonitrile [10], 3-methyl-1-phenyl-6-propylamino-1 H -pyrazolo[3,4-b]pyridine-5carbonitrile [11] and 4,6-diamino-2-(methylsulfanyl)pyridine-3- carbonitrile [12].

b) Supramolecular features

In the crystal (I), there is no clasical hydrogen bonds. Molecules are arranged into the parallel layers to the (001) plane which there exist weak $\pi-\pi$ interactions in the c direction (Fig. 2). In the molecule \mathbf{B} of (II), an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions close the $S(5)$ and $S(6)$ rings, respectively. Any intramolecular interaction are not observed in the molecule A. In the crystal (II), molecules are linked by C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming infinite $\mathrm{C}(9)$ chains along the b axis (Fig. 4 and Table 1). Furthermore, $\mathrm{C}-\mathrm{H} \cdots \pi \quad$ interactions contribute to the stabilization of molecular packing.

I

II

Table 1 Hydrogen-bond geometry ($\left({ }^{\circ},^{\circ}\right.$) for (II)
Cg4 is a centroid of the C30-C35 benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.97	2.33	$3.106 \quad(3)$	136
$\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B} \cdots \mathrm{~N} 5$	0.97	2.34	$2.844 \quad(3)$	112
$\mathrm{C} 26-\mathrm{H} 26 \mathrm{C} \cdots \mathrm{O} 3$	0.96	2.51	$3.066 \quad(3)$	117
C29-H29B $\cdots \mathrm{Cg} 4$	0.96	2.97	$3.711 \quad(3)$	135
C36-H36C $\cdots \mathrm{Cg}^{\mathrm{ii}}$	0.96	2.81	$3.567 \quad(3)$	136

Symmetry codes: (i) $x, y-1, z$; (ii) $-x,-y+1,-z+1$.
2220(CN), $1690(\mathrm{CO}) \quad \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR

2. Experimental

a) Synthesis and crystallization

5-Acetyl-4-(4-methoxyphenyl)-6-methyl-2-(methylsulfanyl)pyridine-3-carbonitrile
(I): A mixture of equimolar amount of 5-acetyl-3-cyano-4-(4-methoxyphenyl)-6-methylpyridine-2(1H)-thione, methyl iodide and sodium acetate trihydrate $(0.01 \mathrm{~mol})$ in ethanol (30 mL) was heated under reflux for 2 h . The precipitate that formed after cooling and dilution with water was collected and recrystallized from ethanol as colorless needles of compound \mathbf{I}. Yield: 93 $\%$, m.p.: $152{ }^{\circ} \mathrm{C}$; Lit., $153-154{ }^{\circ} \mathrm{C}$ [13]. IR:
$\left(\mathrm{CDCl}_{3}\right): \delta 7.0-7.5(\mathrm{dd}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.8(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.6(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Acetyl-2-[(cyanomethyl)sulfanyl]-4-(4-

 methoxyphenyl)-6-methylpyridine-3-carbonitrile (II): A mixture of 5-acetyl-3-cyano-4-(4-methoxyphenyl)-6-methyl-pyridine-2(1H)-thione ($2.98 \mathrm{~g} ; 10 \mathrm{mmol}$), chloroacetonitrile $(0.76 \mathrm{~mL}, 10 \mathrm{mmol})$ and sodium acetate trihydrate $(1.51 \mathrm{~g} ; 11$ mmol) in ethanol (30 mL) was heated under reflux for 1 h . The precipitate that formed after cooling was collected and recrystallized from ethanol to give colorless needles of II. Yield: 90%, m.p.: $163-164{ }^{\circ} \mathrm{C}$; Lit., $163-164{ }^{\circ} \mathrm{C}$ [14]. IR: 2220 (CN), 2200 (CN), $1690(\mathrm{CO}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$
7.0-7.5 (dd, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.2$ (s, $2 \mathrm{H}, \mathrm{SCH}_{2}$), $3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.9(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$).

b) Refinement

All C-bound hydrogen atoms in compound \mathbf{I} were included in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.96 \AA$ (methyl) and allowed to ride, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=$
1.2 or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. In compound II, H atoms bound to carbon were positioned geometrically and allowed to ride on their parent atoms with $U_{\text {iso }}=1.2$ times $U_{\text {eq }}(\mathrm{C})$ $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic and $0.97 \AA$ for methylene) and with $U_{\text {iso }}=1.5$ times $U_{\text {eq }}(\mathrm{C})$ ($\mathrm{C}-\mathrm{H}=0.96 \AA$ for methyl). Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2: Experimental details

	Compound I	Compound II
Chemical formula	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
M_{r}	312.38	337.39
Crystal system, space group	Monoclinic, $P 2_{1} / c$	Triclinic, P
Temperature (K)	296	296
$a, b, c(\AA)$	$11.7197 \text { (7), } 15.5468 \text { (11), } 8.7451$ (6)	$9.4807 \text { (6), } 9.9039 \text { (6), } 19.5898$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 94.538 (5), 90	$\begin{array}{\|l} \hline 76.122(5), 79.746(5), 79.478 \tag{12}\\ (5) \end{array}$
$V\left(\AA^{3}\right)$	1588.40 (18)	1738.24 (19)
Z	4	4
Radiation type	Mo K α	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.21	0.20
Crystal size (mm)	$0.78 \times 0.46 \times 0.17$	$0.59 \times 0.28 \times 0.04$
Diffractometer	STOE IPDS 2 diffractometer	STOE IPDS 2 diffractometer
Absorption correction	Integration X-RED32 (Stoe \& Cie, 2002)	Integration X-RED32 (Stoe \& Cie, 2002)
$T_{\text {min }}, T_{\text {max }}$	0.890, 0.962	0.907, 0.984
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	10232, 3463, 2172	24582, 7851, 4134
$R_{\text {int }}$	0.035	0.081
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.641	0.649
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.039, 0.098, 0.89	0.050, 0.109, 0.92
No. of reflections	3463	7851
No. of parameters	203	438
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.17, -0.18	0.18, -0.21

c) Computer programs:

SHELXT [16], SHELXL2016/6 [16], ORTEP-3 for Windows [17],, WinGX [17] and PLATON [17].

Conclusion

The compounds I and II crystallize in the monoclinic space group $P 2_{1} / \mathrm{c}$, and in the monoclinic space group $P-1$ with two independent molecules in the asymmetric unit, respectively. In the crystal of compound \mathbf{I}, molecules are arranged into the parallel layers to the (001) plane which there exist weak $\pi-\pi$ interactions in the c-direction. In the crystal of compound II, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming infinite $\mathrm{C}(9)$ chains along the b axis.

Acknowledgement

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

1. A. Chaubey, S. N. Pandeya (2011). Asian
J. of Pharm.\& Clinical Res. 4 (2011) 5.
2. A. E. Goetz, N. K. Garg, Nat. Chem., 5 (2013) 54.
3. D. L. Goanvic, M. Holler, P. Pale, Tetrahedron, 13 (2002) 119.
4. N. B. Patel, S. N. Agravat, F. M. Shaikh, Med. Chem. Res. 20 (2011) 1033.
5. E. G. Paronikyan, A. S. Noravyan, I. A. Dzhagatspany, I. M. Nazaryan, R. G.

Paronikyan, Pharm. Chem. J. 36 (2002) 465.
6. A. M. R. Bernardino, A. R. De Azevedo, L. C. D. Pinheiro, Med. Chem. Res. 16
(2007) 352.
7. T. J. Tucker, J. T. Sisko, R. M. Tynebor, J. Med. Chem. 51 (2008) 6503.
8. M. G. Mamolo, D. Zampieri, V. Falagiani, L.Vio, M. Fermeglia, M. Ferrone, S. Pricl, E. Banfi, G. Scialino, ARKIVOC, 5 (2004) 231.
9. R. A. Nagalakshmi, , J., Suresh, S. Maharani, R. R. Kumar, P. L. N. Lakshman, Acta Cryst. E71 (2015) 192-194.
10. R. Vishnupriya, J. Suresh, S. Bharkavi, S. Perumal, P. L. N. Lakshman, Acta Cryst. E70 (2014) o968-o969.
11. J. P. Jasinski, M. Akkurt, S. K. Mohamed, H. H. M. Abdu-Allah, M. R. Albayati, Acta Cryst. E71 (2015) o766o767.
12. S. K. Mohamed, K. S. Knight, M. Akkurt, B. R. M. Hussein, M. R. Albayati, Acta Cryst. E71 (2015) o197-o198.
13. A. E. Abdel-Rahman, E. A. Thabet, E. A. Al-Taifi, E. A. Bakhite, Assiut University J. Chem. (AUJC), 44 (2015) 1
14. A. E. Abdel-Rahman, E. A. Bakhite, E. A. Al-Taifi, Die Pharmazie, 58 (2003) 372
15. G. M. Sheldrick, Acta Cryst. A71 (2015) 3.
16. L. J. Farrugia, J. Appl. Cryst. 45 (2012) 849.
17. A. L. Spek, Acta Cryst. D65 (2009) 148.

Figure 1 View of the compound I with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2 A view along the c axis of the crystal packing of the compound I.

Figure 3 View of the compound II with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 20% probability level.

Figure 4 A view along the a axis of the crystal packing of the compound II.

