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In this paper, by constructing an appropriate Lyapunov functional, we establish
sufficient conditions for the uniform stability of the zero solution for nonlinear
fourth-order vector delay differential equation of the type:

XM+ FX)+PXX+6X(t—1)+HX({t-71)) =0.

The obtained results included improve some well-known results existing in the
related literature. An example is given to illustrate the truthfulness of our main
result.
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1 INTRODUCTION

In mathematical literature, stability of solutions receives broad attention
from researchers because it plays a fundamental role in the qualitative
theory and applications of differential equations. Many methods have been
improved to obtain information on the stability behavior of differential
equations when there are no analytical formulas for the solutions. One of
the most interesting methods to determine the stability behavior for the
solutions of linear and nonlinear differential equations is a method known
as Lyapunov’s second (or direct) method [7]. The main advantage of this
method is that stability behavior can be obtained without any previous
knowledge for solutions. That is, this method gives stability information
directly, without solving the differential equation.
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Today, this method is considered as an effective tool not only in the
study of the stability of solutions for differential equations but also in the
theory of control systems, analysis of energy system, dynamic systems,
systems with time lag, and so on. It should be noted that any verification
on the stability of solutions for vector functional differential equations of
fourth-order, using the Lyapunov functional method, first requires
construction of a suitable Lyapunov functional. In fact, the constructing of
an appropriate Lyapunov functional is in mostly a difficult work.

Over the past years, many new results have been obtained on the stability
for solutions of ordinary and functional differential equations of higher
order without and with delay. For instance, we draw the attention of the
interested reader to the book by Reissig et al. [10] and the papers by Abou
El-Ela et al. [1, 2, 3], Adesina et al. [4], Omeike [8, 9], Sadek [11], Tun¢
[12, 13, 14] and the references cited therein. As far as we know, researches
that discussed the stability of solutions to vector differential equations can
briefly be summarized as follows:

First, in 2006 Tung [13] gave sufficient conditions for the asymptotic
stability of the trivial solution X = 0 of equation:

Where X € R™; F and @ are n X n-symmetric matrices; Gand H are
n-vector continuous functions; G(0) = H(0) = 0.

After that, in 2012 Abou-EI-Ela et al. [2] established sufficient conditions
for the uniform stability of the zero solution of the real fourth-order vector
delay differential equation:

X®H +AX+ X))+ GX)+HX(t—1)) =0,
where X € R™; A is continuous n X n-symmetric matrix; ®, G and H
are n-vector continuous functions; ®(0) =G(0) =H(0)=0; r is a
fixed delay and positive constant.
Lately, in 2015 Abou-EI-Ela et al. [3] investigated sufficient conditions
for the uniform stability of the zero solution X = 0 of real nonlinear
autonomous vector delay differential equation of the fourth-order:

XO+ FXXOX+ X)) +6X(Et—1)+HX(t—-1)) =0,
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where X € R™; F isan n X n-symmetric matrix; ®,G and H are
n-vector continuous functions; ®(0) = G(0) = H(0) = 0; r isabounded
delay and positive constant.

The objective of this paper is to study the uniform stability of the zero
solution of vector delay differential equation of the form:

X® + F(R) +W(X)X +6 (X(t—n) + HX(-1) =0, (L1)

where r is the fixed delay and positive constant; X € R™; W isan n X n
continuous symmetric matrix function; F,G and H are n -vector
continuous functions; F(0) = G(0) = H(0) = 0.

It should be noted that the continuity of functions F, ¥, G and H is a
sufficient condition for existence of the solution of (1.1). In addition, we
assume that the functions F, ¥, G and H satisfy a Lipschitz condition
with respect to X, X, X and X, this assumption is guaranteed the
uniqueness of solution of (1.1).

Equation (1.1) can be represented as a system of real fourth-order delay
differential equations:

x® 4 Gy E) + Z DieGrs e ) + Gi Gy (E =), v o (= 7))
k=1
+hl-(x1(t—r),...,xn(t—r))=0, (i=12,...,n).

Let Jz(W), Jo(Y), Jy(X) and J(¥(Y)Y|Y) denote the Jacobian
matrices corresponding to the functions F(W), G(Y), H(X) and the
matrix W(Y) respectively which given by the following relations:

_ (3% AN
Jr(W) = (m) Jo(¥) = (ay,). J(X) = (ax) and

J J ]

3 n n o,
JEWYIY) = @(Z wikyk> = W) + (Z ;’;,"yk)
I \k=1

k=1

where x;, y; =%, z; =X =y, wi =X =2, fi, Py, giand hy
(i,j=1,..,n), represent X,Y ,Z, W, F,¥,G and H respectively.

In the following, we assume that the Jacobian matrices, /5 (X), J;(Y),



94 A. Maher, R. O. A. Taie and M. G. A. Alwaleed

J(P(Y)Y|Y) and J-(W) exist and are continuous. Besides, the symbol
(X,Y) corresponding to any pair X,Y in R™ denoted to the usual scalar
product in R™, thatis (X,Y) = Y™, x;y;; thus (X, X) =l X I, A;(4)
(i =1,2,...,n) are the eigenvalues of the n X n matrix A.

2 Main Result

To reach the main result of this paper, we will offer some essential
information to the stability criteria for a general autonomous delay
differential system. We consider

¥=f(x), %0)=({t+60), —r<6<0,t=>0. (2.1)

where f:Cy — R™ is a continuous, f takes closed bounded sets into
bounded sets, Cy:= {¢p € C([—, O],R”_) |||l < H}, f£(0) = 0and for
H; < H, there exists L(H;) > 0, with |f(¢)| < L(H,) when ||¢|| < H;.

Theorem 2.1. [6] Assume that there exists a continuous functional

V(¢): Cy = R satisfying a local Lipschitz condition, V(0) = 0, such that:
@) Wi(Jo(0)]) < V(gp) < Wy(ll ¢ 1), where W, W, are wedges and
(i) V(21)(¢) <0, for ¢ € Cy.

Then the zero solution of equation (2.1) is uniformly stable.

Now we will present our main stability result of (1.1) as the following:
Theorem 2.2. Beside the basic assumptions which put on the functions F,
¥, G and H, we assume that there exist positive constants a;, a,, @3, @,
and a; such that for (i = 1,2,3,...,n) the following conditions are hold:
(i) W(Y) is symmetric and

0 < 4,(W(Y) — ay]) < aje, forall Y € R™
(ii) G(0) = 0, J;(Y) is symmetric and

A ( INE (aY)da) >Z2a;, forall Y € R™
(iii) There is a finite constant A > 0, such that:

{aja, — 411 Jo(Y) | Jas — a?a, = A, forallY € R™.
(iv) 0 < A, (]G - ]G(JY)da) <5< forally € R™
1“3
(v) H(0) = 0, Jy(X) is symmetric and
A ( [ ]H(JX)da) > al, forall X € R™

(vi) Jy(X) commutes with Jy(X"), forallX, X' € R"and

A (%a‘ll —]H(X)) >0, forall X € R™.
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(vii) F(0) = 0, Jp(W) is symmetric and

1 2 3
£003
0< A (f ]F(UW)da—a11> < > forallW € R",

0 a0y

where ¢, is a positive constant such that:

: A A

g < &€ = min {i,ﬂ, s (2 a;‘ - 6)}, (2.2)
a; as 4a1a3D0 4-0(4D0 a3

and Dy = a; + aqa;.
Then the zero solution of (1.1) is uniformly stable, provided that:
4(e — &)
2a,3n(2d, + 2d, + 1) + ayaydn’

A
8(a1a3 —€Do) 4(ae+ 1)

Vn{2a, + a;a,(2d, + dy + 2)} divn(a,a, + 2a,)

r < min

1
where d;=¢+— and d2=£+—4.

z 2.3
@ a (2.3)

The following lemmas are required for proving Theorem 2.2.
Lemma 2.1 [5] Let A be a real symmetric n X n-matrix and
a =>AA)=a>0 (i=12,...,n),
where a’ and a are constants. Then
a'(X,X) = (AX, X) = a(X, X)
and
a'*(X,X) = (AX, AX) = a*(X, X).

Lemma 2.2 Suppose that X =Y, Y = Z, Z = W. Then the following
relations are true:

d 1
() | @0, 1d0 = @G0, 1),

d 1
@[ (6@ s = Gw.2)

d (* ,
@) [ (Fwy,wdo = (Fw, ).

d 1
OFr f (0¥ (aY)Y,Y)do = (¥ (Y)Z,Y).
0
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proof. We have

1d1HXXd —1 X)Y, Xd 1HXYd

g | @0, 0d0 = [ alu@X)Y. Xd)a + | (o), Vdo
1 1

=f a(]H(GX)X,Y)d0+f (H(oX),Y)do

15 1
=f0 g%<H(GX),Y)da+f0 H{(cX),Y)do
= (H(X),Y).

The proofs of (2) and (3) are similar to that of (1).

(4)i f I(J‘P(GY)Y YYdo = j 1a(tp(ay)y Z)do + J 102(] (eY)YZ,Y)do
dt 0 , B 0 ' 0 ¥ ‘

+ f (oW (aY)Z,Y)do
0

1 1
=f a(‘P(aY)Z,Y)da+f o?(Jy(cY)YZ,Y)do
o 0
+f (c¥(cY)Z,Y)do
0

_ ]O a%(a‘l’(aY)Z,Y)dU+ fo (@W(oY)Z, Y)do
- (¥(V)Z,Y).

3 proof of Theorem 2.2.
For the proof of Theorem 2.2, we rewrite equation (1.1) as the following
equivalent system:

X=Y, Y=2  ZI=W,
W=-FW)—-W¥YWMZ-GY)—HX)+ | Je(Y(s))Z(s)ds

t—r

t
+ [ ) 3.1)

-r

proof of Theorem 2.2 needs the Lyapunov function V = V (X, Y, Z¢, W)
which is given by:
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1 1
2V(X,, Y, Z,, W,) = 2d, f (H(cX),X)do — dy{a,Y,Y) + 2 f (G(aY),Y)do
0 0
1
+2d, f (W(oY)Y,Y)do + 2d,{ayZ, Z) + (ay — du)(Z, Z) + 2dy{ayZ, Y)

aq CZ
+2d1(Tx3£0) f (F(aW), W)do + dy(W, W) + 2H{(X),Y)

+4dy(H(X), Z) + 4d,(G(Y), Z) + 2d,(Y, W) + 2(Z, W)

0 t
+2u f f Il Y(6) II* dfds + 22 f f Il Z(8) I? dods. (3.2)
-1 Jt+s t+s

where p and A are positive constants, whose values will be determined
later. Let

[(Y) = [, Jo(o¥)do (3.3)

then it follows from (ii) and (iv) that:

2(T()) = 5 as, forallY € R (3.4)
0<4(s;(Y)—T(Y)) <6, forallY € R" (3.5)
Since
%F(O‘W) = Jp(eW)W and F(0) = 0,
then
1
F(W) =f Jr(cW)Wdao.
Therefore ’

J(F(O'W),W)dO‘ =j j (Jr(o10:W)a,W,W)do,do,
0 0 Y0
1 1 o
~ [ 1| ety wideldo,
0 0
> j a (W, W)do,,  by(vii)
0

1
2 E al(Wl W)
Since

0 t
21 j j Il Y(8) I>d6ds and 22 J f I Z(6) II* déds
—rJt+s t+s

are nonnegative, so we get:
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1 1
2V(X,, Y Z, W) = 2d, f (H(cX),X)do — dy{a,Y,Y) + 2 f (G(aY),Y)do
0 0

1
+2d, f (W(oY)Y,Y)do + 2d,{ayZ, Z) + (a; — dy){(Z, Z)
0

aia;
ata? +2aie,
+4d (HX), Z) + 4d(G(Y), Z) + 2d,(Y, W) + 2(Z, W),

+2d{(a1Z,Y) + dq( + 1)(W, W)+ 2(H(X),Y)

Thus we can find:

1 1
2V(X,, Y Z, W) = 2d, f (H(cX),X)do — dy{a,Y,Y) + 2 f (G(aY),Y)do
0 0

1
+2d, f (W(oY)Y,Y)do + 2dy{ayZ, Z) — do(Z, Z)
0
2.2

by (2w, w) ||r‘%H(X) 112
Ba2a? + 2ade, ’

1 1 _1 1
—|IT2Y 112 [|12d,T2Z 12— ||ar, W 11>~ ||d,a?Y 112
1 1 1 _1 1 1
+IIT7ZH(X) 4+ T2Y + 2d,T2Z 112+ ||la, *°W + a2Z + dyaZY |12

We notice that the matrix T' defined by (3.3) is symmetric because J; is
symmetric. The eigenvalues of T is positive because of (3.4). Accordingly

1
the square root I'z exist; this is again symmetric and non-singular for all
Y e R™.
Therefore we have:

2V(Xe, Ye, Ze, W) = 2d, J (H(oX), X)do — (T H(X), H(X))
0

1 1
+2 f (G(aY),Y)do — (TY,Y) + 2d, f (W(aV)Y, Y)do
0 0
—(dyay + dia)||Y 1>+ (2dya; — dy — 4dZ||TID|IZ 112
d,a?a?
+( 14144

1
P L d - )W
a?a? +2adey, a1)||

From (i) and lemma 2.1 we find:

1 1
2d, f (a¥(aY)Y,Y)do > 2d,a, f (Y, VYodo = dyay||Y 1I%.
0 0

Thus we get:
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1
2V(Xe, Yo, Ze, W) = Zde (H(0X),X)do — (T TH(X), H(X))
0

1
+2f (G(aY),Y)do — (TY,Y) + (dya, — diay — diay)||Y 1I?
° 2.2
1

) ) diajaj
+(2diaz —dy — 4di|ITIDNZ 17+ (—

1774 44 _i)”W 112
a?a? +2ade, | '

It follows that:
VX, Yo, Ze W) 2V + Vo + Vs + 1, where
1

V,:=2d, f (H(0X),X)do — (T"TH(X), H(X)),
0

1
Vo= Zf (G(aY),Y)do — (TY,Y) + (dya, — diay — diay)||Y 117,
0
Vs:= (2d,a; — dy — 4d|[TIDIIZ I1%,
dlafaf
Var= (5 3
aiay +2a3&
First to estimate 1/; we know that:
9]
0. (H(01X),H(0,X)) = 2(Jy(0:X)X, H(01X)),
1

+d ! w2
el

by integrating both sides from o, =0 to o, =1, and because of
H(0) = 0, we obtain:

HEOHO) = 2 [ (00X, Ho0)don,
Hence: °
v, = 2d, j (H(0X), X)do — (- H(X), H(X))
0

1

=2 [ (H@X ] = Ty (XX
0
But from
d
EPs (H(010,X),{do] — T Jy(0:X)}X)
2

= (0Jy (010, X)X, {do] — Ty (01 X)}X),
by integrating both sides from o, = 0 to o, = 1, and since H(0) = 0, we
find:
(H(01X),{d,I _1F_1]H(U1X)}X>

=J 01{Ju(010,X)X,{d,1 — F_IJH(O-lx)}X>dO-2-
0
Hence by using (2.3), (3.4), (v), (vi) and lemma 2.1 we get:
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1 01
Vi = ZJ. f 01y (010,X)X,{d,1 — T~y (01X)}X)do do,
o Jo
1 01
= Zf f 01{Jy (010 X){d,1 = Ty (0, X)}X, X)do1do,
4
228[ f (Ju(010,X)0:X, X)do,do,
4 ’ 10 1 1
+_f f 01(Ju (0102 X)X, {5 ayl — Jy(01X)}X)do1do,
asly Jo 2
17,1 o
ZZS.f U (Ju(0:X)X, X)do, | doy
o LYo

1
> Zsf ay(X,X)do, = ea| X (3.6)
0

Second to estimate 1, we need:

ayd, — a,d; — a,d?
= dy{a; — 4dy|lJc M — ardz} + di {Ada e DI — aa},
but from (2.3) and (ii) we get:

a
4d,|[Je D] — ay = 2<€+a_4> az —ay = 2aze +a, > 0.
3

Hence we have:
aydy — aydy — ayds = dy{ay; — 4dq ||/ (V|| — aydy}
Here, from (2.3) and (iii) we obtain:

4
az —4di|l[e(Ml —ardy = a, - o eIl = Z—:% — {4l Ml + a1}

1
= laaz = 4llc(Mli}as - afay] — e(4ll/c (Nl + ai}

s o eDy; by (iii) (3.7)
From the identity:
1 1
f o(Js(0Y)Y,Y)do = (G(Y),Y) —f (G(oY),Y)do,
0 0
it follows from (3.3) and by lemma 2.1:
1

1 1
2[ (G(aY),Y)do —(G(Y),Y) =f (G(aY), Y)da—f o(Jg(aY)Y,Y)do
0 0 0
1
= —f o{{/c(aY) —T(aY)}Y,Y)do
0

1
> —=8|IYII% by (iv) (3.8)
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Hence
2 1 2
Vo 2 dy(c— = eDIVII = 56 Y]
a, a3 2
> (2 A Do) — =68} ||Y]I?
G G = o) =58} IV
> L% _sivie, sincee <2 2% 5 (39
> — - , since € — )
4 a a? 4ayDo "l

Third to estimate ; we need:
2dya, — dy — 4dF|IT|| = di{ay — 4d4|IT|| = aydy} + dy(ady — 1) + dya,

= di{a, — 4dq|lJc(V)I| — ayd}

A
>d, (a{1 a

by (3.5) and (3.7). Then by using (2.3) we get:
Vs = (2dya; — d; — 4df|ITIDIZ]I?

> ! D)IIZ||?
=G o eDo)|1Z|
J < - 3.10
4 since € 1oy (3.10)
Finally smce
dia?a? 1
Vii= (55— 5 +tdi—DIWI?
aja; + 2a3&g aq
from (2.3) we get:
d,a?az
Vy:= (221—143+ e W2 (3.11)
aja; + 2a3¢,
Therefore from (3.6), (3,9), (3.10) and (3 11) we obtain:
2V(Xe, Yo, Ze W) 2 ean|IX||? + - ( —OIYI? + 1’ Z11?
5 a;as
d,a?as
| —————+ ¢ ) W2 3.12
<afa§ + 2a3e, ) Wil (312)
Since the coefficients are positive constants from (3.12), then there
exists a positive constant D,, such that:
V(Xe, Yo, Ze, W) = DL(IXIZ + WY1 + 1ZI12 + (W1, (3.13)
Here D. = 1 1 2a,A 3A dia?a? N
where Dy =7 min €a4'4(a1a§ )'4afa3'(afa§ + 2a3eg, 2

This derives that:

V(X Yo Ze, W) 2 0, i IXI12 + (Y112 + 1IZI2 + W2 = 0,

V(Xe, Yo Ze, W) = o0, if (IXIIZ + Y112 + IZ112 + [IW]]? - oo,
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which satisfies the left hand side of the inequality in the condition (i) of
Theorem 2.1.
Now we will prove the right hand side of the inequality in the
condition (i) of Theorem 2.1.
VX, Yo, Ze, W) < Do (IIXN12 + Y12 + NZ112 + W12,
for some positive constant D,.
By using the hypotheses of Theorem 2.2, we find:

F(0) = 0 and aFéUW) = J-(cW)W, then from (vii) we get:

1Pl < v ( + 22 (319)
from (i) we find:

Il < v (a, +3ade), (3.15)
also since G(0) = 0 and @ = J;(aY)Y, then from (iii) we get:

I6WI < ;Vrara Y, (3.16)
since H(0) = 0 and @ = Jy(aX)X, then from (vi) we get:

IHGON < S Vna,lIX]. (3.17)

Also from
t

0 ,t
Zuf f 1Y (0)]1>d6ds < 2u||Y]|? (6 —t+r)do
—r Jt+s

t—r
< ur?||Y||?, (3.18)
and
0 t t
2/’lj ] 1Z(8)]|>d8ds < 24||Z||? O—t+1r)deo
—rJt+s t—r
< ar?||Z||% (3.19)

Hence by using Cauchy-Schwarz inequality |(U,V)| < %(||U||2 +IVII1%
and from (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19) we get:

1 1
2V(Xe, Y, Ze, W) < {Endzai +d, + ZnaZ(Zdl + 1)} 1X]|?

1, 1 1 3.2 2 2
+{Ena1a2(2d1+§)+d2 [n(a2+za15) +a1+2]+ur +2}||Y||

+{2d,(a, +2) + a;(dy + 1) + Ar? + 1}||Z]|?

1 2&0a3 aa? "
+idi|=n|a; + |t =——=—)t1|+d, +1{[[W]~
3 aay aja; + 2as&,

(3.20)

Hence there exists a positive constant D, satisfying:
V(Xe, Yo, Ze, W) < D (X117 + (Y12 + NZ112 + (W12 (3.21)
This completes the right hand side of the inequality in the condition (i)
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of Theorem?2.1.

Now we prove that V (X,, Y, Z,, W,) < 0, from (3.1), (3.2) and lemma 2.2,
we get:

|4
a5 Ko Yo Ze W) = dp(H(X), Y) — difas¥, 2) +(G(Y), Z) + d(F(Y)Z,Y)

+2d1<a2Z W) + (a1 - dz)(Z, W) + dz((XlZ, Z) + dz(“lw, Y)
2

+ds (e )P, W) + (W, W) + U (Y, )
1“4 a3zé&o

HH(X),Z) + 2d,(Jp(X)Y, Z) + 2d, (H(X), W) + 2d, (s (Y)Z, Z)
+2d(G(YV), W) + do (Y, W) + do(Z, W) + (W, W) + (Z, W)
t t
+ur||Y|? — uf IY(@)II?de + Ar||Z|I> = A | [1Z(6)]1* d6.
t—r t—r
By simple calculations, we obtain:

v 1 , ,
2r = "V, 6 =S eIV} = (az = 2d1 /e M| = dza) 11 Z]]
t

—Qaydy — D|W|? + (2d,W + Z + d,Y, Jc(Y(s))Z(s)ds)

t—r
t
+Qd,W +Z + dzy,f Ju(X($))Y(s)ds) + ullY||*r + Al Z||*r
t-r
t t
—uj IY(O)II?d6 —2 | 1Z(O)]I* d6 + Vs + Vg, (3.22)
t—r t—r

where
Vg:= =2d (W, F(W)) + 2d{a. W, W) — d,{Y,F(W)) + d,{a W, Y).

Vei=—(Z,¥(Y)Z) + (ayZ,Z) — 2d,(W,¥(Y)Z) + 2d (a, Z, W).
But :

1
Vs =-2d, f [UF<aW)W.W>—<alw,W>+2 L (s (W)W, Y) = (@, W, V)}| do
0 1

= —2d, l jo (Jp(oW) — ay IIW, W)do + 2—;1 fo Ur(oW) — a, 13, Y)dal .

Since Ai(fol Jr(eW)do — a4I) is non-negative by (vii), then from (2.3)
we get

Vs <o f (Ur(aW) — asl}¥, V)do
1
(azaz'e + 1) 1 1 a,
<t st <[]
4(ae + 1) goas||Yl 2800!3|| I, because of & < o

Also
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Ve = —(Z,Y(Y)Z) —(azZ,Z) + 24, {{(W,P(Y)Z) — (azZ, W)}]
—[({{Y () — 2132, Z) + 2d, ({¥P(Y) — a1}Z, W),

since (W(Y) — a,I) is non-negative by (i), then from (2.3) we get :
Ve <d2({¥(Y)— a,JW, W)

< %(ale + 1)%a.€||W]|? < ay€||W||? because of € < ai
1

Therefore from (3.23) and (3.24) we get:

av ) )
I s ——{dza3 — goaz}||Y]]* = {az — 2d4|l/c (M| — dza1 }IZ]]
t
—QRaydy —ae—DIWIZ + AW +Z+d,Y, | Ju(X()Y(s)ds)
t—r
t
+(2d,W +Z + d,Y, Je(Y(s)Z(s)ds) +u||Y||>r + A ||Z])*r
t e t
—uf lY@l? a6 -1 N1Z@OI7* de,
t—-r t-r

since —d,(Y, G(Y)) = —dy(Y,T(Y)Y) < — 2 d,a(Y,Y) from (3.4).

Here, since ||/ (X)|| < %a@/ﬁ by (vi) and by using Cauchy-Schwarz

inequality, we find:
t
dW +Z +d,Y, Ju(X(s))Y(s)ds)

t—r

‘
<||2diW +Z +d Y|l | JTu(X(s)Y(s)ds]|
t—-r
d1a4\/_

t

awiEr +f 1Y ()II? ds)

t—r

t

1z + J_ 1Y (s)[|?ds)
d2a4\/_

a4\/_
+

t

(IIYII2T+J 1Y ()1 ds).

t—r
Also  since IIJG(Y)IIS;%%\/E by (iii) and by using
Cauchy-Schwarz inequality, we find:



A Stability Result for the Solutions of a Certain... 105

(2d{W +Z + d,Y, Je(Y(s))Z(s)ds)

t—r
t
<l2d,W + 2+ ¥l | Jo(r(s)Z(s)ds
t—r
dyaia\n t
< SO Gwier + | 1261 ds)
t—-r
a\n t
+ =2zl + | 1Z()1ds)
tr
dyaa,\n t
+ 2B e+ [zl ds)
t-r

Therefore it follows from (2.2), (2.3) and (3.7) that:

av 1 d,a.\n d,a;0-,\n
oS~y e)a — = ofn, Mr—ur &
2 4 8
a,Nn  agan X
2 r 3 T /17‘}||Z||
d,a \/_ _diya Vn
a1€+1— 144 1 142 )”W”Z
2d,« d,a a\n t
+ (22 “f 2 “f o [ voieas
4 4 ey
2d,a \/_ d,a,a\n a;a\n t
+ =2 St A it AL f IZ(s)]||2ds.
8 8 ey
If we take
aa\n
u=2" 00 +d, +1) and A= 182 (2d, +d, + 1),
then we have
dV d,a,Nn  d,a;aVn  « \/ﬁ
(e g)as ———— = 2L 2 AT (2d, 4+ dy + Dy |[Y]|2
dt 4 8
A a,\Nn alazx/ﬁ alazx/_ X
—{(a1a3—€Do)— — 3 (2d; +d, + D ||Z]]
dias,\n diaa,\n
—{(ale+1)— L 24\/_1”— L 142‘/_r}||wu2.

Therefore if
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4(e —gp)as

r < min )
20,Wn(2d, + 2d, + 1) + ayaydan

A
8(a1a3 — Do) 4(ae+1)

Vn{2a, + aya,(2d; + d, + 2)} divn(aqa, + 2a,)

we obtain:

av
I < =D;(IV]1?> + 1ZI|? + IW]|?), for some D; > 0. (3.26)

Therefore from (3.13), (3.21) and (3.26) the functional V (X, Y;, Z;, W)
satisfies all conditions of the Theorem 2.1, so that the zero solution of (1.1)

is uniformaly stable. Thus the proof of Theorem 2.2 is completed.

4 lllustrative Example

We display an example to illustrate the sufficient conditions which given
in Theorem 2.2.

Example : In a special case of equation (1.1), for n = 2; we choose

NAAGERHO [ 5+yi@® 0
F(W)_<w2(t)+w23(t)>' Lp(y)‘( 0 5+y12(t)>'

1(E—7)
Gre-n) = <§’]2(t —:) )

1 1

Zx,(t — 1) + zarctan(x,(t — 1))
H(X(t—-1)= 41 21
%2 (t—1r)+ sarctan(x,(t — 1)

We find that F(0) = 0 and

1+ 3w2(t) 0
]F(W) = ’

0 1+ 3w(t)

IS symmetric, and

1 1+ w2(t) 0
f Jr(eW)do = ,
0 0 1+ w2(t)
S0, we obtain:

M| Je(aWde) =14 wi ), Ao([ Je(oW)do) = 1+ wh(@)
0 0
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1
therefore we get Ai(f Jr(eW)do) =2 1, ay = 1.
0

Also, we can see that the matrix W(Y) is symmetric, and

M) =5+y1(1), (P =5+yi (1),

then, we have A;(¥(Y)) =5, a, =5.
Also, we find that G(0) = 0 and

1 0
]G (Y) = < )1
0 1
IS symmetric, and

1 0
fol ]G (GY)dU = < )1

0 1
then, we get:

1 1
M([ Jaonyda) =1, A€ fo Je(@V)do) = 1,
0

1
therefore we obtain Ai(f Je(aY)) =1, a; = 2.
0

Likewise, we have H(0) = 0,
1, 1
4 21 +x%(t—r
]H(X) = ( 1(1 )) 1 )

0 Z+2(1+x§(t—r))

IS symmetric, and

+ ) arctan x;(t — 1) 0

1
2x,(t —

(=N N

1
J ]H(O-X)do- = 1 1
0 zt marctan x,(t—71)
then, we obtain:

/11(] Ju(cX)do) = Z + %arctan x1(t —71),

1
Az(fo Ju(cX)do) = % + Wl_r)arctan X, (t —71),

4’ 4
Ju(X) commutes with J(X"), forall X,X' € R™ and

1 1 1
therefore we get A; (f ]H(O'X)> >—, a,=
0
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1 1 1
MUn) =2+ 21+ x2(t —1))’ AUn(X)) =7+ 2(1+x2(t—1))
3 3
therefore we get Ai(]H(X)) < 7 M=

Now,  since /eIl = [AnaeU(re()) =1, where J;(¥)

is transpose of matrix J;(Y), then there is a finite positive constant

1
A< {aya; — 4 (V|Bas — afay = 7
1
3
Finally, we have 0 < /; (]G(Y) - f ]G(O'Y)) <6< 3’
0

and choose 6 = Z,we get:

& < & = min{1

511 0.0069444444
'4'96'144}~ ' '

If we take &, = 0.006, then all conditions of Theorem 2.2 are hold
provided that:
r < min{0.0003076098, 0.0438856032,0.3535533906}
~ 0.0003076098.
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