A Stability Result for the Solutions of a Certain Fourth-Order Vector Differential Equation with Delay

A. A. Maher, R. O. A. Taie and M. G. A. Alwaleedy
${ }^{1}$ Department of Mathematics, Faculty of Science, AssiutUniversity, Assiut 71516, Egypt.
${ }^{2}$ Department of Mathematics, Faculty of Education, Taiz University, Yemen.

Received:5/8/2019 Accepted:8/10/2019 Available Online:1/12/2019

In this paper, by constructing an appropriate Lyapunov functional, we establish sufficient conditions for the uniform stability of the zero solution for nonlinear fourth-order vector delay differential equation of the type:

$$
X^{(4)}+F(\dddot{X})+\Psi(\dot{X}) \ddot{X}+G(\dot{X}(t-r))+H(X(t-r))=0 .
$$

The obtained results included improve some well-known results existing in the related literature. An example is given to illustrate the truthfulness of our main result.

Keywords and phrases: Uniform stability; Lyapunov functional; Delay vector differential equation of fourth-order.

1 INTRODUCTION

In mathematical literature, stability of solutions receives broad attention from researchers because it plays a fundamental role in the qualitative theory and applications of differential equations. Many methods have been improved to obtain information on the stability behavior of differential equations when there are no analytical formulas for the solutions. One of the most interesting methods to determine the stability behavior for the solutions of linear and nonlinear differential equations is a method known as Lyapunov's second (or direct) method [7]. The main advantage of this method is that stability behavior can be obtained without any previous knowledge for solutions. That is, this method gives stability information directly, without solving the differential equation.

[^0]Today, this method is considered as an effective tool not only in the study of the stability of solutions for differential equations but also in the theory of control systems, analysis of energy system, dynamic systems, systems with time lag, and so on. It should be noted that any verification on the stability of solutions for vector functional differential equations of fourth-order, using the Lyapunov functional method, first requires construction of a suitable Lyapunov functional. In fact, the constructing of an appropriate Lyapunov functional is in mostly a difficult work.

Over the past years, many new results have been obtained on the stability for solutions of ordinary and functional differential equations of higher order without and with delay. For instance, we draw the attention of the interested reader to the book by Reissig et al. [10] and the papers by Abou El-Ela et al. [1, 2, 3], Adesina et al. [4], Omeike [8, 9], Sadek [11], Tunç $[12,13,14]$ and the references cited therein. As far as we know, researches that discussed the stability of solutions to vector differential equations can briefly be summarized as follows:

First, in 2006 Tunç [13] gave sufficient conditions for the asymptotic stability of the trivial solution $X=0$ of equation:

$$
X^{(4)}+\Phi(\ddot{X}) \dddot{X}+F(X, \dot{X}) \ddot{X}+G(\dot{X})+H(X)=0
$$

Where $X \in \mathcal{R}^{n} ; F$ and Φ are $n \times n$-symmetric matrices; G and H are n-vector continuous functions; $G(0)=H(0)=0$.

After that, in 2012 Abou-El-Ela et al. [2] established sufficient conditions for the uniform stability of the zero solution of the real fourth-order vector delay differential equation:

$$
X^{(4)}+A \dddot{X}+\Phi(\ddot{X})+G(\dot{X})+H(X(t-r))=0
$$

where $X \in \mathcal{R}^{n} ; A$ is continuous $n \times n$-symmetric matrix; Φ, G and H are n-vector continuous functions; $\Phi(0)=G(0)=H(0)=0 ; r$ is a fixed delay and positive constant.

Lately, in 2015 Abou-El-Ela et al. [3] investigated sufficient conditions for the uniform stability of the zero solution $X=0$ of real nonlinear autonomous vector delay differential equation of the fourth-order:

$$
X^{(4)}+F(X, \dot{X}) \ddot{X}+\Phi(\ddot{X})+G(\dot{X}(t-r))+H(X(t-r))=0
$$

where $X \in \mathcal{R}^{n} ; F$ is an $n \times n$-symmetric matrix; Φ, G and H are n-vector continuous functions; $\Phi(0)=G(0)=H(0)=0 ; r$ is a bounded delay and positive constant.

The objective of this paper is to study the uniform stability of the zero solution of vector delay differential equation of the form:

$$
\begin{equation*}
X^{(4)}+F(\ddot{X})+\Psi(\dot{X}) \ddot{X}+G(\dot{X}(t-r))+H(X(t-r))=0 \tag{1.1}
\end{equation*}
$$

where r is the fixed delay and positive constant; $X \in \mathcal{R}^{n} ; \Psi$ is an $n \times n$ continuous symmetric matrix function; F, G and H are n-vector continuous functions; $F(0)=G(0)=H(0)=0$.

It should be noted that the continuity of functions F, Ψ, G and H is a sufficient condition for existence of the solution of (1.1). In addition, we assume that the functions F, Ψ, G and H satisfy a Lipschitz condition with respect to X, \dot{X}, \ddot{X} and \ddot{X}, this assumption is guaranteed the uniqueness of solution of (1.1).

Equation (1.1) can be represented as a system of real fourth-order delay differential equations:

$$
\begin{aligned}
x_{i}^{(4)} & +f_{i}\left(\dddot{x}_{1}, \ldots, \dddot{x}_{n}\right)+\sum_{k=1}^{n} \psi_{i k}\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right) \ddot{x}_{k}+g_{i}\left(\dot{x}_{1}(t-r), \ldots, \dot{x}_{n}(t-r)\right) \\
& +h_{i}\left(x_{1}(t-r), \ldots, x_{n}(t-r)\right)=0, \quad(i=1,2, \ldots, n) .
\end{aligned}
$$

Let $J_{F}(W), J_{G}(Y), J_{H}(X)$ and $J(\Psi(Y) Y \mid Y)$ denote the Jacobian matrices corresponding to the functions $F(W), G(Y), H(X)$ and the matrix $\Psi(Y)$ respectively which given by the following relations:

$$
\begin{aligned}
& J_{F}(W)=\left(\frac{\partial f_{i}}{\partial w_{j}}\right), J_{G}(Y)=\left(\frac{\partial g_{i}}{\partial y_{j}}\right), J_{H}(X)=\left(\frac{\partial h_{i}}{\partial x_{j}}\right) \quad \text { and } \\
& J(\Psi(Y) Y \mid Y)=\frac{\partial}{\partial y_{j}}\left(\sum_{k=1}^{n} \psi_{i k} y_{k}\right)=\Psi(Y)+\left(\sum_{k=1}^{n} \frac{\partial \psi_{i k}}{\partial y_{j}} y_{k}\right)
\end{aligned}
$$

where $x_{i}, y_{i}=\dot{x}_{i}, z_{i}=\ddot{x}_{i}=\dot{y}_{i}, w_{i}=\dddot{x}_{i}=\dot{z}_{i}, f_{i}, \psi_{i j}, g_{i}$ and h_{i} $(i, j=1, \ldots, n)$, represent X, Y, Z, W, F, Ψ, G and H respectively.

In the following, we assume that the Jacobian matrices, $J_{H}(X), J_{G}(Y)$,
$J(\Psi(Y) Y \mid Y)$ and $J_{F}(W)$ exist and are continuous. Besides, the symbol $\langle X, Y\rangle$ corresponding to any pair X, Y in \mathcal{R}^{n} denoted to the usual scalar product in \mathcal{R}^{n}, that is $\langle X, Y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$; thus $\langle X, X\rangle=\|\mathrm{X}\|^{2}, \lambda_{i}(A)$ $(i=1,2, \ldots, n)$ are the eigenvalues of the $n \times n$ matrix A.

2 Main Result

To reach the main result of this paper, we will offer some essential information to the stability criteria for a general autonomous delay differential system. We consider

$$
\begin{equation*}
\dot{\bar{x}}=\bar{f}\left(\bar{x}_{t}\right), \quad \bar{x}_{t}(\theta)=(t+\theta), \quad-r \leq \theta \leq 0, t \geq 0 . \tag{2.1}
\end{equation*}
$$

where $\bar{f}: C_{H} \rightarrow \mathcal{R}^{n}$ is a continuous, \bar{f} takes closed bounded sets into bounded sets, $C_{H}:=\left\{\phi \in C\left([-r, 0], \mathcal{R}^{n}\right):\|\phi\|<H\right\}, \bar{f}(0)=0$ and for $H_{1}<H$, there exists $L\left(H_{1}\right)>0$, with $|\bar{f}(\phi)| \leq L\left(H_{1}\right)$ when $\|\phi\|<H_{1}$.

Theorem 2.1. [6] Assume that there exists a continuous functional $V(\phi): C_{H} \rightarrow \mathcal{R}$ satisfying a local Lipschitz condition, $V(0)=0$, such that:
(i) $W_{1}(|\phi(0)|) \leq V(\phi) \leq W_{2}(\|\phi\|)$, where W_{1}, W_{2} are wedges and
(ii) $\dot{V}_{(2.1)}(\phi) \leq 0$, for $\phi \in C_{H}$.

Then the zero solution of equation (2.1) is uniformly stable.
Now we will present our main stability result of (1.1) as the following: Theorem 2.2. Beside the basic assumptions which put on the functions F, Ψ, G and H, we assume that there exist positive constants $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{4}^{\prime} such that for $(i=1,2,3, \ldots, n)$ the following conditions are hold:
(i) $\Psi(Y)$ is symmetric and

$$
0 \leq \lambda_{i}\left(\Psi(Y)-\alpha_{2} I\right) \leq \frac{1}{4} \alpha_{1}^{3} \varepsilon, \text { for all } Y \in \mathcal{R}^{n} .
$$

(ii) $G(0)=0, J_{G}(Y)$ is symmetric and

$$
\lambda_{i}\left(\int_{0}^{1} J_{G}(\sigma Y) d \sigma\right) \geq \frac{1}{2} \alpha_{3}, \text { for all } Y \in \mathcal{R}^{n} .
$$

(iii) There is a finite constant $\Delta>0$, such that:

$$
\left\{\alpha_{1} \alpha_{2}-4\left\|J_{G}(Y)\right\|\right\} \alpha_{3}-\alpha_{1}^{2} \alpha_{4} \geq \Delta \text {, for all } Y \in \mathcal{R}^{n}
$$

(iv) $0 \leq \lambda_{i}\left(J_{G}(Y)-\int_{0}^{1} J_{G}(\sigma Y) d \sigma\right) \leq \delta<\frac{2 \Delta \alpha_{4}}{\alpha_{1} \alpha_{3}^{2}}$, for all $Y \in \mathcal{R}^{n}$.
(v) $H(0)=0, J_{H}(X)$ is symmetric and

$$
\lambda_{i}\left(\int_{0}^{1} J_{H}(\sigma X) d \sigma\right) \geq \alpha_{4}^{\prime}, \text { for all } X \in \mathcal{R}^{n} .
$$

(vi) $J_{H}(X)$ commutes with $J_{H}\left(X^{\prime}\right), \quad$ for all $X, X^{\prime} \in \mathcal{R}^{n}$ and

$$
\lambda_{i}\left(\frac{1}{2} \alpha_{4} I-J_{H}(X)\right) \geq 0, \text { for all } X \in \mathcal{R}^{n}
$$

(vii) $F(0)=0, J_{F}(W)$ is symmetric and

$$
0 \leq \lambda_{i}\left(\int_{0}^{1} J_{F}(\sigma W) d \sigma-\alpha_{1} I\right) \leq \frac{2 \varepsilon_{0} \alpha_{3}^{3}}{\alpha_{1} \alpha_{4}^{2}}, \quad \text { for all } W \in \mathcal{R}^{n}
$$

where ε_{0} is a positive constant such that:

$$
\begin{align*}
& \varepsilon_{0}<\varepsilon=\min \left\{\frac{1}{\alpha_{1}}, \frac{\alpha_{4}}{\alpha_{3}}, \frac{\Delta}{4 \alpha_{1} \alpha_{3} D_{0}}, \frac{\alpha_{3}}{4 \alpha_{4} D_{0}}\left(\frac{2 \Delta \alpha_{4}}{\alpha_{1} \alpha_{3}^{2}}-\delta\right)\right\}, \tag{2.2}\\
& \text { and } D_{0}=\alpha_{1}+\alpha_{1} \alpha_{2}
\end{align*}
$$

Then the zero solution of (1.1) is uniformly stable, provided that:

$$
\begin{gather*}
r<\min \left\{\frac{4\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}}{2 \alpha_{4} \sqrt{n}\left(2 d_{1}+2 d_{2}+1\right)+\alpha_{1} \alpha_{2} d_{2} \sqrt{n}}\right. \\
\left.\frac{8\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)}{\sqrt{n}\left\{2 \alpha_{4}+\alpha_{1} \alpha_{2}\left(2 d_{1}+d_{2}+2\right)\right\}}, \frac{4\left(\alpha_{1} \varepsilon+1\right)}{d_{1} \sqrt{n}\left(\alpha_{1} \alpha_{2}+2 \alpha_{4}\right)}\right\} \\
\text { where } \quad d_{1}=\varepsilon+\frac{1}{\alpha_{1}} \text { and } d_{2}=\varepsilon+\frac{\alpha_{4}}{\alpha_{3}} \tag{2.3}
\end{gather*}
$$

The following lemmas are required for proving Theorem 2.2.
Lemma 2.1 [5] Let A be a real symmetric $n \times n$-matrix and

$$
a^{\prime} \geq \lambda_{i}(A) \geq a>0 \quad(i=1,2, \ldots, n)
$$

where a^{\prime} and a are constants. Then

$$
a^{\prime}\langle X, X\rangle \geq\langle A X, X\rangle \geq a\langle X, X\rangle
$$

and

$$
a^{\prime 2}\langle X, X\rangle \geq\langle A X, A X\rangle \geq a^{2}\langle X, X\rangle
$$

Lemma 2.2 Suppose that $\dot{X}=Y, \dot{Y}=Z, \dot{Z}=W$. Then the following relations are true:
(1) $\frac{d}{d t} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma=\langle H(X), Y\rangle$.
(2) $\frac{d}{d t} \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma=\langle G(Y), Z\rangle$.
(3) $\frac{d}{d t} \int_{0}^{1}\langle F(\sigma W), W\rangle d \sigma=\langle F(W), \dot{W}\rangle$.
(4) $\frac{d}{d t} \int_{0}^{1}\langle\sigma \Psi(\sigma Y) Y, Y\rangle d \sigma=\langle\Psi(Y) Z, Y\rangle$.
proof. We have

$$
\text { (1) } \begin{aligned}
\frac{d}{d t} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma & =\int_{0}^{1} \sigma\left\langle J_{H}(\sigma X) Y, X d\right\rangle \sigma+\int_{0}^{1}\langle H(\sigma X), Y\rangle d \sigma \\
& =\int_{0}^{1} \sigma\left\langle J_{H}(\sigma X) X, Y\right\rangle d \sigma+\int_{0}^{1}\langle H(\sigma X), Y\rangle d \sigma \\
& =\int_{0}^{1} \sigma \frac{\partial}{\partial \sigma}\langle H(\sigma X), Y\rangle d \sigma+\int_{0}^{1} H\langle(\sigma X), Y\rangle d \sigma \\
& =\langle H(X), Y\rangle
\end{aligned}
$$

The proofs of (2) and (3) are similar to that of (1).

$$
\text { (4) } \begin{aligned}
\frac{d}{d t} \int_{0}^{1}\langle\sigma \Psi(\sigma Y) Y, Y\rangle d \sigma= & \int_{0}^{1} \sigma\langle\Psi(\sigma Y) Y, Z\rangle d \sigma+\int_{0}^{1} \sigma^{2}\left\langle J_{\Psi}(\sigma Y) Y Z, Y\right\rangle d \sigma \\
& +\int_{0}^{1}\langle\sigma \Psi(\sigma Y) Z, Y\rangle d \sigma \\
= & \int_{0}^{1} \sigma\langle\Psi(\sigma Y) Z, Y\rangle d \sigma+\int_{0}^{1} \sigma^{2}\left\langle J_{\Psi}(\sigma Y) Y Z, Y\right\rangle d \sigma \\
& +\int_{0}^{1}\langle\sigma \Psi(\sigma Y) Z, Y\rangle d \sigma \\
= & \int_{0}^{1} \sigma \frac{\partial}{\partial \sigma}\langle\sigma \Psi(\sigma Y) Z, Y\rangle d \sigma+\int_{0}^{1}\langle\sigma \Psi(\sigma Y) Z, Y\rangle d \sigma \\
= & \langle\Psi(Y) Z, Y\rangle
\end{aligned}
$$

3 proof of Theorem 2.2.

For the proof of Theorem 2.2, we rewrite equation (1.1) as the following equivalent system:

$$
\begin{align*}
\dot{X}= & Y, \quad \dot{Y}=Z, \quad \dot{Z}=W \\
\dot{W}= & -F(W)-\Psi(Y) Z-G(Y)-H(X)+\int_{t-r}^{t} J_{G}(Y(s)) Z(s) d s \\
& +\int_{t-r}^{t} J_{H}(X(s)) Y(s) d s . \tag{3.1}
\end{align*}
$$

proof of Theorem 2.2 needs the Lyapunov function $V=V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right)$ which is given by:

$$
\begin{aligned}
& 2 \mathrm{~V}\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right)=2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-d_{1}\left\langle\alpha_{4} Y, Y\right\rangle+2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma \\
& \quad+2 d_{2} \int_{0}^{1}\langle\Psi(\sigma Y) Y, Y\rangle d \sigma+2 d_{1}\left\langle\alpha_{2} Z, Z\right\rangle+\left(\alpha_{1}-d_{2}\right)\langle Z, Z\rangle+2 d_{2}\left\langle\alpha_{1} Z, Y\right\rangle \\
& \quad+2 d_{1}\left(\frac{\alpha_{1} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}\right) \int_{0}^{1}\langle F(\sigma W), W\rangle d \sigma+d_{1}\langle W, W\rangle+2 H\langle(X), Y\rangle \\
& \quad+4 d_{1}\langle H(X), Z\rangle+4 d_{1}\langle G(Y), Z\rangle+2 d_{2}\langle Y, W\rangle+2\langle Z, W\rangle \\
& \quad+2 \mu \int_{-r}^{0} \int_{t+s}^{t}\|Y(\theta)\|^{2} d \theta d s+2 \lambda \int_{-r}^{0} \int_{t+s}^{t}\|Z(\theta)\|^{2} d \theta d s .
\end{aligned}
$$

where μ and λ are positive constants, whose values will be determined later. Let

$$
\begin{equation*}
\Gamma(Y)=\int_{0}^{1} J_{G}(\sigma Y) d \sigma \tag{3.3}
\end{equation*}
$$

then it follows from (ii) and (iv) that:

$$
\begin{align*}
& \lambda_{i}(\Gamma(Y)) \geq \frac{1}{2} \alpha_{3}, \text { for all } Y \in \mathcal{R}^{n} \tag{3.4}\\
& 0 \leq \lambda_{i}\left(J_{G}(Y)-\Gamma(Y)\right) \leq \delta, \text { for all } Y \in \mathcal{R}^{n} \tag{3.5}
\end{align*}
$$

Since

$$
\frac{\partial}{\partial \sigma} F(\sigma W)=J_{F}(\sigma W) W \text { and } F(0)=0
$$

then

$$
F(W)=\int_{0}^{1} J_{F}(\sigma W) W d \sigma
$$

Therefore

$$
\begin{aligned}
\int_{0}^{1}\langle F(\sigma W), W\rangle d \sigma & =\int_{0}^{1} \int_{0}^{1}\left\langle J_{F}\left(\sigma_{1} \sigma_{2} W\right) \sigma_{2} W, W\right\rangle d \sigma_{1} d \sigma_{2} \\
& =\int_{0}^{1}\left[\int_{0}^{1}\left\langle J_{F}\left(\sigma_{1} \widetilde{W}\right) \widetilde{W}, W\right\rangle d \sigma_{1}\right] d \sigma_{2} \\
& \geq \int_{0}^{1} \alpha_{1}\langle\widetilde{W}, W\rangle d \sigma_{2}, \quad b y(v i i) \\
& \geq \frac{1}{2} \alpha_{1}\langle W, W\rangle .
\end{aligned}
$$

Since

$$
2 \mu \int_{-r}^{0} \int_{t+s}^{t}\|Y(\theta)\|^{2} d \theta d s \text { and } 2 \lambda \int_{-r}^{0} \int_{t+s}^{t}\|Z(\theta)\|^{2} d \theta d s
$$

are nonnegative, so we get:

$$
\begin{aligned}
2 V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq & 2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-d_{1}\left\langle\alpha_{4} Y, Y\right\rangle+2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma \\
& +2 d_{2} \int_{0}^{1}\langle\Psi(\sigma Y) Y, Y\rangle d \sigma+2 d_{1}\left\langle\alpha_{2} Z, Z\right\rangle+\left(\alpha_{1}-d_{2}\right)\langle Z, Z\rangle \\
& +2 d_{2}\left\langle\alpha_{1} Z, Y\right\rangle+d_{1}\left(\frac{\alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+1\right)\langle W, W\rangle+2\langle H(X), Y\rangle \\
& +4 d_{1}\langle H(X), Z\rangle+4 d_{1}\langle G(Y), Z\rangle+2 d_{2}\langle Y, W\rangle+2\langle Z, W\rangle
\end{aligned}
$$

Thus we can find:

$$
\begin{aligned}
2 V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq & 2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-d_{1}\left\langle\alpha_{4} Y, Y\right\rangle+2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma \\
& +2 d_{2} \int_{0}^{1}\langle\Psi(\sigma Y) Y, Y\rangle d \sigma+2 d_{1}\left\langle\alpha_{2} Z, Z\right\rangle-d_{2}\langle Z, Z\rangle \\
& +d_{1}\left(\frac{\alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+1\right)\langle W, W\rangle-\left\|\Gamma^{-\frac{1}{2}} H(X)\right\|^{2} \\
& -\left\|\Gamma^{\frac{1}{2}} Y\right\|^{2}-\left\|2 d_{1} \Gamma^{\frac{1}{2}} Z\right\|^{2}-\left\|\alpha_{1}^{-\frac{1}{2}} W\right\|^{2}-\left\|d_{2} \alpha_{1}^{\frac{1}{2}} Y\right\|^{2} \\
& +\left\|\Gamma^{-\frac{1}{2}} H(X)+\Gamma^{\frac{1}{2}} Y+2 d_{1} \Gamma^{\frac{1}{2}} Z\right\|^{2}+\left\|\alpha_{1}^{-\frac{1}{2}} W+\alpha_{1}^{\frac{1}{2}} Z+d_{2} \alpha_{1}^{\frac{1}{2}} Y\right\|^{2}
\end{aligned}
$$

We notice that the matrix Γ defined by (3.3) is symmetric because J_{G} is symmetric. The eigenvalues of Γ is positive because of (3.4). Accordingly the square root $\Gamma^{\frac{1}{2}}$ exist; this is again symmetric and non-singular for all $Y \in \mathcal{R}^{n}$.

Therefore we have:

$$
\begin{aligned}
2 V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq & 2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-\left\langle\Gamma^{-1} H(X), H(X)\right\rangle \\
& +2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma-\langle\Gamma Y, Y\rangle+2 d_{2} \int_{0}^{1}\langle\Psi(\sigma Y) Y, Y\rangle d \sigma \\
& -\left(d_{1} \alpha_{4}+d_{2}^{2} \alpha_{1}\right)\|Y\|^{2}+\left(2 d_{1} \alpha_{2}-d_{2}-4 d_{1}^{2}\|\Gamma\|\right)\|Z\|^{2} \\
& +\left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+d_{1}-\frac{1}{\alpha_{1}}\right)\|W\|^{2}
\end{aligned}
$$

From (i) and lemma 2.1 we find:

$$
2 d_{2} \int_{0}^{1}\langle\sigma \Psi(\sigma Y) Y, Y\rangle d \sigma \geq 2 d_{2} \alpha_{2} \int_{0}^{1}\langle Y, Y\rangle \sigma d \sigma=d_{2} \alpha_{2}\|Y\|^{2}
$$

Thus we get:

$$
\begin{aligned}
& 2 V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq 2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-\left\langle\Gamma^{-1} H(X), H(X)\right\rangle \\
& \quad+2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma-\langle\Gamma Y, Y\rangle+\left(d_{2} \alpha_{2}-d_{1} \alpha_{4}-d_{2}^{2} \alpha_{1}\right)\|Y\|^{2} \\
& \quad+\left(2 d_{1} \alpha_{2}-d_{2}-4 d_{1}^{2}\|\Gamma\|\right)\|Z\|^{2}+\left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+d_{1}-\frac{1}{\alpha_{1}}\right)\|W\|^{2}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
& 2 V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq V_{1}+V_{2}+V_{3}+V_{4}, \quad \text { where } \\
V_{1}:= & 2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-\left\langle\Gamma^{-1} H(X), H(X)\right\rangle \\
V_{2}:= & 2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma-\langle\Gamma Y, Y\rangle+\left(d_{2} \alpha_{2}-d_{1} \alpha_{4}-d_{2}^{2} \alpha_{1}\right)\|Y\|^{2} \\
V_{3}:= & \left(2 d_{1} \alpha_{2}-d_{2}-4 d_{1}^{2}\|\Gamma\|\right)\|Z\|^{2} \\
V_{4}:= & \left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+d_{1}-\frac{1}{\alpha_{1}}\right)\|W\|^{2} .
\end{aligned}
$$

First to estimate V_{1} we know that:

$$
\frac{\partial}{\partial \sigma_{1}}\left\langle H\left(\sigma_{1} X\right), H\left(\sigma_{1} X\right)\right\rangle=2\left\langle J_{H}\left(\sigma_{1} X\right) X, H\left(\sigma_{1} X\right)\right\rangle
$$

by integrating both sides from $\sigma_{1}=0$ to $\sigma_{1}=1$, and because of $H(0)=0$, we obtain:

$$
\langle H(X), H(X)\rangle=2 \int_{0}^{1}\left\langle J_{H}\left(\sigma_{1} X\right) X, H\left(\sigma_{1} X\right)\right\rangle d \sigma_{1}
$$

Hence:

$$
\begin{aligned}
V_{1} & =2 d_{2} \int_{0}^{1}\langle H(\sigma X), X\rangle d \sigma-\left\langle\Gamma^{-1} H(X), H(X)\right\rangle \\
& =2 \int_{0}^{1}\left\langle H\left(\sigma_{1} X\right),\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle d \sigma_{1}
\end{aligned}
$$

But from

$$
\begin{aligned}
\frac{\partial}{\partial \sigma_{2}}\left\langle H\left(\sigma_{1} \sigma_{2} X\right),\right. & \left.\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle \\
= & \left\langle\sigma_{1} J_{H}\left(\sigma_{1} \sigma_{2} X\right) X,\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle
\end{aligned}
$$

by integrating both sides from $\sigma_{2}=0$ to $\sigma_{2}=1$, and since $H(0)=0$, we find:

$$
\begin{aligned}
& \left\langle H\left(\sigma_{1} X\right),\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle \\
& \quad=\int_{0}^{1} \sigma_{1}\left\langle J_{H}\left(\sigma_{1} \sigma_{2} X\right) X,\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle d \sigma_{2}
\end{aligned}
$$

Hence by using (2.3), (3.4), (v), (vi) and lemma 2.1 we get:

$$
\begin{align*}
V_{1}= & 2 \int_{0}^{1} \int_{0}^{1} \sigma_{1}\left\langle J_{H}\left(\sigma_{1} \sigma_{2} X\right) X,\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle d \sigma_{1} d \sigma_{2} \\
= & 2 \int_{0}^{1} \int_{0}^{1} \sigma_{1}\left\langle J_{H}\left(\sigma_{1} \sigma_{2} X\right)\left\{d_{2} I-\Gamma^{-1} J_{H}\left(\sigma_{1} X\right)\right\} X, X\right\rangle d \sigma_{1} d \sigma_{2} \\
\geq & 2 \varepsilon \int_{0}^{1} \int_{0}^{1}\left\langle J_{H}\left(\sigma_{1} \sigma_{2} X\right) \sigma_{1} X, X\right\rangle d \sigma_{1} d \sigma_{2} \\
& +\frac{4}{\alpha_{3}} \int_{0}^{1} \int_{0}^{1} \sigma_{1}\left\langle J_{H}\left(\sigma_{1} \sigma_{2} X\right) X,\left\{\frac{1}{2} \alpha_{4} I-J_{H}\left(\sigma_{1} X\right)\right\} X\right\rangle d \sigma_{1} d \sigma_{2} \\
\geq & 2 \varepsilon \int_{0}^{1}\left[\int_{0}^{1}\left\langle J_{H}\left(\sigma_{2} \tilde{X}\right) \tilde{X}, X\right\rangle d \sigma_{2}\right] d \sigma_{1} \\
\geq & 2 \varepsilon \int_{0}^{1} \alpha_{4}^{\prime}\langle\tilde{X}, X\rangle d \sigma_{1} \geq \varepsilon \alpha_{4}^{\prime}\|X\|^{2} . \tag{3.6}
\end{align*}
$$

Second to estimate V_{2} we need:

$$
\begin{aligned}
& \alpha_{2} d_{2}-\alpha_{4} d_{1}-\alpha_{1} d_{2}^{2} \\
& \quad=d_{2}\left\{\alpha_{2}-4 d_{1}\left\|J_{G}(Y)\right\|-\alpha_{1} d_{2}\right\}+d_{1}\left\{4 d_{2}\left\|J_{G}(Y)\right\|-\alpha_{4}\right\}
\end{aligned}
$$

but from (2.3) and (ii) we get:

$$
4 d_{2}| | J_{G}(Y)| |-\alpha_{4} \geq 2\left(\varepsilon+\frac{\alpha_{4}}{\alpha_{3}}\right) \alpha_{3}-\alpha_{4}=2 \alpha_{3} \varepsilon+\alpha_{4}>0
$$

Hence we have:

$$
\alpha_{2} d_{2}-\alpha_{4} d_{1}-\alpha_{1} d_{2}^{2} \geq d_{2}\left\{\alpha_{2}-4 d_{1}\left\|J_{G}(Y)\right\|-\alpha_{1} d_{2}\right\}
$$

Here, from (2.3) and (iii) we obtain:

$$
\begin{align*}
\alpha_{2}-4 d_{1}\left\|J_{G}(Y)\right\|-\alpha_{1} d_{2} & =\alpha_{2}-\frac{4}{\alpha_{1}}\left\|J_{G}(Y)\right\|-\frac{\alpha_{4}}{\alpha_{3}} \alpha_{1}-\varepsilon\left\{4\left\|J_{G}(Y)\right\|+\alpha_{1}\right\} \\
& =\frac{1}{\alpha_{1} \alpha_{3}}\left[\left\{\alpha_{1} \alpha_{2}-4\left\|J_{G}(Y)\right\|\right\} \alpha_{3}-\alpha_{1}^{2} \alpha_{4}\right]-\varepsilon\left\{4\left\|J_{G}(Y)\right\|+\alpha_{1}\right\} \\
& \geq \frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon\left(\alpha_{1}+\alpha_{1} \alpha_{2}\right)=\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0} ; \text { by (iii) } \tag{3.7}
\end{align*}
$$

From the identity:

$$
\int_{0}^{1} \sigma\left\langle J_{G}(\sigma Y) Y, Y\right\rangle d \sigma \equiv\langle G(Y), Y\rangle-\int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma
$$

it follows from (3.3) and by lemma 2.1:

$$
\begin{align*}
2 \int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma-\langle G(Y), Y\rangle & =\int_{0}^{1}\langle G(\sigma Y), Y\rangle d \sigma-\int_{0}^{1} \sigma\left\langle J_{G}(\sigma Y) Y, Y\right\rangle d \sigma \\
& =-\int_{0}^{1} \sigma\left\langle\left\{J_{G}(\sigma Y)-\Gamma(\sigma Y)\right\} Y, Y\right\rangle d \sigma \\
& \geq-\frac{1}{2} \delta\|Y\|^{2} ; \text { by }(i v) \tag{3.8}
\end{align*}
$$

Hence

$$
\begin{align*}
V_{2} & \geq d_{2}\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)\|Y\|^{2}-\frac{1}{2} \delta\|Y\|^{2} \\
& \geq\left\{\frac{\alpha_{4}}{\alpha_{3}}\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)-\frac{1}{2} \delta\right\}\|Y\|^{2} \\
& \geq \frac{1}{4}\left(\frac{2 \alpha_{4} \Delta}{\alpha_{1} \alpha_{3}^{2}}-\delta\right)\|Y\|^{2}, \quad \text { since } \varepsilon<\frac{\alpha_{3}}{4 \alpha_{4} D_{0}}\left(\frac{2 \Delta \alpha_{4}}{\alpha_{1} \alpha_{3}^{2}}-\delta\right) . \tag{3.9}
\end{align*}
$$

Third to estimate V_{3} we need:

$$
\begin{aligned}
2 d_{1} \alpha_{2}-d_{2}-4 d_{1}^{2}\|\Gamma\| & =d_{1}\left\{\alpha_{2}-4 d_{1}\|\Gamma\|-\alpha_{1} d_{2}\right\}+d_{2}\left(\alpha_{1} d_{1}-1\right)+d_{1} \alpha_{2} \\
& \geq d_{1}\left\{\alpha_{2}-4 d_{1}\left\|J_{G}(Y)\right\|-\alpha_{1} d_{2}\right\} \\
& \geq d_{1}\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)
\end{aligned}
$$

by (3.5) and (3.7). Then by using (2.3) we get:

$$
\begin{align*}
V_{3} & =\left(2 d_{1} \alpha_{2}-d_{2}-4 d_{1}^{2}\|\Gamma\|\right)\|Z\|^{2} \\
& \geq \frac{1}{\alpha_{1}}\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)\|Z\|^{2} \\
& \geq \frac{3}{4}\left(\frac{\Delta}{\alpha_{1}^{2} \alpha_{3}}\right)\|Z\|^{2}, \quad \text { since } \varepsilon<\frac{\Delta}{4 D_{0} \alpha_{1} \alpha_{3}} . \tag{3.10}
\end{align*}
$$

Finally since

$$
V_{4}:=\left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+d_{1}-\frac{1}{\alpha_{1}}\right)\|W\|^{2}
$$

from (2.3) we get:

$$
\begin{equation*}
V_{4}:=\left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+\varepsilon\right)\|W\|^{2} \tag{3.11}
\end{equation*}
$$

Therefore from (3.6), (3,9), (3.10) and (3.11) we obtain:

$$
\begin{align*}
2 V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq & \varepsilon \alpha_{4}^{\prime}\|X\|^{2}+\frac{1}{4}\left(\frac{2 \alpha_{4} \Delta}{\alpha_{1} \alpha_{3}^{2}}-\delta\right)\|Y\|^{2}+\frac{3 \Delta}{4 \alpha_{1}^{2} \alpha_{3}}\|Z\|^{2} \\
& +\left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+\varepsilon\right)\|W\|^{2} \tag{3.12}
\end{align*}
$$

Since the coefficients are positive constants from (3.12), then there exists a positive constant D_{1}, such that:
$V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq D_{1}\left(\|X\|^{2}+\|Y\|^{2}+\|Z\|^{2}+\|W\|^{2}\right)$,
where $D_{1}=\frac{1}{2} \min \left\{\varepsilon \alpha_{4}^{\prime}, \frac{1}{4}\left(\frac{2 \alpha_{4} \Delta}{\alpha_{1} \alpha_{3}^{2}}-\delta\right), \frac{3 \Delta}{4 \alpha_{1}^{2} \alpha_{3}},\left(\frac{d_{1} \alpha_{1}^{2} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}+\varepsilon\right)\right\}$.
This derives that:
$V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \geq 0, \quad$ if $\|X\|^{2}+\|Y\|^{2}+\|Z\|^{2}+\|W\|^{2} \geq 0$,
$V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \rightarrow \infty, \quad$ if $\|X\|^{2}+\|Y\|^{2}+\|Z\|^{2}+\|W\|^{2} \rightarrow \infty$,
which satisfies the left hand side of the inequality in the condition (i) of Theorem 2.1.

Now we will prove the right hand side of the inequality in the condition (i) of Theorem 2.1.

$$
V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \leq D_{2}\left(\|X\|^{2}+\|Y\|^{2}+\|Z\|^{2}+\|W\|^{2}\right)
$$

for some positive constant D_{2}.
By using the hypotheses of Theorem 2.2, we find:
$F(0)=0$ and $\frac{\partial F(\sigma W)}{\partial \sigma}=J_{F}(\sigma W) W$, then from (vii) we get:

$$
\begin{equation*}
\|F(W)\| \leq \sqrt{n}\left(\alpha_{1}+\frac{2 \varepsilon_{0} \alpha_{3}^{3}}{\alpha_{1} \alpha_{4}^{2}}\right)\|\mathrm{W}\| \tag{3.14}
\end{equation*}
$$

from (i) we find:
$\|\Psi(Y)\| \leq \sqrt{n}\left(\alpha_{2}+\frac{1}{4} \alpha_{1}^{3} \varepsilon\right)$,
also since $G(0)=0$ and $\frac{\partial G(\sigma Y)}{\partial \sigma}=J_{G}(\sigma Y) Y$, then from (iii) we get:
$\|G(Y)\| \leq \frac{1}{4} \sqrt{n} \alpha_{1} \alpha_{2}\|Y\|$,
since $H(0)=0$ and $\frac{\partial H(\sigma X)}{\partial \sigma}=J_{H}(\sigma X) X$, then from (vi) we get:
$\|H(X)\| \leq \frac{1}{2} \sqrt{n} \alpha_{4}\|X\|$.
Also from

$$
\begin{align*}
2 \mu \int_{-r}^{0} \int_{t+s}^{t}\|Y(\theta)\|^{2} d \theta d s & \leq 2 \mu\|Y\|^{2} \int_{t-r}^{t}(\theta-t+r) d \theta \tag{3.17}\\
& \leq \mu r^{2}\|Y\|^{2} \tag{3.18}
\end{align*}
$$

and

$$
\begin{align*}
2 \lambda \int_{-r}^{0} \int_{t+s}^{t}\|Z(\theta)\|^{2} d \theta d s & \leq 2 \lambda\|Z\|^{2} \int_{t-r}^{t}(\theta-t+r) d \theta \\
& \leq \lambda r^{2}\|Z\|^{2} . \tag{3.19}
\end{align*}
$$

Hence by using Cauchy-Schwarz inequality $|\langle U, V\rangle| \leq \frac{1}{2}\left(\|U\|^{2}+\|V\|^{2}\right)$ and from (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19) we get:

$$
\begin{align*}
2 V\left(X_{t},\right. & \left.Y_{t}, Z_{t}, W_{t}\right) \leq\left\{\frac{1}{12} n d_{2} \alpha_{4}^{2}+d_{2}+\frac{1}{4} n \alpha_{4}^{2}\left(2 d_{1}+1\right)\right\}\|X\|^{2} \\
& +\left\{\frac{1}{16} n \alpha_{1}^{2} \alpha_{2}^{2}\left(2 d_{1}+\frac{1}{3}\right)+d_{2}\left[n\left(\alpha_{2}+\frac{1}{4} \alpha_{1}^{3} \varepsilon\right)^{2}+\alpha_{1}+2\right]+\mu r^{2}+2\right\}\|Y\|^{2} \\
& +\left\{2 d_{1}\left(\alpha_{2}+2\right)+\alpha_{1}\left(d_{2}+1\right)+\lambda r^{2}+1\right\}\|Z\|^{2} \\
& +\left\{d_{1}\left[\frac{1}{3} n\left(\alpha_{1}+\frac{2 \varepsilon_{0} \alpha_{3}^{3}}{\alpha_{1} \alpha_{4}^{2}}\right)+\left(\frac{\alpha_{1} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}\right)+1\right]+d_{2}+1\right\}\|W\|^{2} . \tag{3.20}
\end{align*}
$$

Hence there exists a positive constant D_{2} satisfying:

$$
\begin{equation*}
V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \leq D_{2}\left(\|X\|^{2}+\|Y\|^{2}+\|Z\|^{2}+\|W\|^{2}\right) \tag{3.2}
\end{equation*}
$$

This completes the right hand side of the inequality in the condition (i)
of Theorem2.1.
Now we prove that $\dot{V}\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right) \leq 0$, from (3.1), (3.2) and lemma 2.2, we get:

$$
\begin{aligned}
\frac{d V}{d t}\left(X_{t}, Y_{t},\right. & \left.Z_{t}, W_{t}\right)=d_{2}\langle H(X), Y\rangle-d_{1}\left\langle\alpha_{4} Y, Z\right\rangle+\langle G(Y), Z\rangle+d_{2}\langle\Psi(Y) Z, Y\rangle \\
& +2 d_{1}\left\langle\alpha_{2} Z, W\right\rangle+\left(\alpha_{1}-d_{2}\right)\langle Z, W\rangle+d_{2}\left\langle\alpha_{1} Z, Z\right\rangle+d_{2}\left\langle\alpha_{1} W, Y\right\rangle \\
& +d_{1}\left(\frac{\alpha_{1} \alpha_{4}^{2}}{\alpha_{1}^{2} \alpha_{4}^{2}+2 \alpha_{3}^{3} \varepsilon_{0}}\right)\langle F(W), \dot{W}\rangle+d_{1}\langle W, \dot{W}\rangle+\left\langle J_{H}(X) Y, Y\right\rangle \\
& \left.+\langle H(X), Z\rangle+2 d_{1} U_{H}(X) Y, Z\right\rangle+2 d_{1}\langle H(X), W\rangle+2 d_{1}\left\langle J_{G}(Y) Z, Z\right\rangle \\
& +2 d_{1}\langle G(Y), W\rangle+d_{2}\langle Y, \dot{W}\rangle+d_{2}\langle Z, W\rangle+\langle W, W\rangle+\langle Z, \dot{W}\rangle \\
& +\mu r\|Y\|^{2}-\mu \int_{t-r}^{t}\|Y(\theta)\|^{2} d \theta+\lambda r\|Z\|^{2}-\lambda \int_{t-r}^{t}\|Z(\theta)\|^{2} d \theta
\end{aligned}
$$

By simple calculations, we obtain:

$$
\begin{align*}
\frac{d V}{d t} \leq & -\left\{d_{2}\langle Y, G(Y)\rangle-\frac{1}{2} \alpha_{4}\|Y\|^{2}\right\}-\left(\alpha_{2}-2 d_{1}\left\|J_{G}(Y)\right\|-d_{2} \alpha_{1}\right)\|Z\|^{2} \\
& -\left(2 \alpha_{1} d_{1}-1\right)\|W\|^{2}+\left\langle 2 d_{1} W+Z+d_{2} Y, \int_{t-r}^{t} J_{G}(Y(s)) Z(s) d s\right\rangle \\
& +\left\langle 2 d_{1} W+Z+d_{2} Y, \int_{t-r}^{t} J_{H}(X(s)) Y(s) d s\right\rangle+\mu\|Y\|^{2} r+\lambda\|Z\|^{2} r \\
& -\mu \int_{t-r}^{t}\|Y(\theta)\|^{2} d \theta-\lambda \int_{t-r}^{t}\|Z(\theta)\|^{2} d \theta+V_{5}+V_{6} \tag{3.22}
\end{align*}
$$

where
$V_{5}:=-2 d_{1}\langle W, F(W)\rangle+2 d_{1}\left\langle\alpha_{1} W, W\right\rangle-d_{2}\langle Y, F(W)\rangle+d_{2}\left\langle\alpha_{1} W, Y\right\rangle$.
$V_{6}:=-\langle Z, \Psi(Y) Z\rangle+\left\langle\alpha_{2} Z, Z\right\rangle-2 d_{1}\langle W, \Psi(Y) Z\rangle+2 d_{1}\left\langle\alpha_{2} Z, W\right\rangle$.
But :

$$
\begin{aligned}
V_{5} & =-2 d_{1} \int_{0}^{1}\left[\left\langle J_{F}(\sigma W) W, W\right\rangle-\left\langle\alpha_{1} W, W\right\rangle+\frac{d_{2}}{2 d_{1}}\left\{\left\langle J_{F}(\sigma W) W, Y\right\rangle-\left\langle\alpha_{1} W, Y\right\rangle\right\}\right] d \sigma \\
& =-2 d_{1}\left[\int_{0}^{1}\left\langle\left\{J_{F}(\sigma W)-\alpha_{1} I\right\} W, W\right\rangle d \sigma+\frac{d_{2}}{2 d_{1}} \int_{0}^{1}\left\langle\left\{J_{F}(\sigma W)-\alpha_{1} I\right\} W, Y\right\rangle d \sigma\right]
\end{aligned}
$$

Since $\lambda_{i}\left(\int_{0}^{1} J_{F}(\sigma W) d \sigma-\alpha_{1} I\right)$ is non-negative by (vii), then from (2.3)
we get:

$$
\begin{aligned}
V_{5} & \leq \frac{d_{2}^{2}}{8 d_{1}} \int_{0}^{1}\left\langle\left\{J_{F}(\sigma W)-\alpha_{1} I\right\} Y, Y\right\rangle d \sigma \\
& \leq \frac{\left(\alpha_{3} \alpha_{4}^{-1} \varepsilon+1\right)^{2}}{4\left(\alpha_{1} \varepsilon+1\right)} \varepsilon_{0} \alpha_{3}\|Y\|^{2} \leq \frac{1}{2} \varepsilon_{0} \alpha_{3}\|Y\|^{2}, \quad \text { because of } \varepsilon<\left\{\frac{1}{\alpha_{1}}, \frac{\alpha_{4}}{\alpha_{3}}\right\} .
\end{aligned}
$$

Also

$$
\begin{aligned}
V_{6} & =-\left[\langle Z, \Psi(Y) Z\rangle-\left\langle\alpha_{2} Z, Z\right\rangle+2 d_{1}\left\{\langle W, \Psi(Y) Z\rangle-\left\langle\alpha_{2} Z, W\right\rangle\right\}\right] \\
& =-\left[\left\langle\left\{\Psi(Y)-\alpha_{2} I\right\} Z, Z\right\rangle+2 d_{1}\left\langle\left\{\Psi(Y)-\alpha_{2} I\right\} Z, W\right\rangle\right]
\end{aligned}
$$

since $\left(\Psi(Y)-\alpha_{2} I\right)$ is non-negative by (i), then from (2.3) we get :

$$
\begin{aligned}
V_{6} & \leq d_{1}^{2}\left\langle\left\{\Psi(Y)-\alpha_{2} I\right\} W, W\right\rangle \\
& \leq \frac{1}{4}\left(\alpha_{1} \varepsilon+1\right)^{2} \alpha_{1} \varepsilon\|W\|^{2} \leq \alpha_{1} \varepsilon\|W\|^{2}, \text { because of } \varepsilon<\frac{1}{\alpha_{1}}
\end{aligned}
$$

Therefore from (3.23) and (3.24) we get:

$$
\begin{aligned}
\frac{d V}{d t} \leq & -\frac{1}{2}\left\{d_{2} \alpha_{3}-\alpha_{4}-\varepsilon_{0} \alpha_{3}\right\}\|Y\|^{2}-\left\{\alpha_{2}-2 d_{1}\left\|J_{G}(Y)\right\|-d_{2} \alpha_{1}\right\}\|Z\|^{2} \\
& -\left(2 \alpha_{1} d_{1}-\alpha_{1} \varepsilon-1\right)\|W\|^{2}+\left\langle 2 d_{1} W+Z+d_{2} Y, \int_{t-r}^{t} J_{H}(X(s)) Y(s) d s\right\rangle \\
& +\left\langle 2 d_{1} W+Z+d_{2} Y, \int_{t-r}^{t} J_{G}(Y(s)) Z(s) d s\right\rangle+\mu\|Y\|^{2} r+\lambda\|Z\|^{2} r \\
& -\mu \int_{t-r}^{t}\|Y(\theta)\|^{2} d \theta-\lambda \int_{t-r}^{t}\|Z(\theta)\|^{2} d \theta \\
\text { since }- & d_{2}\langle Y, G(Y)\rangle=-d_{2}\langle Y, \Gamma(Y) Y\rangle \leq-\frac{1}{2} d_{2} \alpha_{3}\langle Y, Y\rangle \text { from (3.4). }
\end{aligned}
$$

Here, since $\left\|J_{H}(X)\right\| \leq \frac{1}{2} \alpha_{4} \sqrt{n}$ by (vi) and by using Cauchy-Schwarz inequality, we find:

$$
\begin{aligned}
\mid\left\langle 2 d_{1} W+Z+d_{2} Y,\right. & \left.\int_{t-r}^{t} J_{H}(X(s)) Y(s) d s\right\rangle \mid \\
\leq & \left\|2 d_{1} W+Z+d_{2} Y\right\|\left\|\int_{t-r}^{t} J_{H}(X(s)) Y(s) d s\right\| \\
\leq & \frac{d_{1} \alpha_{4} \sqrt{n}}{2}\left(\|W\|^{2} r+\int_{t-r}^{t}\|Y(s)\|^{2} d s\right) \\
& +\frac{\alpha_{4} \sqrt{n}}{4}\left(\|Z\|^{2} r+\int_{t-r}^{t}\|Y(s)\|^{2} d s\right) \\
& +\frac{d_{2} \alpha_{4} \sqrt{n}}{4}\left(\|Y\|^{2} r+\int_{t-r}^{t}\|Y(s)\|^{2} d s\right)
\end{aligned}
$$

Also since $\left\|J_{G}(Y)\right\| \leq \frac{1}{4} \alpha_{1} \alpha_{2} \sqrt{n}$ by (iii) and by using Cauchy-Schwarz inequality, we find:

$$
\begin{aligned}
\mid\left\langle 2 d_{1} W+Z+d_{2} Y\right. & \left.\int_{t-r}^{t} J_{G}(Y(s)) Z(s) d s\right\rangle \mid \\
\leq & \left\|2 d_{1} W+Z+d_{2} Y\right\|\left\|\int_{t-r}^{t} J_{G}(Y(s)) Z(s) d s\right\| \\
\leq & \frac{d_{1} \alpha_{1} \alpha_{2} \sqrt{n}}{4}\left(\|W\|^{2} r+\int_{t-r}^{t}\|Z(s)\|^{2} d s\right) \\
& +\frac{\alpha_{1} \alpha_{2} \sqrt{n}}{8}\left(\|Z\|^{2} r+\int_{t r}^{t}\|Z(s)\|^{2} d s\right) \\
& +\frac{d_{2} \alpha_{1} \alpha_{2} \sqrt{n}}{8}\left(\|Y\|^{2} r+\int_{t-r}^{t}\|Z(s)\|^{2} d s\right)
\end{aligned}
$$

Therefore it follows from (2.2), (2.3) and (3.7) that:

$$
\begin{aligned}
\frac{d V}{d t} \leq & -\left\{\frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}-\frac{d_{2} \alpha_{4} \sqrt{n}}{4} r-\frac{d_{2} \alpha_{1} \alpha_{2} \sqrt{n}}{8} r-\mu r\right\}\|\mathrm{Y}\|^{2} \\
& -\left\{\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)-\frac{\alpha_{4} \sqrt{n}}{4} r-\frac{\alpha_{1} \alpha_{2} \sqrt{n}}{8} r-\lambda r\right\}\|\mathrm{Z}\|^{2} \\
& -\left(\alpha_{1} \varepsilon+1-\frac{d_{1} \alpha_{4} \sqrt{n}}{2} r-\frac{d_{1} \alpha_{1} \alpha_{2} \sqrt{n}}{4} r\right)\|\mathrm{W}\|^{2} \\
& +\left(\frac{2 d_{1} \alpha_{4} \sqrt{n}}{4}+\frac{d_{2} \alpha_{4} \sqrt{n}}{4}+\frac{\alpha_{4} \sqrt{n}}{4}-\mu\right) \int_{t-r}^{t}\|\mathrm{Y}(\mathrm{~s})\|^{2} d s \\
& +\left(\frac{2 d_{1} \alpha_{1} \alpha_{2} \sqrt{n}}{8}+\frac{d_{2} \alpha_{1} \alpha_{2} \sqrt{n}}{8}+\frac{\alpha_{1} \alpha_{2} \sqrt{n}}{8}-\lambda\right) \int_{t-r}^{t}\|\mathrm{Z}(\mathrm{~s})\|^{2} d s .
\end{aligned}
$$

If we take

$$
\mu=\frac{\alpha_{4} \sqrt{n}}{4}\left(2 d_{1}+d_{2}+1\right) \text { and } \lambda=\frac{\alpha_{1} \alpha_{2} \sqrt{n}}{8}\left(2 d_{1}+d_{2}+1\right)
$$

then we have:

$$
\begin{aligned}
\frac{d V}{d t} \leq & -\left\{\frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}-\frac{d_{2} \alpha_{4} \sqrt{n}}{4} r-\frac{d_{2} \alpha_{1} \alpha_{2} \sqrt{n}}{8} r-\frac{\alpha_{4} \sqrt{n}}{4}\left(2 d_{1}+d_{2}+1\right) r\right\}\|\mathrm{Y}\|^{2} \\
& -\left\{\left(\frac{\Delta}{\alpha_{1} \alpha_{3}}-\varepsilon D_{0}\right)-\frac{\alpha_{4} \sqrt{n}}{4} r-\frac{\alpha_{1} \alpha_{2} \sqrt{n}}{8} r-\frac{\alpha_{1} \alpha_{2} \sqrt{n}}{8}\left(2 d_{1}+d_{2}+1\right) r\right\}\|\mathrm{Z}\|^{2} \\
& -\left\{\left(\alpha_{1} \varepsilon+1\right)-\frac{d_{1} \alpha_{4} \sqrt{n}}{2} r-\frac{d_{1} \alpha_{1} \alpha_{2} \sqrt{n}}{4} r\right\}\|\mathrm{W}\|^{2} .
\end{aligned}
$$

Therefore if

$$
r<\min \left\{\frac{4\left(\varepsilon-\varepsilon_{0}\right) \alpha_{3}}{2 \alpha_{4} \sqrt{n}\left(2 d_{1}+2 d_{2}+1\right)+\alpha_{1} \alpha_{2} d_{2} \sqrt{n}},\right.
$$

we obtain:
$\frac{d V}{d t} \leq-D_{3}\left(\|Y\|^{2}+\|Z\|^{2}+\|W\|^{2}\right), \quad$ for some $D_{3}>0$.
Therefore from (3.13), (3.21) and (3.26) the functional $V\left(X_{t}, Y_{t}, Z_{t}, W_{t}\right)$ satisfies all conditions of the Theorem 2.1 , so that the zero solution of (1.1) is uniformaly stable. Thus the proof of Theorem 2.2 is completed.

4 Illustrative Example

We display an example to illustrate the sufficient conditions which given in Theorem 2.2.

Example : In a special case of equation (1.1), for $\mathrm{n}=2$; we choose

$$
\begin{aligned}
& F(W)=\binom{w_{1}(t)+w_{1}^{3}(t)}{w_{2}(t)+w_{2}^{3}(t)}, \quad \Psi(Y)=\left(\begin{array}{cc}
5+y_{1}^{2}(t) & 0 \\
0 & 5+y_{1}^{2}(t)
\end{array}\right) \\
& G(Y(t-r))=\binom{y_{1}(t-r)}{y_{2}(t-r)} \\
& H(X(t-r))=\binom{\frac{1}{4} x_{1}(t-r)+\frac{1}{2} \arctan \left(x_{1}(t-r)\right)}{\frac{1}{4} x_{2}(t-r)+\frac{1}{2} \arctan \left(x_{2}(t-r)\right.}
\end{aligned}
$$

We find that $F(0)=0$ and

$$
J_{F}(W)=\left(\begin{array}{lc}
1+3 w_{1}^{2}(t) & 0 \\
0 & 1+3 w_{2}^{2}(t)
\end{array}\right)
$$

is symmetric, and

$$
\int_{0}^{1} J_{F}(\sigma W) d \sigma=\left(\begin{array}{cc}
1+w_{1}^{2}(t) & 0 \\
0 & 1+w_{2}^{2}(t)
\end{array}\right)
$$

so, we obtain:

$$
\lambda_{1}\left(\int_{0}^{1} J_{F}(\sigma W) d \sigma\right)=1+w_{1}^{2}(t), \lambda_{2}\left(\int_{0}^{1} J_{F}(\sigma W) d \sigma\right)=1+w_{2}^{2}(t)
$$

therefore we get $\lambda_{i}\left(\int_{0}^{1} J_{F}(\sigma W) d \sigma\right) \geq 1, \alpha_{1}=1$.
Also, we can see that the matrix $\Psi(Y)$ is symmetric, and

$$
\lambda_{1}(\Psi(Y))=5+y_{1}^{2}(t), \quad \lambda_{2}(\Psi(Y))=5+y_{2}^{2}(t)
$$

then, we have $\lambda_{i}(\Psi(Y)) \geq 5, \alpha_{2}=5$.
Also, we find that $G(0)=0$ and

$$
J_{G}(Y)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

is symmetric, and

$$
\int_{0}^{1} J_{G}(\sigma Y) d \sigma=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

then, we get:

$$
\lambda_{1}\left(\int_{0}^{1} J_{G}(\sigma Y) d \sigma\right)=1, \quad \lambda_{2}\left(\int_{0}^{1} J_{G}(\sigma Y) d \sigma\right)=1,
$$

therefore we obtain $\lambda_{i}\left(\int_{0}^{1} J_{G}(\sigma Y)\right)=1, \alpha_{3}=2$.
Likewise, we have $H(0)=0$,

$$
J_{H}(X)=\left(\begin{array}{ccc}
\frac{1}{4}+\frac{1}{2\left(1+x_{1}^{2}(t-r)\right)} & 0 \\
0 & \frac{1}{4}+\frac{1}{2\left(1+x_{2}^{2}(t-r)\right)}
\end{array}\right)
$$

is symmetric, and
$\int_{0}^{1} J_{H}(\sigma X) d \sigma=\left(\begin{array}{ccc}\frac{1}{4}+\frac{1}{2 x_{1}(t-r)} \arctan x_{1}(t-r) & 0 \\ 0 & \frac{1}{4}+\frac{1}{2 x_{2}(t-r)} \arctan x_{2}(t-r)\end{array}\right)$,
then, we obtain:

$$
\begin{aligned}
& \lambda_{1}\left(\int_{0}^{1} J_{H}(\sigma X) d \sigma\right)=\frac{1}{4}+\frac{1}{2 x_{1}(t-r)} \arctan x_{1}(t-r) \\
& \lambda_{2}\left(\int_{0}^{1} J_{H}(\sigma X) d \sigma\right)=\frac{1}{4}+\frac{1}{2 x_{2}(t-r)} \arctan x_{2}(t-r)
\end{aligned}
$$

therefore we get $\lambda_{i}\left(\int_{0}^{1} J_{H}(\sigma X)\right) \geq \frac{1}{4}, \alpha_{4}^{\prime}=\frac{1}{4}$.
$J_{H}(X)$ commutes with $J_{H}\left(X^{\prime}\right)$, for all $X, X^{\prime} \in \mathcal{R}^{n}$ and

$$
\left.\lambda_{1} J_{H}(X)\right)=\frac{1}{4}+\frac{1}{2\left(1+x_{1}^{2}(t-r)\right)}, \quad \lambda_{2}\left(J_{H}(X)\right)=\frac{1}{4}+\frac{1}{2\left(1+x_{2}^{2}(t-r)\right)},
$$

therefore we get $\lambda_{i}\left(J_{H}(X)\right) \leq \frac{3}{4}, \alpha_{4}=\frac{3}{2}$.
\quad Now, \quad since $\left\|J_{G}(Y)\right\|=\sqrt{\lambda_{\max }\left(J_{G}^{*}(Y) J_{G}(Y)\right)}=1, \quad$ where $J_{G}^{*}(Y)$ is transpose of matrix $J_{G}(Y)$, then there is a finite positive constant

$$
\Delta \leq\left\{\alpha_{1} \alpha_{2}-4\left\|J_{G}(Y)\right\|\right\} \alpha_{3}-\alpha_{1}^{2} \alpha_{4}=\frac{1}{2}
$$

Finally, we have $0 \leq \lambda_{i}\left(J_{G}(Y)-\int_{0}^{1} J_{G}(\sigma Y)\right) \leq \delta<\frac{3}{8}$, and choose $\delta=\frac{1}{4}$, we get:

$$
\varepsilon_{0}<\varepsilon=\min \left\{1, \frac{3}{4}, \frac{1}{96}, \frac{1}{144}\right\} \approx 0.0069444444 .
$$

If we take $\varepsilon_{0}=0.006$, then all conditions of Theorem 2.2 are hold provided that:

$$
\begin{gathered}
r<\min \{0.0003076098,0.0438856032,0.3535533906\} \\
\approx 0.0003076098
\end{gathered}
$$

References

[1] Abou-El-Ela, A. M. A. and Sadek, A. I., Astability theorem for a certain fourth-order vector differential equation, Annals of Differential Equations, 10(2), 1994.
[2] Abou-El-Ela, A. M. A., Sadek, A. I. and Mahmoud, A. M., On the stability of solutions to a certain fourth-order vector delay differential equation, Annals of Differential Equations, 28(1), 1-10, 2012.
[3] Abou-El-Ela, A. M. A., Sadek, A. I., Mahmoud, A. M. and Taie, R. O. A., A stability result for the solutions of a certain system of fourth-order delay differential equation, International Journal of Differential Equations, 1-11, 2015.
[4] Adesina, O. A. and Ogundare, B. S., Some new stability and boundedness results on a certain fourth-order nonlinear differential equation, Nonlinear Studies - www.nonlinearstudies.com, 19(3), 355-365, 2012.
[5] Bellman, R., Introduction to matrix analysis, reprint of the second edition (1970), with a foreword by Gene Golub. Classics in applied mathematics, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
[6] Burton, T. A., Stability and seriodic Solutions of ordinary and functional differential equations, Academic Press, New York, 1985.
[7] Lyapunov, A. M., Stability of motion, Academic Press, 1966.
[8] Omeike, O. M., Stabilty and boundedness of solutions of nonlinear vector differential equation of third order, Archivum Mathematicum (BRNO), 101-106, 2014.
[9] Omeike, O. M., Stability and boundedness of solutions of a certain system of third-order nonlinear delay differential equations, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 54(1), 109-119, 2015.
[10] Reissig, R., Sansone, G. and Conti, R., Nonlinear differential equations of higher-order, Translated from the German. Noordhoff International Publishing, 1974.
[11] Sadek, A. I., On global stability of the solutions of system differential equations of the fifth-order, Annals of Differential Equations, 9(2), 1993.
[12] Tunç, C., On the stability of solutions of certain fourth-order delay differential equations, Applied Mathematics and Mechanics (English Edition), 27(8), 1141-1148, 2006.
[13] Tunç, C., Stability and boundedness result for certain nonlinear vector differential equation of the fourth-order, Published in Neliniini Kolyvannya, 9(4), 548-563, 2006.
[14] Tunç, C., Stability and boundedness in delay system of differential equations of third order, Journal of the Association of Arab Universities for Basic and Applied Sciences, 2016.

دراسة استقرال الحلول لمعادلة تفاضلية تأثيرية اتجاهية مينةّ من الرتبة الرايعة أحمد ماهر و ششا عثمان و منى غالب قسم الرياضيات - كلية العلوم - جامعة أسيبوط

في هذا البحث، باستخدام دالبة ليابونوف نناقش الشروط الكافية لدر اسة الاستثرار المنتظم للحل الصفري لمعادلة تفاضلية غبر خطية تأخبرية اتجاهية من الرتبة الرابعة على الصورة:

$$
X^{(4)}+\mathrm{F}(\ddot{X})+\Psi(\dot{X}) \ddot{X}+\mathrm{G}(\dot{X}(\mathrm{t}-\mathrm{r}))+\mathrm{H}(\mathrm{X}(\mathrm{t}-\mathrm{r}))=0
$$

النتائج التي تم الحصول عليها في هذا البحث هي تحسين لبعض النتائج النتي

تم در استها مسبقا، مع ذكر مثال يوضـح النتيجة الرئيسبة التي اسفر عنها البحث.

[^0]: *E-mail address: a_maher1969@yahoo.com (A. Maher).
 \dagger E-mail address: rasha_omath@yahoo.com (R. O. A. Taie).
 §E-mail address: monaalwaleedy@gmail.com (M. G. A. Alwaleedy).

