ESTIMATION OF SOME GENETIC PARAMETERS AND GENE ACTION FOR YIELD, YIELD COMPONENTS AND FIBER PROPERTIES IN TWO INTER-VARIETAL COTTON CROSSES

M.A.A. Nagib
Cotton Research Institute, Agricultural Research Centre, Giza, Egypt

Abstract

This investigation was carried out during the three growing seasons of 2004, 2005 and 2006 at Sids Agricultural Experiment Station (Beni-Swief), the two intervarietal crosses [Dandara \times \{Giza $83 \times($ Giza $75 \times 5844\}]$ and [Giza $90 \times\{$ Giza $83 \times$ (Giza 75×5844)\}] with its six populations $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ were grown in a randomized complete block design with four replications. The obtained results showed significant positive heterosis relative to mid-parents, in both the two crosses for all studied characters except PI in cross I and L \% and 2.5% SL in cross II. Positive significant better parent heterosis were found for PFN, BW, SCY/P, LY/P, LI, Mic and 2.5% SL while showed negative significant PI in cross I. In cross II, the values of better parent heterosis were positive and significant for BW (g) and PI and negative for L\%. The inbreeding depression values were significant and positive for BW, SCY/P and LI in both crosses and PFN and $2.5 \% \mathrm{SL}$ in cross I as well as LY/P, Mic and PI in cross II, while negative value was recorded for PI in cross I. Potence ratio values showed partial-dominance or over-dominance for all studied characters in both crosses. Significant additive gene effects were found for PFN, L \%, St, LI and PI in both crosses, also 2.5% SL in cross I and B/P, SCY/P and LY/P in cross II. Significant dominance gene effects were detected for B/P, SCY/P, LY/P, SI and Mic in both crosses, as well as PFN and LI in the first cross, BW (g) and PI in the second cross.

The values of epistatic gene effect additive x additive (i), were significant for B/P, SCY/P, LY/P, L\% and PI in both crosses. Significant additive x dominance (j) values of epistasis were observed for most studied characters in the two crosses.

Relative high values of heritability in broad sense (over 50\%) were noticed for all studied characters in both crosses except for B/P, SCY/P, LY/P, and L\%, in cross I and for B/P, BW and LUR \%, in cross II. High heritability values in narrow sense (over 50%) were recorded for PI in cross II, while moderate hertability values (ranged from 30 to 50%), in narrow sense, were recorded for PFN, BW, 2.5% SL and LUR \% in the first cross and for PFN, L \%, SI, Mic, PI and 2.5% SL, in the second cross. The other character showed low heritability values in narrow sense. Maximum predicted genetic character showed low heritability values in narrow sense. Maximum predicted genetic advance from selecting the desired 5% of F_{2} population were achieved for PFN and BW in cross I and for PFN and SCY/P in cross II.

The exerted values of genotypic coefficients between most characters were higher than the corresponding values of phenotypic correlation coefficients in both crosses.

Both phenotypic and genotypic correlations were highly significant between (B / P and each of BW, SCY/P, LY/P), (SCY/P and LY/P) and between (SI and LI) in both crosses. The coefficients of genotypic correlation were significant between (BW and each of SCY/P, LY/P, L\%, SI and $2.5 \% \mathrm{SL}$), as well as between (SCY/P and each of L $\%, \mathrm{SI}, \mathrm{LI}$ and LUR) in the first cross. While, in the second cross, highly significant positive genotypic correlations were detected between (BW and each of L\%, SI, LI and LUR), (SCY/P and each of SI, LI and Mic).

INTRODUCTION

Egyptian cotton has international reputation because of the extraordinary characteristics of its fiber qualities. It played an important role in the national income of Egypt. Improvement of yield and fiber quality of cotton varieties is the main target in any cotton breeding program. The progress of any breeding program depends on the magnitude of genetic variability present in the genetic materials and the extent of heritability of desirable characters. A basic understanding of nature of the action and interaction of gene involved in the inheritance of quantitative characters is very essential for cotton breeders. Therefore, partitioning of variance, into additive, dominance and epistatic effects, as well as heritability estimates in both broad and narrow sense and also expected genetic advance upon selection are genetic parameters, which enable the breeder to foresee the reliability of selection for yield components and fiber properties. Gene action and epistatic effects in cotton were studied in intra-specific crosses among Egyptian varieties by ElDisouki and Ziena (2001), Hemida et al. (2001), Abd El-Zaher et al. (2003) and Eissa (2004a).

Most published studied on correlation in cotton have not yielded information on the genetic correlation between yield and its components Most reported studies have dealt with correlation determined in established varieties. This type of association is of a little value to the breeder dealing with a segregating population. Performance of phenotypic and genotypic correlations were studied by several investigators i.e., El-Adly (1996) and ElAmeen et al. (2004) and Eissa (2004b).

Therefore, the present investigation was conducted to estimate the heterosis, inbreeding depression, partitioning of variance, heritability estimates and expected genetic advance upon selection for yield components and fiber properties. Moreover, the calculation of the phenotypic and genotypic correlations between characters in the two intra-specific crosses of cotton. [Dandara \times \{Giza $83 \times($ Giza $75 \times 5844)\}$] and [Giza $90 \times\{$ Giza $83 \times$ (Giza $75 \times 5844)\}]$.

MATERIALS AND METHODS

This investigation was carried out at Sids Agricultural Experiment Station, Agricultural Research Centre, during the seasons 2004, 2005 and 2006.

In 2004 season, the parental genotypes were crossed as follows: cross I: [Dandara x \{Giza $83 \times($ Giza $75 \times 5844)\}]$ and cross II [Giza $90 \times$ \{Giza $83 \times$ (Giza 75×5844)\}] to produce F_{1} hybrid seeds.

In 2005 season, the parents were again crossed to obtain more F_{1} 's hybrid seeds. Moreover, the F_{1} plants were backcrossed for both parents to obtain BC_{1} and BC_{2} and the F_{1} plants were self-pollinated to produce F_{2} generation seeds

In 2006 season, the six populations i.e., $\left(P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}\right.$ and $\left.B C_{2}\right)$ of the two crosses were widely spaced sowing as individual plants in a complete randomized block design with four replicates. Each replicate included two rows for each parent, four rows for F_{1} population and six rows for each of BC_{1} and BC_{2}, in addition to sixteen rows for F_{2} population. Rows were 7.0 m long and 60 cm apart, hills per row were spaced 70 cm . One row
was left between every two planted rows. After word, about 5 weeks from sowing date, the hills were thinned to single healthy plant per hill. Cultural practices for growing cotton as well as the pest control were applied among the three seasons.

The following measurements were taken on the individual plants of the six populations: position of the first node (PFN), number of harvested bolls per plant (B/P), boll weight in grams (BW), seed cotton yield per plant (SCY/P), lint yield per plant (LY/P), lint percentage (L \%), seed index in grams (SI), lint index in grams (LI), fiber fineness as micronaire reading (Mic), fiber strength as Pressley index (PI), fiber length at 2.5% span length (2.5\% SL) and length uniformity ratio (LUR).

Type of gene effects was estimated by using the relation between generations mean as outlined by Mather and Jinks (1971). The significance of the above estimates were tested by the "t".

Heritability values in broad and narrow senses and expected genetic advance under selection were determined according to Warner (1952) and Allard (1960), respectively. A, B and C scaling tests of Mather and Jinks (1971) were used to test the adequacy of additive dominance model. Estimation of genetic variance and its components were calculated using Mather (1949) procedures.

Both phenotypic and genotypic correlations among traits were estimated concerning the simple phenotypic correlation in F_{1} and F_{2}. The following formula was used to estimate simple phenotypic correlation $r(\mathrm{Ph})$:

$$
r(P h)=\frac{\text { Cov. XY }}{\sqrt{V X \cdot V Y}}
$$

Where:
$\mathrm{r}(\mathrm{Ph}) \quad=$ simple phenotypic correlation
Cov.XY $=$ phenotypic covariance between character X and character Y.
$V X$ and $V Y \quad=$ variance of character x and Y, respectively.
Concerning the genotypic correlation in F_{2} generations, Burton (1951) used a formula in which some of the non-heritable effects might be eliminated by calculating the genetic correlation as follows:

$$
\text { Genotypic correlation }=\frac{\text { Cov. XY F }}{2} \text { - Cov. XY F } F_{1}{ }_{\left.\sqrt{\left(\mathrm{VX} \mathrm{~F}_{2}-\mathrm{VX} \mathrm{~F}\right.} 11\right)\left(\mathrm{VY} \mathrm{~F}_{2}-\mathrm{VY} \mathrm{~F}_{1}\right)}
$$

Where:

$$
\begin{array}{ll}
\text { Cov. and V } & =\text { covariance and variance. } \\
X & =\text { measurement of one character. } \\
\mathrm{Y} & =\text { measurement of the other character. } \\
\mathrm{F}_{1} \text { and } \mathrm{F}_{2} & =\text { first and second generation, respectively. }
\end{array}
$$

RESULTS AND DISCUSSION
The means of the six populations and their standard error for the studied characters are shown in Table 1. The results indicated that the parental genotypes revealed significant differences for PFN, L\%, SI, LI, in the two crosses and 2.56% SL, LUR \% in cross I, B/P, SCY/P, LY/P, SI and LI in cross I. Meanwhile, F_{1} population means was higher than F_{2} generations for
most studied characters in both crosses except PI in cross I, PFN, B/P, SI and 2.5% SL in cross II. On the other hand, BC_{2} population means surpassed BC_{1} for all characters studied except PFN, BW, L\% and PI in cross I, while BC_{1} population means exceeded BC_{2} population means for all characters studied except SI in cross II.

Heterosis, inbreeding depression and potence ratio are presented in Table 2. Highly significant or significant positive heterotic values relative to better parent were found for PFN, BW, SCY/P, LY/P, LI, Mic and 2.5\% SL and highly significant negative value for PI in the first cross. Likewise, highly significant or significant positive heterosis values relative to better parent was recorded for SI, PI and LUR \%, while highly significant negative value was found for L \% in the second cross. Significant heterosis relative to better parent indicated that the main cause of heterosis effects were overdominance and epistatic gene effects. In this respect, Hassan (2007) recorded positive significant heterosis relative to better parent for number of bolls/plant and seed cotton yield/plant.

Highly significant or significant positive heterosis values relative to mid-parents were found for all studied characters in both crosses except for PI in cross I and for PFN, $\mathrm{L} \%$ and 2.5% SL in cross II. The remaining characters in both crosses showed insignificant heterosis relative to midparents, indicated that additive gene effect play a major role in the inheritance of these characters. Similar results were reported by Khattab et al. (1984), ElDisouqi et al. (2000) and Eissa (2004a).

Inbreeding depression values were positive and significant for all studied characters in both crosses except B/P, LY/P and Mic in cross I and for PFN, L\%, SI and 2.5% SL in cross II. In theory, inbreeding depression is caused by decreased in the heterozygosity, which conditions strong dominance or over-dominance gene action. Awad et al. (1986) concluded that inbreeding depression estimates were significant for first fruiting node, boll weight and seed index.

Both heterosis and inbreeding depression are coinciding to the same particular phenomenon.

Potence ratio indicated over-dominance towards the better parent or the lower parent for all most characters in the two crosses except for PFN, SI and 2.5% SL in cross I and for PFN, LI and 2.5% SL in cross II which showed partial dominance. These results were in accordance with the findings obtained by Abou-Zahra et al. (1987), Eissa (2004a) and El-Adly (2004).

Mather's scaling test A, B and C values for studied characters are given in Table (3). The estimates of parameter A, B and C (one or more of these parameter), were deviated highly significantly or significantly form zero for all studied characters in both crosses. It is interesting to note that, the significant of any one or more of these tests indicates epistasis on the scale of characters used. Therefore the results confirmed the presence of nonallelic interaction in the inheritance of all studied characters in the two crosses. These results are supported by Awad et al. (1989), El-Okkia et al. (1989), Ismail et al. (1991), Abd El-Zaher (1999), Eissa (2004a) and El-Adly (2004).

Table (1): Means of $P_{1}, P_{2}, F_{1}, F_{2}, B C_{1}$ and $B C_{2}$ and their standard errors for studied characters of the two intra-specific crosses Dandara \times [G. $83 \times(\mathrm{G} .75 \times 5844)$] and Giza $90 \times$ [G. $83 \times(\mathrm{G} .75 \times 5844)$].

Generation	Characters											
	PFN	B/P	BW (g)	SCY/P	LY/P	L \%	SI (g)	LI	Mic	PI	2.5\% SL	LUR \%
Cross I: Dandara \times [G. $83 \times$ (G. 75×5844)]												
P_{1}	7.45 ± 0.17	33.8 ± 2.586	2.65 ± 0.036	90.32 ± 7.47	34.25 ± 2.61	$38.2 \pm 0.3^{* *}$	7.69 ± 0.124	4.76 ± 0.086	2.99 ± 0.042	$10.3 \pm 0.1^{* *}$	30.7 $\pm 0.1^{* *}$	$88.0 \pm 0.3^{* *}$
P_{2}	$6.65 \pm 0.1^{* *}$	35.05 ± 2.57	2.64 ± 0.033	92.08 ± 6.79	33.33 ± 2.36	$36.29 \pm \pm 0.17$	$10.5 \pm 0.1^{* *}$	$5.96 \pm 0.1^{* *}$	3.10 ± 0.062	9.45 ± 0.08	$28.7 \overline{\underline{4} \pm 0.15}$	83.8 ¢ ± 0.25
F_{1}	7.35 ± 0.98	39.73 ± 1.98	2.81 ± 0.031	112.1 ± 6.27	43.61 ± 2.48	38.85 ± 0.17	$10.4 \overline{4} \pm 0.11$	6.62 ± 0.076	3.95 ± 0.035	9.82 ± 0.073	31.24 ± 0.14	87.82 ± 0.32
F_{2}	6.89 ± 0.080	37.39 ± 1.12	2.66 ± 0.024	$100.8 \overline{9}^{ \pm} \pm 3.3$	38.5 ± 1.26	38.34 ± 0.11	9.46 ± 0.064	5.87 ± 0.046	3.89 ± 0.031	$10.03{ }^{+} \pm 0.06$	30.83 ± 0.09	86.29 ± 0.17
BC_{1}	7.92 ± 0.112	39.58 ± 1.91	2.80 ± 0.031	112.05 ± 5.7	43.48 ± 2.25	38.65 ± 0.16	9.35 ± 0.097	5.89 ± 0.06	3.93 ± 0.049	10.11 ± 0.10	30.42 ± 0.14	85.19 ± 0.27
BC_{2}	6.92 ± 0.112	44.58 ± 1.66	2.64 ± 0.035	119.53 ± 4.8	44.18 ± 1.75	37.07 ± 0.18	$10.1 \overline{8} \pm 0.10$	6.03 ± 0.079	3.95 ± 0.048	$9.57 \pm \overline{0} .101$	30.01 ± 0.13	85.34 ± 0.22
Cross II: G. $90 \times$ [G. $83 \times$ (G. 75×5844)]												
	7.30 ± 0.128	41.7 $\pm 2.2^{* *}$	2.74 ± 0.053	$113.9 \pm 4.8^{* *}$	46.14 $\pm 1.99^{* *}$	$40.53 \pm 0.2^{*}$	9.19 $\pm 0.1^{* *}$	$6.27 \pm 0.1^{* *}$	4.06 ± 0.02	9.27 ± 0.075	30.50 ± 0.29	85.03 ± 0.34
P_{2}	$6.75 \pm 0.1^{* *}$	33.75 ± 1.25	2.63 ± 0.039	89.36 ± 3.65	$34.94 \pm \pm 1.53$	39.74 ± 0.24	8.4 ± 0.087	5.54 ± 0.78	3.95 ± 0.052	$10.3 \pm 0.1^{* *}$	30.16 ± 0.30	84.15 ± 0.44
F_{1}	7.00 ± 0.095	45.45 ± 1.87	2.81 ± 0.35	126.76 ± 4.5	50.38 ± 1.81	39.71 ± 0.18	9.44 ± 0.087	6.22 ± 0.079	4.09 ± 0.026	10.79 ± 0.06	30.27 ± 0.20	86.19 ± 0.26
F_{2}	7.11 ± 0.064	36.47 ± 0.98	2.68 ± 0.23	$99.64 \pm$ 2.84	38.42 ± 1.13	38.45 ± 0.12	9.51 ± 0.057	5.97 ± 0.047	3.82 ± 0.026	10.23 ± 0.05	30.49 ± 0.15	87.00 ± 0.19
BC_{1}	7.37 ± 0.101	44.57 ± 1.74	2.69 ± 0.035	$120.4{ }^{-} \pm 5.1$	47.63 ± 2.07	39.46 ± 0.17	9.38 ± 0.088	6.12 ± 0.078	3.81 ± 0.038	10.34 ± 0.07	31.08 ± 0.16	86.54 ± 0.27
BC_{2}	6.98 ± 0.090	40.80 ± 1.35	2.57 ± 0.036	105.12 ± 3.7	40.71 ± 1.50	38.69 ± 0.18	9.58 ± 0.081	6.07 ± 0.068	3.69 ± 0.039	10.53 ± 0.08	30.22 ± 0.27	87.12 ± 0.30

Table (2): Heterosis inbreeding depression and potence ratio for studied characters of the two intra-specific crosses Dandara \times [G. $83 \times(G .75 \times 5844)]$ and Giza $90 \times[G .83 \times(G .75 \times 5844)]$.

Estimates	Characters											
	PFN	B/P	BW (g)	SCY/P	LY/P	L \%	$\mathrm{SI}(\mathrm{g})$	LI	Mic	PI	2.5\% SL	LUR \%
Cross I: Dandara \times [G. $83 \times$ (G. 75×5844)]												
Heterosis H.P.	10.53**	13.35	6.04**	21.74*	27.33**	1.65	-0.19	11.07**	27.42**	-4.47**	1.92**	-0.25
M.P.	4.26*	15.41*	6.24**	22.92**	29.06**	4.28**	15.04**	23.51**	29.72**	-0.46	5.17**	2.18**
Inbreeding depression I.D.\%	6.67**	5.89	5.34**	10.00**	11.72	1.31*	9.39**	11.33**	1.52	-2.14*	1.31*	1.74**
Potence ratio P.R.	0.75	-8.49	0.75	-23.75	21.35	1.65	-0.99	-2.10	-16.45	-0.11	1.62	0.89
G. $90 \times$ [G. $83 \times(\mathrm{G} .75 \times 5844$)]												
Heterosis H.P.	3.70	8.99	2.55	11.27	9.19	-2.02**	2.72*	-0.80	0.74	4.35**	-0.75	1.36**
M.P.	-0.36	20.48**	4.66**	24.71**	24.27**	-1.06	7.33**	5.33**	2.12*	10.05**	-0.20	1.89**
Inbreeding depression I.D.\%	-1.57	19.76**	4.63**	21.39**	23.74**	3.17	-0.74	4.02**	6.60**	5.19**	-0.73	-0.94*
Potence ratio P.R.	-0.09	1.94	2.27	2.05	1.76	-1.08	1.63	0.86	1.55	-1.84	-0.35	3.64

*, ** Significant and highly significant at 0.05 and 0.01 probability levels, respectively.

Table (3): Scaling test for studied characters studied in two intra-specific crosses.

Characters	Cross IDandara \times [G. $83 \times(\mathrm{G} .75 \times 5844)$]			$\begin{gathered} \text { Cross II } \\ \text { G. } 90 \times[\text { G. } 83 \times(\text { G. } 75 \times 5844)] \end{gathered}$		
	A	B	C	A	B	C
PFN	$1.04 \pm 0.302^{* *}$	-0.16 ± 0.277	$-1.36 \pm 0.43^{* *}$	0.44 ± 0.257	0.21 ± 0.266	0.39 ± 0.358
B/P	5.63 ± 5.02	$14.38 \pm 4.64^{* *}$	1.25 ± 6.996	1.99 ± 4.512	2.40 ± 3.514	$-20.5 \pm 5.97^{* *}$
BW (g)	-0.14 ± 0.078	$-0.17 \pm 0.08^{* *}$	$0.27 \pm 0.124^{*}$	-0.17 ± 0.95	$-0.3 \pm 0.089^{* *}$	$-0.27 \pm 0.133^{*}$
SCY/P	21.68 ± 15.011	$34.88 \pm 13.4^{* *}$	-3.04 ± 20.842	0.14 ± 12.075	-5.88 ± 9.485	$-58.2 \pm 15.7^{* *}$
LY/P	9.100 ± 5.761	$11.42 \pm 4.90^{*}$	-0.80 ± 7.897	-1.26 ± 4.934	-3.90 ± 3.815	$-28.16 \pm 6.3^{* *}$
L \%	0.23 ± 0.47	$-1.00 \pm 0.435^{*}$	1.15 ± 0.649	$-1.32 \pm 0.43^{* *}$	$-2.07 \pm 0.47^{* *}$	$-5.89 \pm 0.68^{* *}$
$\mathrm{SI}(\mathrm{g})$	$0.57 \pm 0.253 *$	$-0.54 \pm 0.247^{*}$	$-1.19 \pm 0.37^{* *}$	0.13 ± 0.214	$1.32 \pm 0.203^{* *}$	$1.57 \pm 0.312^{* *}$
LI (g)	$0.40 \pm 0.166^{*}$	$-0.52 \pm 0.19^{* *}$	-0.48 ± 0.262	-0.25 ± 0.195	0.38 $\pm 0.176^{*}$	0.37 ± 0.272
Mic	$0.92 \pm 0.112^{* *}$	$0.85 \pm 0.12^{* *}$	$1.57 \pm 0.161^{* *}$	$-0.53 \pm 0.09^{* *}$	$-0.66 \pm 0.10^{* *}$	$-0.91 \pm 0.13^{* *}$
PI	0.12 ± 0.255	0.13 ± 0.229	$0.75 \pm 0.332^{*}$	0.62 $\pm 0.169^{* *}$	0.07 ± 0.174	-0.27 ± 0.258
2.5 \% SL	$-1.05 \pm 0.34^{* *}$	0.02 ± 0.322	$1.43 \pm 0.498^{* *}$	$1.39 \pm 0.476^{* *}$	0.01 ± 0.641	0.76 ± 0.836
LUR \%	$-5.48 \pm 0.69^{* *}$	-1.00 ± 0.59	$-2.3 \overline{8} \pm 1.00^{* *}$	$1.86 \pm 0.692^{* *}$	3.90 $\pm 0.788^{* *}$	$6.44 \pm 1.065^{* *}$

*, ** Significant and highly significant at 0.05 and 0.01 probability levels, respectively.
The results in Table 4, illustrated type of gene effects using generation mean analysis for studied characters in the two intra-specific crosses. It could be clearly observed that the constant mean (m) values were highly significant for all studied characters in the both crosses except SCY/P and LY/P in cross I. The additive gene effects (d) were highly significant and positive or negative for PFN, L\%, SI, LI and PI in both crosses, 2.5\% SL and LUR \% in cross I, B/P, SCY/P and LY/P in cross II. While the remaining characters in both crosses computed insignificant and negligible values.

The dominance gene effects (h) appeared to be of very important role in the inheritance of B/P, SCY/P, LY/P, SI, Mic and LUR\% in both crosses, PFN, LI and 2.5 SL in cross I, BW and PI in cross II, which had positive or negative significant values. These results indicated that improvement of these characters could be achieved through recurrent selection.

The additive x additive type of epistatic gene effects (i) values, were positive and highly significant for B/P, SCY/P, LY/P, L\% and PI in both crosses, in addition to PFN, SI, 2.5\% SL and LUR \% in cross I. Whereas, the remaining studied characters were insignificant and of positive or negative values.

Most studied characters were significantly affected by one or two types of epistatic gene effects (j and L) in both crosses except Pl in cross I and PFN, SCY/P, LY/P, L\%, and 2.5% SL in cross II.

These results are in accordance with the findings obtained by Khattab et al. (1984) for (L\%); El-Okkia et al. (1989) for (B/P, L\% and SI); El-Adly (1996) for (BW, B/P, SI and LI); Abd El-Zaher (1999) for (L \%, SI and LI in both crosses and LYP in cross II); Hassan (2007) for (BW, B/P and SI in cross I); Eissa (2004a) for (BW and SI) and El-Adly (2004) for (BW, SCY/P, LY/P and L\%), who observed that additive, dominance gene effects and epistatic action played a major role in the inheritance of their studied characters.

Heritability estimates in broad and narrow senses as well as expected genetic advance upon selection are presented in Table 5. High broad sense heritability values (over 50\%) were detected for all studied characters in both crosses except for SCY/P, LY/P and L\% in cross I and for B/P, BW and LUR\% in cross II which recorded moderate heritability estimates (from 30% to 50\%).

Table (4): Type of gene effect for characters studied of the two intra-specific crosses Dandara \times [G. $83 \times(\mathrm{G} .75 \times 5844)$] and Giza $90 \times$ [G. $83 \times(G .75 \times 5844)$].

Generation	Characters											
	PFN	B/P	BW (g)	SCY/P	LY/P	L \%	SI (g)	LI	Mic	PI	2.5\% SL	LUR \%
Cross I: Dandara x [G. $83 \times$ (G. 75×5844)												
m	4.81**	15.66*	2.41**	31.6	12.47	39.17**	7.85**	5.00**	2.85**	10.63**	32.16**	90.05**
d	0.40**	-0.62	0.00	-0.88	0.46	0.97**	$-1.38 * *$	-0.60**	-0.50	$0.41^{* *}$	0.94	2.09**
h	5.66**	62.84**	0.61	196.66**	72.98**	-3.01	$3.84 * *$	1.86**	3.07**	-1.58	$-4.41^{* *}$	-12.81**
i	2.24**	18.76**	0.24	59.60**	21.32**	1.92**	1.22**	0.36	0.20	0.76 *	-2.46**	-4.10**
j	1.20**	-8.75	0.31**	-13.20	-2.32	1.23*	1.11**	0.92**	0.07	-0.25	-1.07*	-4.48**
L	$-3.12^{* *}$	-38.77	-0.21	-116.2**	-41.84**	2.69*	-1.25	-0.24	-1.97	0.77	3.49**	10.58**
Cross II: G. $90 \times$ [G. $83 \times$ (G. 75×5844)]												
m	6.77**	12.84*	2.89**	49.14**	17.54*	37.64**	8.92**	5.40**	4.28**	8.98**	29.69**	85.27*
d	0.28**	3.98**	0.05	12.28**	5.60**	0.39*	0.39**	0.37*	0.05	$-0.53^{* *}$	0.17	0.44
h	1.14	61.83**	-0.75*	124.38**	50.68	1.18	1.86*	1.45	-1.66**	$3.18{ }^{* *}$	2.62	6.00*
i	0.26	24.86**	-0.20	52.5**	23.00**	2.50**	-0.12	0.50	-0.28	$0.82^{* *}$	0.64	-0.68
j	0.23	-0.41	0.13	6.02	2.64	0.75	-1.19**	-0.63	0.13	0.69**	1.38	-2.04*
L	-0.91	$-29.25^{* *}$	$0.67 * *$	-46.76	-17.84	0.89	-1.33*	-0.63	$1.47 * *$	$-1.37^{* *}$	-2.04	$-5.08 * *$

On the contrary, low broad sense heritability value (less than 30\%) was obtained for B/P in cross I. The relative high value of heritability in broad sense could be due to dominance and epistatic effects. This indication means that the selection for high expression of that on the basis of phenotype could be highly effective. While, low or moderate values of heritability in broad sense may be due to the effect of environment, which had a considerable share in the inheritance of these characters.

Moderate or low narrow sense heritability estimates (less than 50%) were calculated for all studied characters, could be due to the relative great amount of environmental and dominance effects. These findings were in harmony with those obtained by Ismail et al. (1991) and Mohamed et al. (2001).

Table (5): Heritability in broad and narrow senses and the expected genetic advance upon selection for characters studied in the two crosses.

Characters	Cross IDandara \times [G. $83 \times(G .75 \times 5844)]$			G. $90 \times[\mathrm{G} .83 \times(\mathrm{G} .75 \times 5844)$]		
	Heritability		Genetic advance \%	Heritability		Genetic advance \%
	Broad sense	Narrow sense		Broad sense	Narrow sense	
PFN	57.46	49.25	14.97	55.53	33.69	7.94
B/P	29.22	7.31	5.69	41.68	9.76	6.81
BW (g)	67.64	49.68	11.48	47.96	28.34	6.40
SCY/P	31.22	8.13	6.95	60.12	16.73	12.45
LY/P	34.98	7.61	6.48	57.98	7.60	5.81
L \%	38.65	13.59	1.01	55.62	43.91	3.64
SI (g)	50.97	22.95	4.04	61.80	35.76	5.60
LI (g)	53.52	24.47	4.97	51.21	19.74	4.06
Mic	63.47	13.18	2.69	69.31	31.11	5.35
PI	64.85	8.62	1.43	77.45	50.22	6.72
2.5 \% SL	60.39	41.11	3.15	54.38	41.90	5.43
LUR \%	52.10	40.20	2.08	46.59	23.40	1.32

The expected genetic advance values from selection of the 5\% superior plants in the F_{2} generation were high (over 7\%) for PFN (in both crosses), BW (in cross I) and SCY/P (in cross II). The high values of the predicted gain upon selection were also linked with high estimates of heritability indicating the possibility improvement of those characters through selection. While, moderate or low values of expected genetic advance under selection (less than 7%) were obtained for the remaining characters in both crosses, indicating that the improvement of these characters has low effect through selection.

In general, it could be concluded that the traits, which controlled by additive gene effect and high heritability values, could be improved by simple selection. On the other hand, the existence of high dominance gene effect would need hybrid program.

Phenotypic and genotypic correlation coefficients between all possible pairs of studied characters in cross I [Dandara x \{Giza $83 \times($ Giza $75 \times 5844)\}$] are presented in Table (6). The results of Phenotypic and genotypic correlation revealed positive or negative and highly significant coefficients between (B/P with each of BW and LY/P), (SCY/P with both of B/P and LY/P), (LI with each of L\% and SI) and between (LUR \% with each of Mic and $2.5 \% \mathrm{SL}$).

Table (6): Phenotypic (P) and genotypic (G) correlations between yield and its components and fiber properties for the intra-specific cross I Dandara \times [G. $83 \times$ G. 75×5844)].

Characters		B/P	BW (g)	SCY/P	LY/P	L \%	SI (g)	LI	Mic	PI	2.5\% SL	LUR \%
PFN	$\begin{aligned} & \mathrm{P} . \\ & \mathrm{G} . \end{aligned}$	$\begin{gathered} 0.112 \\ -0.142 \end{gathered}$	$\begin{gathered} 0.096 \\ -0.088 \end{gathered}$	$\begin{array}{r} 0.129 \\ -0.068 \\ \hline \end{array}$	$\begin{gathered} 0.145 \\ -0.079 \\ \hline \end{gathered}$	$\begin{gathered} 0.111 \\ -0.014 \end{gathered}$	$\begin{gathered} 0.054 \\ -0.313^{* *} \end{gathered}$	$\begin{gathered} 0.112 \\ -0.251^{*} \end{gathered}$	$\begin{aligned} & 0.129 \\ & 0.093 \\ & \hline \end{aligned}$	$\begin{gathered} 0.117 \\ -0.149 \end{gathered}$	$\begin{gathered} 0.201 \\ -0.215^{*} \\ \hline \end{gathered}$	$\begin{gathered} 0.276 \\ -0.263^{* *} \end{gathered}$
B/P	$\mathrm{P} .$		$\begin{gathered} -0.524^{\star *} \\ 1.943^{* *} \end{gathered}$	$\begin{gathered} 0.942^{* *} \\ 1.53^{*} \end{gathered}$	$\begin{gathered} 0.931 \\ 1.169^{* *} \end{gathered}$	$\begin{gathered} \hline-0.058 \\ 1.312^{* *} \end{gathered}$	$\begin{gathered} 0.018 \\ 0.412^{* *} \end{gathered}$	$\begin{aligned} & \hline-0.009 \\ & 1.447^{* *} \end{aligned}$	$\begin{gathered} 0.073 \\ 0.24 \end{gathered}$	$\begin{aligned} & 0.054 \\ & 0.176 \end{aligned}$	$\begin{aligned} & \hline 0-0.171 \\ & 0.486^{\star *} \end{aligned}$	$\begin{aligned} & -0.084 \\ & 0.448^{* *} \end{aligned}$
BW	P.			$\begin{aligned} & \hline-0.227 \\ & 1.073^{* *} \end{aligned}$	$\begin{aligned} & -0.222 \\ & 1.05^{\star *} \end{aligned}$	$\begin{gathered} -0.012 \\ 0.376^{* *} \end{gathered}$	$\begin{aligned} & \hline-0.093 \\ & 0.438^{* *} \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.079 \\ 0.093 \end{gathered}$	$\begin{gathered} -0.049 \\ 0.156 \end{gathered}$	$\begin{aligned} & 0.034 \\ & 0.149 \end{aligned}$	$\begin{gathered} 0.239 \\ 0.302^{* *} \end{gathered}$	$\begin{gathered} 0.057 \\ -0.032 \end{gathered}$
SCY/P	$\begin{aligned} & \mathrm{P} . \\ & \mathrm{G} . \end{aligned}$				$\begin{aligned} & 0.991^{* *} \\ & 0.997^{* *} \end{aligned}$	$\begin{gathered} -0.057 \\ 0.522^{\star *} \end{gathered}$	$\begin{aligned} & -0.009 \\ & 0.248^{\star} \\ & \hline \end{aligned}$	$\begin{aligned} & -0.027 \\ & 0.647^{* *} \end{aligned}$	$\begin{aligned} & 0.037 \\ & 0.083 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.086 \\ & 0.028 \\ & \hline \end{aligned}$	$\begin{gathered} -0.106 \\ 0.132 \\ \hline \end{gathered}$	$\begin{aligned} & -0.104 \\ & 0.205^{\star} \\ & \hline \end{aligned}$
LY/P	P .					$\begin{gathered} 0.067 \\ 0.609^{\star *} \end{gathered}$	$\begin{aligned} & \hline 0.014 \\ & 0.198^{\star} \end{aligned}$	$\begin{gathered} 0.057 \\ 0.685^{\star *} \end{gathered}$	$\begin{aligned} & \hline 0.021 \\ & 0.111 \end{aligned}$	$\begin{gathered} \hline 0.073 \\ -0.006 \\ \hline \end{gathered}$	$\begin{gathered} -0.085 \\ 0.120 \end{gathered}$	$\begin{aligned} & \hline 0.107 \\ & 0.206^{*} \end{aligned}$
L \%	P .						$\begin{gathered} 0.193 \\ -0.261^{* *} \end{gathered}$	$\begin{aligned} & 0.694^{* *} \\ & 0.660^{* *} \end{aligned}$	$\begin{gathered} -0.055 \\ 0.103 \\ \hline \end{gathered}$	$\begin{array}{r} -0.021 \\ -0.185 \\ \hline \end{array}$	$\begin{gathered} 0.125 \\ -0.058 \\ \hline \end{gathered}$	$\begin{gathered} 0.006 \\ -0.088 \\ \hline \end{gathered}$
SI	P .							$\begin{aligned} & \hline 0.838^{* *} \\ & 0.472^{* *} \end{aligned}$	$\begin{gathered} \hline-0.010 \\ 0.310^{* *} \end{gathered}$	$\begin{gathered} \hline-0.236 \\ 0.413^{* *} \end{gathered}$	$\begin{aligned} & 0.219 \\ & 0.137 \end{aligned}$	$\begin{gathered} \hline 0.197 \\ -0.231^{*} \end{gathered}$
LI	P .								$\begin{gathered} -0.030 \\ 0.347^{* *} \\ \hline \end{gathered}$	$\begin{aligned} & -0.171 \\ & 0.236^{*} \end{aligned}$	$\begin{array}{r} 0.228 \\ -0.167 \\ \hline \end{array}$	$\begin{gathered} 0.137 \\ 0.258^{* *} \\ \hline \end{gathered}$
SI	P .									$\begin{gathered} -0.112 \\ 0.180 \\ \hline \end{gathered}$	$\begin{aligned} & 0.067 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.330 \\ & 0.016 \end{aligned}$
2.5% SL P. G. LUR \% P. G.											$\begin{aligned} & -0.108 \\ & 0.193 \end{aligned}$	$\begin{gathered} -0.171 \\ 0.119 \end{gathered}$
												$\begin{aligned} & \hline 0.499^{* *} \\ & 0.279^{* *} \end{aligned}$

${ }^{*},{ }^{* *}$ Significant and highly significant at 0.05 and 0.01 probability levels, respectively.

Table (7): Phenotypic (P) and genotypic (G) correlations between yield and its components and fiber properties for the intra-specific cross II G. $90 \times$ [G. $83 \times$ G. 75×5844)].

Characters		B/P	BW (g)	SCY/P	LY/P	L \%	SI (g)	LI	Mic	PI	2.5\% SL	LUR \%
PFN	$\begin{aligned} & \mathrm{P} . \\ & \mathrm{G} \end{aligned}$	$\begin{gathered} -0.030 \\ -0.278^{* *} \\ \hline \end{gathered}$	$\begin{array}{r} 0.054 \\ -0.108 \\ \hline \end{array}$	$\begin{gathered} \hline 0.001 \\ -0.489 \\ \hline \end{gathered}$	$\begin{gathered} 0.022 \\ -1.044^{\star *} \end{gathered}$	$\begin{gathered} 0.178 \\ -0.023 \\ \hline \end{gathered}$	$\begin{array}{r} 0.165 \\ -0.183 \\ \hline \end{array}$	$\begin{gathered} 0.260 \\ -0.210^{\star} \\ \hline \end{gathered}$	$\begin{aligned} & 0.055 \\ & 0.089 \end{aligned}$	$\begin{aligned} & 0.311 \\ & 0.140 \\ & \hline \end{aligned}$	$\begin{gathered} 0.266 \\ -0.293 \end{gathered}$	$\begin{array}{r} 0.156 \\ -0.145 \\ \hline \end{array}$
B/P	$\begin{aligned} & \mathrm{P} . \\ & \mathrm{G} . \end{aligned}$		$\begin{gathered} 0.327^{*} \\ -0.310^{* *} \\ \hline \end{gathered}$	$\begin{aligned} & 0.984^{* *} \\ & 0.906^{* *} \end{aligned}$	$\begin{aligned} & \hline 0.982^{\star *} \\ & 1.144^{\star *} \end{aligned}$	$\begin{gathered} 0.139 \\ -0.54^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.171 \\ 1.318^{* *} \\ \hline \end{gathered}$	$\begin{gathered} -0.068 \\ 0.715^{* *} \end{gathered}$	$\begin{gathered} -0.249 \\ 0.951^{* *} \end{gathered}$	$\begin{gathered} 0.307 \\ -0.742^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 0.068 \\ -0.278^{* *} \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.039 \\ & -0.201^{*} \\ & \hline \end{aligned}$
BW	P G.			$\begin{gathered} 0.474^{* *} \\ 0.110 \end{gathered}$	$\begin{gathered} \hline 0.463^{* *} \\ 0.189 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.037 \\ 0.298^{\star *} \\ \hline \end{gathered}$	$\begin{gathered} 0.135 \\ 0.358^{* *} \end{gathered}$	$\begin{gathered} 0.094 \\ 0.470^{\star *} \end{gathered}$	$\begin{aligned} & 0.045 \\ & 0.045 \end{aligned}$	$\begin{gathered} \hline 0.108 \\ -0.044 \end{gathered}$	$\begin{aligned} & 0.012 \\ & 0.164 \end{aligned}$	$\begin{gathered} 0.137 \\ 0.454^{\star *} \end{gathered}$
SCY/P					$\begin{aligned} & \hline 0.997^{*} \\ & 1.035^{* *} \end{aligned}$	$\begin{gathered} 0.128 \\ -0.587^{* *} \end{gathered}$	$\begin{gathered} -0.158 \\ 2.095^{\star *} \end{gathered}$	$\begin{gathered} -0.063 \\ 1.299^{\star *} \end{gathered}$	$\begin{gathered} -0.220 \\ 1.306^{* *} \end{gathered}$	$\begin{gathered} 0.304 \\ -1.064^{\star \star} \end{gathered}$	$\begin{gathered} 0.069 \\ -0.338^{\star \star} \end{gathered}$	$\begin{array}{r} -0.051 \\ 0.135 \\ \hline \end{array}$
LY/P						$\begin{gathered} 0.202 \\ -1.041^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.170 \\ 4.048^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.028 \\ 2.462^{* *} \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.195 \\ 2.564^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 0.293 \\ -2.119^{\star *} \\ \hline \end{gathered}$	$\begin{gathered} 0.085 \\ -0.760^{\star \star} \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.043 \\ -0.273^{\star \star} \\ \hline \end{gathered}$
L \%	P .						$\begin{aligned} & -0.194 \\ & -0.108 \end{aligned}$	$\begin{aligned} & 0.446^{* *} \\ & 0.313^{* *} \end{aligned}$	$\begin{gathered} 0.224 \\ -0.151 \end{gathered}$	$\begin{gathered} -0.063 \\ 0.018 \end{gathered}$	$\begin{gathered} 0.120 \\ -0.389^{\star *} \\ \hline \end{gathered}$	$\begin{aligned} & 0.018 \\ & 0.146 \end{aligned}$
SI	P .							$\begin{aligned} & 0.785^{* *} \\ & 0.666^{* *} \end{aligned}$	$\begin{gathered} 0.102 \\ 0.415^{* *} \end{gathered}$	$\begin{gathered} -0.082 \\ -0.270^{* *} \end{gathered}$	$\begin{gathered} 0.068 \\ 0.306^{\star *} \end{gathered}$	$\begin{gathered} 0.068 \\ -0.023 \end{gathered}$
	P G.								$\begin{aligned} & 0.229 \\ & 0.145 \end{aligned}$	$\begin{array}{r} -0.131 \\ -0.089 \end{array}$	$\begin{aligned} & 0.101 \\ & 0.061 \end{aligned}$	$\begin{gathered} 0.049 \\ 0.407^{* *} \end{gathered}$
	P .									$\begin{array}{r} -0.075 \\ -0.145 \end{array}$	$\begin{array}{r} -0.059 \\ -0.030 \end{array}$	$\begin{gathered} 0.287 \\ -0.764^{* *} \end{gathered}$
$2.5 \% \text { SL }$											$\begin{aligned} & -0.037 \\ & -0.083 \end{aligned}$	$\begin{aligned} & \hline-0.147 \\ & 0.290^{* *} \\ & \hline \end{aligned}$
LUR \%												$\begin{aligned} & 0.537^{* *} \\ & 0.573^{* *} \\ & \hline \end{aligned}$

*, ** Significant and highly significant at 0.05 and 0.01 probability levels, respectively,

Genotypic correlation in cross I, revealed positive and highly significant or significant correlation coefficients between (B/P with each of BW, L \%, SI, LI, 2.5% SL, LUR \%) (BW with each of L\%, SI and 2.5% SL), (SCY/P with B/P, BW, LY/P, L\%, SI, LI and LUR \%), (LY/P with each of B/P, BW, L \%, SI, LI and LUR \%) (L \% with both of SI and LI), (SI with both of LI, Mic and PI), (LI with each Mic, PI, and LUR \%) and (2.5% SL with LUR). The remaining relationships under study gave insignificant phenotypic and genotypic correlation coefficients. The relationship between SCY/P and other traits might be useful for cotton breeder who desires to improve seed cotton yield, to select plants superior in number of bolls per plant, consequently. These results are in harmony with those reported by El-Adl et al.(1981), El-Beily (1983), Allam (1992), Hassan (2007) and Eissa (2004b).

Regarding the second cross [Giza $90 \times\{$ Giza $83 \times($ Giza $75 \times 5844)\}]$, it could be clearly observed from Table (7) that, positive and highly significant phenotypic correlation coefficients were obtained between (B/P and BW), as well as between (SCY/P with each of B/P, BW and LY/P), (LY/P with each B / P and BW), (LI with each of L\% and SI), and (2.5% SL with LUR \%).

Positive and highly significant phenotypic correlation coefficients were found between (B/P and each of BW, SI, LI and MIC), (BW and each of $\mathrm{L} \%$, SI, LI and LUR \%), (SCY/P and each of LY/P, SI, LI and Mic), as well as (LY/P with each of SI, LI and Mic) and between (LI with both L \% and SI). Furthermore, highly significant or significant negative genotypic correlations were detected between (PFN and each of B/P, LY/P, LI and $2.5 \% \mathrm{SL}$), (B/P with each of L\%, and 2.5% SL), (SCY/P with L\%, PI and 2.5% SL), LY/P and each of L\%, PI, 2.5\% SL and LUR\%), (L \% with both Mic and 2.5\% SL) and between (SI with PI). The remaining relationships under study gave insignificant phenotypic and genotypic correlation coefficients.

It is clear from the results of both crosses that genotypic correlation coefficients for most characters studied were higher than the phenotypic correlation coefficients. It seemed that the environmental factors had depressed the phenotypic correlation estimates.

In this connection, our results are supported by Ismail et al. (1991), ElAdly (1996), Eissa (2004) and El-Ameen et al. (2004). In contrary, El-Adl et al. (1981), Ismail et al. (1991), Allam (1992), who pointed out that genotypic correlation coefficients were less than phenotypic correlation coefficients or equal to zero value with most characters.

REFERENCES

Abd El-Zaher, G.H. (1999). Genetical studies on yield and its components and earliness in Egyptian cotton. Ph.D. Thesis, Fac. Agric., Minia Univ., Egypt.
Abd El-Zaher, G.H.; T.M. El-Ameen and A.F. Lasheen (2003). Genetic analysis of yield and its components in intra-specific cotton crosses. Egypt. J. Plant Breed., 7(1): 23-40. Special Issue (2003).
Abou-Zahra, S.I.S.; H.Y. Awad and S.H. Ismail (1987). Estimation of heterosis, inbreeding depression, potence ratio, gene action and epistasis in the inter-specific cross of cotton, Dandara x DPL 703. Annals of Agric. Sci., Moshtohor, Vol. 25(1): 189-196.

Allam, M.A.M. (1992). Genetic studies of some economic characters in two Egyptian cotton crosses. M.Sc. Thesis, Fac. Agric., El-Azhar Univ., Egypt.
Allard, R.W. (1960). Principles of plant breeding. John Wiley \& Sons, Inc., New York, London.
A.S.T.M. (1967). American Society for Testing Materials. Part 25, Designation, D-1448-59 ad D-1445-67.
Awad, H.Y.; S.I.S. Abou-Zahra and A.S. Marzook (1986). Genetic analysis of cleistogamic flowers and some other characters in an Egyptian cotton cross. Agric. Res. Rev., Vol. 64(5): 761-768.
Awad, H.Y.; S.I.S. Abou-Zahra and M.O. Ismail (1989). Studies of gene action in a cross of Egyptian cotton. Annals of Agric. Sci., Moshtohor, Vol. 27: 161-168.
Burton, G.W. (1951). Quantitative inheritance in pear millet (Pennesetum glaucum). Agron. J., 43: 409-417.
Eissa, A.E.M. (2004a). Inheritance of some quantitative characters in two inter-varietal cotton crosses. Minia J. of Agric. Res. \& Develop. Vol. 24(3): 367-380.
Eissa, A.E.M. (2004b). Phenotypic and genotypic correlations between yield components of some cotton hybrids. Minia J. of Agric. Res. \& Develop. 24(4): 691-700.
El-Adly, A.M.; Z.A. Kosba and A.M. Zeina (1981). Genotypic and phenotypic correlation's between economic traits of Egyptian cotton. J. Agric. Sci. Mansoura Univ., 6(2): 473-482.
El-Adly, H.H. (1996). Studies on earliness, yield components and lint properties in two crosses of cotton. M.Sc. Thesis, Fac. Agric. , Alex Univ., Egypt.
El-Adl, H.H. (2004). Genetic studies on some quantitative characters in an intraspecific cotton cross of (G. barbadense L.). Egypt. J. Appl. Sci., Vol. 19(11): 188-198.
El-Ameen, T.M.; M.N.A. Nazmy and A.E.M. Eissa (2004). Genotype and Genotype-environment components of variation in some cotton breeding lines of G. barbadense. Minia J. of Agric. Res. \& Develop. Vol. 24(2): 285-296.
El-Beily, M.A. (1983). Studies on cotton yield and its relation to related characters. M. Sc. Thesis, Fac. Agric., Tanta Univ., Egypt.
El-Disouqi, A.E. and A.M. Zeina (2001). Estimates of some genetic parameters and gene action for yield components in cotton. J. Agric. Sci. Mansoura Univ., Vol. 26(6): 3401-3409.
El-Disouqi, A.E.; Z.F. Abo-Sen and A.R. Abo-Arab (2000). Genetic behaviour of yield and its components in Egyptian cotton. J. Agric. Sci. Mansoura Univ., Vol. 25(7): 3831-3840.
El-Okkia, A.F.; H.A. El-Harony and M.O. Ismail (1989). Heterosis, inbreeding depression, gene action and heritability estimates in an Egyptian cotton cross (Gossypium barbadense L.). Comm. In Sci. and Dev. Res., Vol. 28: 213-231.
Hassan, S.A.M. (2007). Inheritance of yield components and fiber properties in intra and inter-specific crosses of cotton. Ph.D. Thesis, Fac. Agric., Al-Azhar Univ., Egypt.

Hemida, G.M.K.A.; S.A.S. Mohamed and I.S.M. Hassan (2001). Combining ability and its interaction with locations for some economic characters in diallel mating of Egyptian and Upland cottons. J. Agric. Res., Vol. 33: 91-102.
Ismail, M.O.; E.M. Ghoneim; A.A. El-Ganayni and F.G. Yunis (1991). Genetical analysis of some quantitative traits in six populations of an Egyptian cotton cross (Giza $80 \times$ Dandara). Egypt. J. Appl. Sci., Vol. 6(8): 350-362.
Khattab, A.M.; H.Y. Awad and Y.M. Atta (1984). Estimation of heterosis, inbreeding depression, potence ratio and gene action in an Egyptian cotton cross. Annals of Agric. Sci., Moshtohor, Vol. 21: 93-100.
Mather, K. (1949). Biometrical Genetics. Dover Publication, Inc., London.
Mather, K. and J.L. Jinks (1971). Biometrical Genetics, the study of continuous variation. Chapman and Hall. Ltd., London, (pp. 249-284).
Mohamed, S.A.S.; I.S.M. Hassan and G.M. Hemaida (2001). Genetical studies on yield and some yield components in the Egyptian cotton cross (Giza $80 \times$ Giza 85).Annals of Agric. Sci., Moshtohor, Vol. 39(2): 751-761.
Warner, J.N. (1952). A method for estimating heritability. Agron. J. Vol. 44: 427-430.

```
تقـــير بعـض القياســات الوراثيــة وفعـل الجـين للمحصــول ومكوناتــه والصــفات
                        ال\\كنولوجية فى هجينين صنفين من القطن
```


محمد عبد الحكيم على نجيب
 معها بحوث القطن ـ مركز البحوث الزراعية ـ بيزة ـ مصر

أجريت هذه الدراسة فى مزر عـة محطـة البحوث الزراعيـة فى سدس بمحافظـة بنـى سويف خـلال

 فى تجربة قطاعات كاملة العشو ائية باربعة مكررات ، وقجد أظهرت النتائج ما يلى:
 ثمرى ، متوسط وزن اللوزة ، محصول القطن الزهر والثـعر للأبات ، معامل الثــعر ، والنـومـة ، وطول التيلة عند 2.5\% ، بينما كانت معنوية وسالبة لمتانة التيلة فى الهجين الاول. وأعطت فى الهجين الثانى فيما موجبة ومعنوية لصفات معامل البذرة ومتانة التيلة ، ومعنويـة وسـالبة لتصـافى الحليج ، بينمـا أعطت باقىى الصفات فى كلا الهجينين فيما غير معنوية لقوة الهجين منسوبة لاحسن أبـ أظهرت قيم معدل قوة الهجين (منسوب لمتوسط الابوين) فـى كلا الهجينين قيمـا معنويـة وموجبـة لجميع

 الهجينين فقق أعطت قيماً غير معنوية لقوة الهجين (منسوبة لمتوسط الابوين) مــا يدل على وجود تأثير
للفعل الجيني الهضيف على وراثة هذه الصفات.
القطن الزهر للنبات ومعامل الشعر فى كلا الهجينين ، عقدة أول فرع ثمرى ، وطول التيلـة عند 2.5\%
فـى الهجين الاول ، ومحصـول القطـن الثـــر لللنـــات ، النـو مــة والمتانـــة فـى الهجين الثـانى ، ومـن جهـة

أخرى كانت القيم سالبة ومعنوية لصفة متانة النيلة فى الهجين الثنانى.
أظهرت جميع الصفات المدروسة فى كالٍ الهجينين سيادة فائقة أو سيادة جزئية.
 معنوية واحد او اكثر من هذه المفردات (A, B, C) تدل على انحراف هذه القيم عن الصفر فى أغلب

الصفات المدروسة فى كلا الهجينين ، و هذا يؤكد أن هذا النموذج غير كافى للتعبير عن نموذج الاضـافة والسيادة لهذه الصفات.

معاملى البذرة والثشر ، متانة التبلة (فى كلا الهجينين) وفى توريث صفة طول التيلـة عند 2.5\% (فـى الهجين الاول) و عدد اللوز على النبات ، محصول القطن الزهر والثـعر للنبـات (فى الهجين الثانى). دمـا بدل على أهمبة الانتخاب لتحسين هذه الصفات.

 معامل الثعر (فى الهجين الاول) ووزن اللوزة ، ومتانة الثتلة (فى الهجين الثانى). 8- أظهرت النتائج أن التأثير الراجع للتفاعل بين التو امل (الاضـافة × الاضـافة) يتحكم فى صفة عدد اللوز

على النبات ، محصول القطن الزه هر والشعر ، تصافى الحليج ، والمتانة (فى كلا الهجينين).
 الار اسة فى كالا الهجينين.

تصافى الحليج ، ومتانة التيلة (فى الجيل الثانى) حيث كانت هذه القيم غبر معنوية.
11- سـجلت درجـة اللتوريث (بمعناهـا العـام) قيمـا عاليــة (أعلـى مـن 50\%) لكل الصـفات المدروسـة فىى كـلا
الهجينين ما عدا صفات عدد اللوزة ، محصول القطن الز هر ور والشعر لللنبات ، تصـافى الحليج (فـى الهجين
الاول) , وعدد اللوز ، ومتوسطوزن اللوزة ، درجة انتظام طول التيلة (فى الهجين الثانى) حيث سجلت
درجة نوريث متوسطة.
12- أعطت درجة التوريث بمعناها الضيق قيما متوسطة او منخفضة (اقل من 50\%) لكل الصفات المدروسة
فى كالٍ الهجينين.
13- كانت قيم التحسين الوراثى المتوقع من انتخاب احسن 5\% من نباتات الجيل الثانى عاليــة (اكبر من 7\%)
 القطن الزهر للنبات فى (الهجين الثانى). أما باقى الصفات فقد أظهرت قيما متوسطة او منخفضة للتحسين الوراثى.
14- تشبير نتـائج معامل الارتباط المظهرى فى الهجين الاول الـى وجود ارتباط موجب و عالىى المعنويـة بين (محصولى القطن الز هـر والثــعر لللنـبات وكل مـن عدد اللوز علـى اللنــات) ، (معامـل الثـعر وكل مـن تصافى الحليج \% ، معامل البذرة) ، (درجة انتظام الطول وكل من قراءة الميكرونير ، طول التيلة عند
 ومنوسطوزن اللوزة). واظهر الاتباط الور اثى فى الهجين الاول ارتباطا موجبا وعالى المعنوية او معنويـا بين (عدد اللوز على النبات مع متوسط وزن اللوزة ، وتصـافى الحليج \% ، ومعاملى البذرة والثـعر ، طول التبلة عند 2.5\% ، درجة انتظام الطول) ، (محصولى القطن الزهر والثعر للنبات مع كل من عدد اللوز على النبات ، متوسط وزن اللوزة وتصـافى الحليج \% ، ومعـاملى البذرة والثـعر ، ودرجـة انتظـام الطول) ، (معامل الشعر مع كل من تصـافى الحليج \% ، معامل البذرة ، فراءة الميكرونير ، متانـة التيلة ، درجة انتظام طول التيلة). بينمـا كان معامل الارتباط الور اثى سـالبا ومعنويـا بين (عقدة اول فرع ثمرى وكل من معاملى البذرة والثـر ، طول التيلة عند 2.5\% درجة انتظام الطول).

(محصولى القطن الزهر والثعر للأبات وكل من عدد اللوز على النبات ، متوسط وزن اللوزز) ، (معامل الشعر وكل من تصافى الحليج \% ، معامل البذرة) ، (عدد اللوز على النبات ومتوسطوزن اللوززة). بينمـا
 موجبا وعالى المعنوية او معنويا بين (عدد اللوز علىى النبـات مـع متوسطوزن الللوزة ، ومعاملى البذرة

 تصافى الحليج \% ، معامل البذرة). بينما كان معامل الارتبـاط الور راثى سـالبا و عـالى المعنويـة بين (عقلـة اول فرع ثمرى وكل مـن عدد اللوز للّبـات ، محصول الشـعر للنبـات ، معامل الشـعر ، طول الثتيلة عند
.(\%2.5

