EFFECT OF MINERAL AND BIOFERTILIZERS ON GROWTH, YIELD, TUBER ROOT QUALITY AND STORABILITY OF SWEET POTATO PLANTS GROWN IN SANDY SOIL

El-Beheidi, M.A.1, H.M.Arisha¹, A.Bardisi,¹ Safaa A.Mansour² and Manal A. Mandour²

1. Hort. Dept., Fac. Agric., Zagazig Univ., Egypt

2. Hort. Res. Inst., Agric. Res. Center, Dokki, Egypt

ABSTRACT

This work was carried out during the two successive summer seasons of 2003 and 2004 at El-Khattara Experimental Farm, Fac. Agric., Zagazig University, to evaluate the effect of single and combined applications of mineral and biofertilizers on growth, yield and its components, tuber root quality and storability of sweet potato cv. Mabroka under sandy soil conditions.

Nitrobein (Nr) was used as a nitrogen fixing bacteria in addition to phosphorein (Pr) as a phosphate dissolving bacteria. Fertilization of sweet potato plants with NP mineral fertilizers at 100% of the recommend rates ($80 \text{ N} + 60 \text{ P}_2\text{O}_5$) kg/fed, or N + P fertilizers combined with the biofertilizers phosphorein (Pr) or nitrobein (Nr) at different rates and combinations of $80 \text{ N} + 30 \text{ P}_2\text{O}_5 + 0.6 \text{ Pr}$, $80 \text{ N} + 15 \text{ P}_2\text{O}_5 + 1.2 \text{ Pr}$, $40 \text{ N} + 60 \text{ P}_2\text{O}_5 + 1 \text{ Nr}$, $20 \text{ N} + 60 \text{ P}_2\text{O}_5 + 2 \text{ Nr}$, $40 \text{ N} + 30 \text{ P}_2\text{O}_5 + 1 \text{ Nr} + 0.6 \text{ Pr}$ and $20 \text{ N} + 15 \text{ P}_2\text{O}_5 + 2 \text{ Nr} + 1.2 \text{ Pr}$ (kg/ fed), significantly increased plant growth characters (vine length, number of both branches and leaves / plant and dry weight of different plant parts, number of tuber roots/ plant and total yield, comparing with using biofertilizers alone.

In general, fertilization of sweet potato with N+P at 80 kg N +60 kg P_2O /fed or the combinations of N+P and Nr +Pr at different rates gave the highest values of average tuber root weight, yield /plant and yield of oversized, marketable and total yield, whereas, Nr and Pr at different rates without mineral fertilizers gave the lowest values of yield and its components.

However, inoculation of sweet potato plants with biofertilizers without mineral fertilizers, gave tuber roots with good quality and storability concerning TSS, total carbohydrates, total sugars, weight loss and sprouting of tuber roots with non significant differences between them.

Therefore, treating sweet potato plants with 1 kg (Nr) + 0.6kg (Pr) + 40kg (N) + 30kg (P₂O₅), can be recommended to improve productivity, tuber root quality, storability as well as reducing the need for minerals and in turn reduced the cost of production and also decreased the environmental pollution.

Key words: Sweet potato, phosphorein, nitrobein, yield, and tuber root quality

INTRODUCTION

Sweet potato (*Ipomoea batatas* L.), is a very important crop in tropical and subtropical regions overall the world. It is a popular vegetable crop in Egypt. The chief use of sweet potato is for human consumption and for starch production.

During last decades, there were realized harmful effects by using enormous amounts of chemicals as mineral fertilizers and pesticides in the agricultural production. It was also noticed that most of the used chemicals accumulate in food chain causing hazardous effects. Parts of these chemical substances also escape to water causing disturbances in biological balance and contaminate the underground water. On the other hand, these chemicals led to depression in the activities of nitrogen fixing bacteria and also in the activities of phosphorus bacteria, which its actively only works at low concentration of these substances (Waksman, 1952).

For these reasons, there was a great attention to use the biofertilizers in the production of sweet potato crop. These modern nutrients (biofertilizer) with the objective of increasing the number of such microorganisms and accelerating certain microbial processes to augment the extent of the availability of nutrients in a form that can be easily assimilated by plants. These microorganisms which are used as a biofertilizer induce simulative effect in plant growth and production by fixing the atmospheric nitrogen in free active state,e.g., rizobacterein and nitrobein. In addition phosphate dissolving bacteria,e.g., phosphorein that mobilizing phosphate and micronutrients. Moreover, nitrobein and rizobacterein secreting growth promoting factors, e.g., cytokinine like substrates and auxin(Saber, 1996 and Awad,1998). So, the use of biofertilizer may be benefit in reducing the high rates of mineral fertilizers and reduce plant and soil contaminations, which may help in increasing sweet potato exportation to the European countries.

Fertilization with mineral and biofertilizers gave taller plants and recorded increased chlorophylls content in leaf tissues (El-Gamal, 1996 on potato; Alphonse *et al.*, 2001a on sweet potato), uptake of NPK by different plant parts (Mahendran *et al.*, 1996 on potato) and yield (Mahendran and Kumar 1998 on potato; Alphonse *et al.*, 2001a on sweet potato).

Fertilization of sweet potato plants with NPK at different rates increased vine length, number of both leaves and branches and leaf area/plant (Alphonse *et al.*, 2001a), N.P and K contents in leaf (Etman *et al.*, 2002b), yield (Omay and Cosico, 1989; Dayal and Sharma, 1991; Dehura and Swain, 1996) and DM percent, carotene, crude protein, total and reducing sugars and total carbohydrates (Etman *et al.*, 2002a). Whereas, fertilization with NPK significantly decreased weight loss in tuber root during storage period (Alphonse *et al.*, 2001b).

Therefore, the objective of this work was to reduce the utilization of mineral fertilizers by using biofertilizers in the production of sweet potato under sandy soil conditions.

MATERIALS AND METHODS

Two field experiments were conducted during the two successive summer seasons of 2003 and 2004 at El-Khattara Experimental Farm, Faculty of Agriculture, Zagazig University. Sweet potato plants were grown in sandy soil under drip irrigation system to study the effect of minerals and biofertilizers on the growth, plant chemical composition, yield and its components and tuber root quality, as well as storability of roots of sweet potato plants grown in sandy soil under drip irrigation system.

The physical and chemical properties of the experimental soil and farmyard manure are presented in Tables 1a and 1b.

0011											
Properties	2003season	2004season									
Physical properties (%)											
Sand	95.72	96.23									
Silt	2.15	2.46									
Clay	2.13	1.31									
Texture	Sandy	Sandy									
Chemical properties											
Organic matter (%)	0.06	0.04									
рН	8.01	7.96									
E.C. (dSm ⁻¹)	1.99	2.11									
Total N (%)	0.12	0.13									
available N (ppm)	14.98	13.13									
available P (ppm)	13.90	12.30									
available K (ppm)	67.00	64.00									

Table 1a: The physical and chemical properties of the experimental soil.

Samples of the soil were obtained from 25cm soil surface.

Table 1b. The chemical properties of FYM

Properties	2003 season	2004 season
Organic Matter (%)	13.16	13.60
Total N (%)	0.75	0.78
Total P (%)	0.11	0.12
Total K (%)	0.76	0.65

This experiment included 13 treatments as presented in Table 2

Table 2: Recommended dose of N and P₂O₅ and the amounts of phosphorein and nitrobein (kg/fed.)

	(%)			Kg/fee	d.	
Ν		Р	N	P ₂ O ₅	Nr [*]	Pr **
Control	100	100	80	60	0.0	0.0
	100	50	80	30	0.0	0.6
	100	25	80	15	0.0	1.2
	50	100	40	60	1.0	0.0
	25	100	20	60	2.0	0.0
	50	50	40	30	1.0	0.6
	25	25	20	15	2.0	1.2
	0	0	0	0	1.0	0.6
	0	0	0	0	2.0	1.2
	0	0	0	0	0.0	0.6
	0	0	0	0	1.0	0.0
	0	0	0	0	0.0	1.2
	0	0	0	0	2.0	0.0

Nr^{*}= Nitrobein, Pr^{**}= Phosphorein

These treatments were arranged in complete randomize block design with four replicates.

All experimental units received equal amounts of farmyard manure (20 m³/fed.) before transplanting, and received also equal amounts of potassium sulphate (48-52 % K₂O) at a rate of 150 kg/fed. One third of both nitrogen and potassium were added with FYM at soil preparation in the

center of rows and covered with sand. The two third amounts of both nitrogen and potassium rates were splitted and applied weekly in eight portions beginning at 20 days from transplanting. Calcium super phosphate was added at soil preparation with FYM.

Ammonium sulphate (20.6 % N), calcium super phosphate (15.5 % P_2O_5) and potassium sulphate (48-52 % K_2O) were applied as sources for nitrogen, phosphorus and potassium, respectively. Biofertilizers (phosphorein and nitrobein) were added at 15 days after transplanting beside the plants and covered with sand, after that the plants were irrigated. The source of phosphorein and nitrobein was the General Organization for Agriculture Equalization Foundation (GOAEF), Ministry of Agriculture, and Egypt.

Sweet potato cv. Mabroka used in this experiment was obtained from El-Kanater El-Khairia Research Station, Agric. Res. Center, Egypt.

The area of experimental unit was 12.6 m². It contained three dripper irrigation lines with 6 m in length and 70 cm between each two-dripper irrigation lines. One dripper line was used for measuring the vegetative growth characters, while the other two lines were used for measuring the yield and its components.

Immediately after dipping in Benlate fungicide solution, the selected cuttings (15-20 cm length) were transplanted just beside the dripper lines at 25 cm apart on May 7 during 2003 and 2004 seasons.

The plants were sprayed once at 50 days after transplanting with aqueous solution of micronutrients (40 ppm Fe + 40 ppm Mn + 40 ppm Mg +20 ppm B +10 ppm Zn +20 ppm Cu +20 ppm Mo).

Drip irrigation system was used as a modified method of irrigation. The drippers were with discharge of 2 liter/h. at 1 bar. The normal agricultural treatments (pest control and weed control) of growing sweet potato crop were practiced.

Data Recorded

1. Plant Growth

A random sample of three plants from every experimental unit was taken at 120 days after transplanting in the two seasons for measuring vine length, number of branches/ plant, number of leaves/plant, and number of tuber roots /plant. The different parts of sweet potato plant, i.e., branches and leaves, were dried at 70°C till a constant weight to determine the dry weight of branches, leaves and whole plant.

2. Leaf pigments: A random sample from the fourth upper leaf, recently expanded leaf, on the main stem from every experimental unit was taken at 120 days after transplanting in the two seasons to determine chlorophyll a and b, as well as carotenoides according to the method described by Wettestein (1957).

3. Nitrogen, phosphorus and potassium content: The dry weight of tuber roots, branches and leaves at 120 days after transplanting, in the second season only, were finely grounded and wet digested using sulphoric and perchloric acids (3:1). N, P and K were determined according to the methods described by Bremner and Mulvaney (1982), Olsen and Sommers (1982), and Jackson (1970), respectively.

4.Yield and its components: At harvesting time (150 days after transplanting), tuber roots of every experimental unit were harvested, counted and weighed, then separated into three grades, i.e., oversized, marketable and culls, according to their sizes, as the specification done by the Ministry of Economy for sweet potato exportation (1963). The following data were recorded: average number of tuber roots/plant, average weight of tuber roots/plant, total weight of oversized tuber roots (root diameter over 6 cm), total weight of marketable tuber roots (root diameter 3-6 cm), total weight of cull tuber roots (root diameter less than 3 cm) and total yield of tuber roots per feddan.

5. Tuber root quality: TSS % was determined in flesh juice of tuber roots by Carle Zeis refractometer, carotene was determined according to the method reported by A.O.A.C. (1970), N, P and K were determined as previously described in the plant chemical composition, total carbohydrates was determined according to the method described by Michel *et al.* (1956), total soluble sugars was determined according to the method described by Forsee (1938) and dry matter was recorded as reported by A.O.A.C. (1970).

6. Storability

At harvesting time, the tuber roots of every experimental unit were cured for one week in a shady place, temperature and relative humidity (R.H.) were recorded and the averages were $29 \pm 2 \,^{\circ}$ C and 80-85 % (R.H.). On the 1st of October in both seasons, samples of uniform cured oversized, marketable and culls tuber roots (5 kg) from each experimental unit were packed in palm crates and stored for four months at normal room condition. The averages were $20 \pm 2 \,^{\circ}$ C and 60-65 % for both temperature and relative humidity, respectively. A completely randomized design with four replicates was employed.

The following data were recorded after 30, 60, 90 and 120 days of storage:

6.1 Weight loss (%): It was estimated according to the following equation:

Weight loss (%) in tuber roots	Initial weight-weight of next	
e ()	sampling dates	× 100
=	Initial weight	_

Tuber roots of each experimental unit were weighed at 30-day intervals and the cumulative weight loss percentage was calculated.

6.2 Sprouting (%): It was estimated and expressed as percentage of number of sprouted tuber roots, and the cumulative sprouting percentage was calculated.

Statistical analysis: Statistical analysis was conducted for all collected data of both experiments under study. The analysis of variance was calculated according to Snedecor and Cochran (1980), means separation was done according to LSD at 0.05 level of probability.

RESULTS AND DISCUSSION

1. Plant Growth

Data in Tables 3 and 4 indicate that fertilizing sweet potato with mineral N and P (80 kg N +60 kg P_2O_5 /fed.) or with mineral (N+P) combined with

nitrobein (Nr) and phosphorein (Pr) at different combinations (80 kg N +30 kg $P_2O_5 + 0.6$ kg Pr, 80 kg N +15 kg $P_2O_5 +1.2$ kg Pr, 40 kg N+60 kg $P_2O_5 +1$ kg Nr, 20 kg N +60 kg $P_2O_5 +2$ kg Nr and 40 kg N +30 kg $P_2O_5 +1$ kg Nr+0.6 kg Pr/fed) recorded the highest vine length and greatest number of branches, leaves, tuber roots and dry weight of branches, leaves and vine/plant with non differences between them . On the other hand, inoculation of transplants of sweet potato with nitrobein and phosphorein singly gave the lowest values of the abovementioned characters.

It is well known that nitrogen is one of the major and most important essential elements. It's an indispensable elementary constituent of numerous organic compounds of general importance amino acids, protein and nucleic acid, also it is needed in formation of protoplasm and new cells, as well as, its encouragement for cell elongation. Phosphorous is a part of molecular structure of nucleic acids (DNA and RNA), the energy transfer components and phosphoprotein (Gardener *et al.*, 1985).

Such effect of the above mentioned treatments could be attributed to the activity of bacteria in the absorption zone of plant roots by improving soil fertility and consequently plant development by N_2 – fixation and due to releasing of certain other nutrients, i.e., Fe, Zn and Mn (Bhande *et.al.*,1997), through the breakdown of organic materials in the soil and change these elements into available forms.

These results agree with those reported by El-Gamal (1996) on potato and Alphonse *et al.* (2001 a) on sweet potato. They concluded that mineral or the combination between mineral and biofertilizers gave the highest values of vegetative growth characters.

2. Leaf pigments

The obtained data in Table 5 indicated that mineral N+P singly or combined with the Nr +Pr at different rates recorded the maximum values of chlorophyll a, b and total (a+b) and total carotenoid concentrations in leaf tissues of sweet potato. In general, 80 kg N +60 kg P₂O₅/ *fed*, 80 kg N+30 kg P₂O₅+0.6 kg Pr/*fed*, 80 kg N+15 kg P₂O₅+1.2 kg Pr or 40 kg N+60 kg P₂O₅+1kg Nr/*fed* were the most favourable and effective combination treatments for increasing the concentration of chl a, chl b, total (a+b) and carotenoids in leaf tissues, while Nr and Pr at different rates singly or in combination without mineral fertilizers recorded the minimum values of the studied photosynthetic pigments.

The favorable effect of nitrogen on photosynthetic pigments might be due to that nitrogen is a constituent of chlorophyll molecule. Moreover, nitrogen is the main constituent of all the amino acids and hence of protein and lipids as glactolipids, acting as a structural components of chloroplasts, correspondingly, or enhancement of protein synthesis and chloroplasts (Marschner, 1995).

The obtained results in agreement with those reported by El-Gamal (1996), who found that the combination between N and biofertilizer Halex increased chlorophyll contents in leaf tissues of potato plants.

Т3

Т4

t5

3. N, P and K uptake

Data in Table 6 indicate that fertilization of sweet potato with mineral N+P at 80 kg N +60 kg P_2O_5 kg/fed, 80 kg N +30 kg P_2O_5 +0.6 kg Pr/fed, 80 kg N+15 kg P_2O_5 +1.2 kg Pr/fed, 40 kg N +60 kg P_2O_5 +1 kg Nr or 20 kg N +60 kg P_2O_5 +2 kg Nr/fed gave the highest N,P and K uptake and total uptake by plant, while biofertilizers Nr and Pr at different rates singly or in combination without mineral fertilizers gave the lowest values of N,P and K uptake and total uptake. Ayoub (2005), under sandy soil conditions, using fertigation with 60 kg N + 60 kg K₂O/fed recorded the highest values of N, P and K and their total uptake in different plant parts; i.e., branches leaves and tuber roots as well as total uptake/plant, except, for P and K uptake in branches and P uptake in leaves.

These results agree with those reported by Mahendran *et al.* (1996), on potato, they found that mineral and biofertilizers increased uptake of NPK by different plant parts. Etman *et al.* (2002b) found also that mineral NPK increased NP and K contents in leaf tissues of sweet potato.

4. Yield and Its Components

The obtained data in Tables 7 and 8 reveal that the combination between mineral and biofertilizers at different rates had no significant effect on number of tuber roots/ plant in both seasons. While it did significantly increase average tuber root weight, yield / plant, yield of oversized, marketable, culls and total yield/ fed in both seasons, except tuber root culls in the second season. Fertilization of sweet potato with N+P at 80 kg +60 kg/fed or the combination between N+P and Nr +Pr at different rates, i.e., (80 N +60 P₂O₅, 80 N+30 P₂O₅+0.6 Pr, 80 N+15 P₂O₅+1.2 Pr, 40 N+60 P₂O₅+1Nr and 40 N + 30 P₂O₅ + 1 Nr + 0.6 Pr)kg / fed , recorded the maximum values of average tuber root weight, yield / plant and yield of oversized, marketable and total yield, with no significant differences among them. Whereas, Nr and Pr at different rates without mineral fertilizers gave the lowest values of yield and its components.

These results may be due to that N+P alone or in combination with Nr + Pr at different rates had a significant positive effect on plant growth (Tables 3 and 4), and N, P and K concentrations in branches and leaves (Table 6).

These results are in a good line with those reported by Omay and Cosico (1989), Dayal and Sharma (1991) and Dehura and Swain (1996), who found that N or N+P at different rates produced the highest total yield/ *fed.* Also El-Gamal (1996), Mahendran and Kumar (1998) on potato, and Alphonse *et al.* (2001a) on sweet potato found that the combination between mineral and biofertilizers at different rates recorded the maximum values of total yield.

5. Tuber root quality

As presented in Table 9, mineral N+P only or in combination with nitrobein and phosphorein at different rates, generally, recorded the maximum values of tuber root quality, i.e., carotene, TSS, N, and K contents, compared with nitrobein and phosphorein singly or their combination at different rates without mineral fertilizers. Whereas, percent of dry matter and P were not affected. On the other hand, total carbohydrate and sugars did not show clear trends.

T6

t7

t8

T9

These results agree with those reported by Etman *et al.* (2002a) regarding the effect of mineral fertilizer on tuber root quality.

6. Storability

6.1. Weight loss percentage

Data in Tables 10 and 11 indicate that fertilization of sweet potato with mineral N and P at 80 kg N + 60 kg P₂O₅/fed. or with mineral (N+P) combined with nitrobein (Nr) or phosphorein (Pr) at different combinations recorded, generally, the highest weight loss percentage in oversized , marketable and cull tuber roots of sweet potato during storage period. On the other hand, inoculation of transplants of sweet potato with Nr and Pr singly without mineral fertilizers gave the lowest values of the weight loss percentage of marketable and culls tuber roots during storage period with non significant differences between them. In general, mineral N+P at 80 kg N + 60 kg P₂O₅, 80 kg N + 30 kg P₂O₅ + 0.6 kg Pr /fed. , 80 kg N + 15 kg P₂O₅ + 1.2 kg Pr or 40 kg N + 60 kg P₂O₅ + 1 kg Nr recorded the maximum values of weight loss percentage.

These results might be attributed to the increase in weight of oversized and marketable tuber roots and this, in turn increased water loss through evaporation and dry matter loss by high respiration, thereby affected weight loss of tuber roots during storage.

The obtained results contradicted with those reported by Alphonse *et al.* (2001b) on sweet potato, who found that applying half dose NPK (50+100+50 kg/*fed*) significantly decreased weight loss percentage in tuber roots during storage period.

6.2 Sprouting percentage

Data in Tables 12 and 13 indicate that sprouting started at 30 days from the beginning of storage in both seasons for oversized and marketable tuber roots, whereas, sprouting in culls was noticed after sixty days in storage. The sprouting percentage in cull tuber roots was the lowest comparing to oversized and marketable tuber roots.

Fertilization of sweet potato with mineral N and P at 80 kg N + 60 kg P₂O₅/fed., 80 kg N + 30 kg P₂O₅ + 0.6 kg Pr/fed., 80 kg N + 15 kg P₂O₅ + 1.2 kg Pr or 40 kg N + 60 kg P₂O₅ + 1 kg Nr recorded the highest sprouting percentage in oversized, marketable and cull tuber roots during all storage period, while inoculation of transplants with Nr and Pr singly without mineral fertilizers gave the lowest values of this parameter in oversized, marketable and cull tuber roots during storage.

These results agree with those reported by AI-Easily (2002) on sweet potato. Who found that the combination between 90 kg N +150 kg K_2O recorded the highest value of sprouting during storage?

From the results of this study, it could be concluded that sweet potato plants inoculations with 1 kg (Nr) + 0.6kg (Pr) + 40kg (N) + 30kg (P_2O_5), could be a recommended treatment for improving productivity and storability. Therefore, this biofertilizer application reduced the need for mineral fertilizer by about 50 %, which in turn reduced the production cost and also decreased the environmental pollution.

- A.O.A.C. 1970. Association of Official of Agricultural Chemists. 10th ed., Published by the A.O.A.C., P.O. Box 540, Washington 4. D.C.
 Al-Easily, I. A. 2002. Response of some sweet potato cultivars to different
- agricultural treatments under sandy soil conditions. M. Sc. Thesis, Fac.
- Agric., Zagazig Univ., Egypt. Alphonse, M., M. A. Badawi, M. M. Abou El-Magd, and H. A. Mohamed. 2001a. Response of sweet potato to organic and mineral fertilizer and bio-stimulant treatments I. Growth, yield and root characters. Egypt. J. Appl. Sci. 16 (10): 159-181.
- Alphonse, M., M. A. Badawi, M. M. Abou El-Magd, and H. A. Mohamed. 2001b. Response of sweet potato to organic and mineral fertilizer and bio-stimulant treatments II. Chemical composition of vegetative growth and postharvest quality of cured and tuber roots. Egypt. J. Appl. Sci. 16 (10): 182-209
- Awad, N.M. 1998. The use of microorganisms in ecological farming systems. Ph.D. Thesis, Fac. Sci. Cairo University. Ayoub, I.I. 2005.Effect of fertigation and plant population on growth, yield and
- storability of sweet potato grown under sandy soil condition. Ph.D. Thesis, Fac. Agric., Zagazig Univ., Egypt Bhande, S. R., S. B. Sharma, and A. B. Chougule.1997. Effect of biofertlizer
- in combination with nitrogen through organic and inorganic sources on yield and quality of onion. National Hort. Res. Develop. Found., 17 (2) : 1-3.
- Bremner, J. M. and C. S. Mulvaney. 1982. Total nitrogen. In: Page, A. L., R. H. Miller and D. R. Keeney (Eds.) Methods of Soils Analysis, Part 2, Amer. Soc. Agron., Madison. W. I., U.S. A. pp. 595-624.
- Dayal, T. R. and R. P. Sharma. 1991. Effect of fertilizer, spacing and methods of planting in sweet potato. J. Root Crops, 17: 157-161.
- Dehura, A. K. and D. Swain. 1996. A note on response of sweet potato to different fertilizer levels under rainfed high and situation of Keonjhar district of Orrisa. J. Hort. 24, (1-2): 83-84.
- El-Gamal, A. M.1996. Response of potato in the newly reclaimed areas to mineral nitrogen fertilizer levels and nitrogen fixing biofertilzer HALEX 2. Assiut J. Agric., 27(2): 89-99. Etman, A.A., N.A. Hassan, M. M. Saffan and M. Sharaf El-Din. 2002a.
- Studies on the influence of fertilization and cutting planting on chemical constituents and storability of sweet potato. 2nd Inter. Conf. Hort. Sci., 10-12 Sept.131-141.
- Etman, A. A., N.A. Hassan, M. M. Saffan and M. Sharaf El-Din 2002b. Response of sweet potato growth and productivity to varying fertilizer levels and transplanting. 2nd Inter. Conf. Hort. Sci., 10-12 Sept., 142-151.
- Forsee, W.T., Jr. 1938. Determination of sugar in plant materials a photometric method. Indus. Eng. Chem. Anal. Ed., 10: 411-418.
- Gardener, F.D., R. B. Pearce, and R.L.Mitchell.1985. Physiology of crop plants. The Iowa State Univ. Press. 327 pp. Jackson, M. L. 1970. Soil Chemical Analysis. Prentice Hall. Englowood Cliffs,
- N. J.
- Mahendran, P.P. and N. Kumar. 1998. Effect of biofertilizers on tuber yield and certain quality parameters of potato CV.Kufer Jyoti. South India Horticulture, 46 (1-2) : 97-98.

- Mahendran, P.P., N. Kumar and S. Saraswathy.1996. Studies on the effect of biofertilizers on potato (Solanum tuberosum L.). South India Horticulture, 44 (3-4): 79-82
- Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd Ed. Acad. Press Limited, Text Book, Pp. 864.
- Michel, K.G., P.A. Gilees, J.K. Hamilton, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal.

Chem, 28 (3): 350. Ministry of Economy, Egypt 1963. To control exported sweet potato. Ministerial order, No. 652.

- Olsen, S. R. and L. E. Sommers. 1982. Phosphorous. In: Page A. L. R. H. Miller, and D. R. Keeny (Eds.) Method of soils Analysis. Part 2, Amer. Soc. Agron., Madison W. I., U.S.A. pp. 403-430. Omay, A.B. and W.C. Cosico.1989. Nitrient uptake and response of sweet
- potato (*Ipomoea batatas* (L.) Lam.) to different levels of N-K combinations. Philippine. J. Crop. Sci. 14 (1):521.
- Saber, M.S.M. 1996. Biofertilized farming system for sustainable agriculture Approaching the year 2000. Inter. Soc. for Environ. Biotech. 3rd Inter. Symposium, July 15-20 Boston, Massachusetts, USA.

Snedecor, G. W. and W. G. Cochran 1980. Statistical methods. 7th ed. Iowa

State Univ. Press, Ames., Iowa, U.S.A. Waksman , S.A. 1952. Soil Microbiology, John Wiley and Sons. Inc, New York Champion and Hall, Limited London. pp. 356.

Wettestein, D. 1957. Chlorophyll. Lethale under submikross -kopische formwechesl der plastiden. Exptl. Cell. Res., 12: 427-433.

تأثير التسميد الكيماوي والحيوى على النمو ، المحصول ، وجودة الجذور المتدرنـة والقدرة التخزينية لنباتات البطاطا النامية في الأرض الرملية

محمد عبد الحميد البهيدى 1 ، حامد محمد عريشة ، عبد الله برديسي1.

صفاء على منصور² ، منال عبد الحميد مندور²

٤. قسم البساتين- كلية الزراعة - جامعة الزقازيق- مصر

1. قسم البساتين- كليه الزراعه - جامعه الزفازيق- مصر
2. معهد بحوث البساتين - مركز البحوث الزراعية- مصر
أجريت تجريتان حقليتان خلال موسمى صيف 2003 و 2004 فى مزرعة التجارب الزراعية الخطارة التابعة لكلية الزراعة - جامعة الزقازيق ، بهدف دراسة تأثير مختلف التوليفات بين التسميد النيتروجيني والفوسفاتي المعدني والحيوي على صفات النمو والمحتوي المعدني، والمحصول ومكوناته ، بالخطارة التابعة لكلية الزراعة - جامعة الزقازيق ، بهدف دراسة تأثير مختلف التوليفات بين التسميد النيتروجيني والفوسفاتي المعدني والحيوي على صفات النمو والمحتوي المعدني، والمحصول ومكوناته ، وجودة الجنور المخزنة ، والقدرة التخزينية لجذور البطاطا تحت نظام الري بالتنقيط.
دي تسميد نباتات البطاطا بالاسمدة المعدنية النيتروجينية والفوسفاتية بمعدل 80+60 كجم/فدان (وربا فوعاة) أو بالتسميد المعدني الو 100 مع الحيوي بمعدل 80+60 كجم/فدان أو ن +فوعاة) أو بالتسميد المعدني الو 100 مع الحيوي بمعدل 80+60 كجم/فدان أو ن +فوعاة) أو بالتسميد المعدني الو 100 مع الحيوي بمعدل 80+60 كجم/فدان أو ن +فوعاة) أو بالتسميد المعدني الو 100 مع الحيوي بمعدل 80+60 كجم/فدان أو ن +فوعاة) أو بالتسميد المعدني أو 100 مع الحيوي بمعدل 80+60 كجم في والي أو 100 مع الحيوي بمعدل 80+60 كجار كوبين أو 100 مع الموني أو 100 مع التورين أو 100 مع الحيوي بمعدل 80 ما 100 كي كم فوسفورين أو 100 مع الحيوي بعدل 100 ما 100 كي كم فوسفورين أو 100 مع الحيوي بعدل 100 ما 100 كي كم فوسفورين أو 100 مع الحيوي بعدان المو 100 مع الحيوي إو 100 مع المولي المولي المولي المولي المولين أو 100 مع المولي أو 100 مع مندي أو 100 مع أو 100 مع أو 100 مع الموليس أو 100 مع أو 100 ما 100 ما 100 معان أو 100 ما 100 معاني أو 100 ما 100 معاني معاني أو 100 ما 100 معدني معد كل من الأفرع والأوراق على الموسورين أو 100 ما أو 100 ما 100 ما 100 ما 100 مع أو 100 ما 100 م بالأسمدة الحيوية فقط

بالأسمدة الحيوية فقط. وعموما فان تسميد البطاط ابمعدل 80 كجم ن+ 60 كجم فو 5 / للفدان او عمل توليفات مع النتروبين والفوسفورين بمعلات مختلفة يؤدى الى الحصول على اعلى قيم لمتوسط وزن الجذور الدرنية ، محصول النبات، محصول الدرنات الكبيرة الحجم والقابلة للتسويق وكذلك المحصول الكلى للفدان ، بينما اعطى التسميد بالنتروبين والفوسفورين بمغردهما اقل القيم للمحصول ومكوناته. وقد اظهرت النتائج ان معاملة البطاطا بالمخصبات الحيوية بدون التسميد المعدني ،ا عطى جذور درنية ذات جودة وقدرة تخزينية عالية من حيث النسبة الملوية لمحتوى المواد الكلية المعدني ،ا عطى جذور درنية والسكريات الكلية، الفقد في الوزن والتزريع بدون فروق معنوية بينهم. يمكن التوصية بتسميد البطاطا بـ 40 ن +30 فو 26 الما ينهم. والسكريات الكلية، الفقد في الوزن والتزريع بدون فروق معنوية بينهم. وبالتركيات الكلية، المود و القرن والتزريع بدون فروق معنوية بينهم. وبالتركيات الكلية، المود والقرن والتزريع بدون فروق معنوية بينهم.

N	P.O.	<u>Nr</u> *	<u>Pr**</u>	Μ	orphological	characters		Dry wei	ight (gm/o	rgan)
<u>N</u>	<u>P₂O₅</u>			Vine length	N	umber/plan ⁻	t	Branches	Leaves	Vine
	(Kg/	lfed)		(cm)	Branches	Leaves	Tuber roots	Dialicites	Leaves	VIIIe
80	60	0	0.0	158.3	14.50	145.2	4.35	116.40	103.90	220.30
80	30	0	0.6	148.5	13.50	137.3	4.33	91.01	100.00	191.01
80	15	0	1.2	161.7	10.50	138.8	138.8 3.83		90.44	182.79
40	60	1	0.0	139.2	11.17	143.3	3.66	127.60	86.33	213.93
20	60	2	0.0	166.3	14.00	133.0	3.16	84.25	84.31	168.56
40	30	1	0.6	129.2	12.33	140.7	3.00	97.14	94.10	191.24
20	15	2	1.2	173.3	9.66	133.5	3.83	70.11	92.74	162.85
0	0	1	0.6	121.7	9.66	121.7	3.16	56.79	67.30	124.09
0	0	2	1.2	121.0	9.16	139.3	2.66	64.84	62.58	127.42
0	0	0	0.6	106.2	9.16	106.2	1.66	50.46	35.78	86.24
0	0	1	0.0	112.0	10.0	131.7	1.50	55.37	56.22	111.59
0	0	0	1.2	105.0	8.00	107.7	1.83	40.99	34.21	75.20
0	0 0 2 0.0		119.0	9.33	113.8	2.16	52.75	40.91	93.66	
L.	S.D. at	0.05 le	vel	36.71	3.72	25.40	1.38	41.71	20.21	46.01

 Table 3: Effect of mineral and biofertilizers on plant growth characters of sweet potato plants grown in sandy soil in 2003 season

N	P O	NIr*	Dr**		Morphological	characters		Dry w	eight (gm/org	jan)
<u>N</u>	<u>P₂O₅</u>	<u>Nr*</u>	<u>Pr**</u>	Vine length		Number/plant		Branches	Leaves	Vine
	(Kg	/fed)		(cm)	Branches	Leaves	Tuber roots	Diditches	Leaves	vine
80	60	0	0.0	122.8	17.83	228.5	4.00	135.10	97.87	232.97
80	30	0	0.6	124.0	16.33	234.3	4.16	129.90	89.63	219.53
80	15	0	1.2	120.2	11.33	189.7	2.83	106.80	80.14	186.94
40	60	1	0.0	112.2	14.00	210.5	3.16	127.60	74.17	201.77
20	60	2	0.0	95.67	9.66	174.5 .3.50		102.80	72.91	175.71
40	30	1	0.6	107.7	14.67	14.67 251.7		119.90	69.26	189.16
20	15	2	1.2	102.5	9.66	180.5	3.33	115.60	59.48	175.08
0	0	1	0.6	80.00	10.17	208.2	2.83	90.75	53.30	144.05
0	0	2	1.2	92.17	10.67	209.8	3.00	98.70	52.34	151.04
0	0	0	0.6	79.50	9.66	119.2	2.16	90.70	49.58	140.28
0	0	1	0.0	96.67	10.33	159.2	2.16	100.60	48.49	149.09
0	0	0	1.2	85.67	8.00	123.7	2.16	87.14	45.84	132.98
0	0 0 2 0.0		0.0	81.00	10.67	143.0	3.16	98.48	50.16	148.64
	L.S.D. at	0.05 lev	el	24.59	3.49	40.16	0.94	26.80	20.01	34.41
1* N	itrobain	D**	Dhoonho	wala	1					

 Table 4: Effect of mineral and biofertilizers on plant growth characters of sweet potato plants grown in sandy soil in 2004 season

Nr^{*} = *Nitrobein Pr*^{**} = *Phosphorein*

N	B.O.	Nr*	Pr**		2	2003season			20	04season	
<u>N</u>	<u>P₂O₅</u>	INI			Chlorop	hyll	Carotenoids		Chlorop	hyll	Carotenoids
	(Kg/fe	ddan)		а	b	Total (a+b)		а	b	Total (a+b)	
80	60	0	0.0	3.15	2.03	5.18	3.79	3.30	1.05	4.35	1.60
80	30	0	0.6	3.06	2.00	5.06	3.21	3.23	1.11	4.34	1.66
80	15	0	1.2	3.06	2.08	5.14	3.06	2.90	1.08	3.98	1.68
40	60	1	0.0	2.55	2.03	4.58	2.94	2.75	1.20	3.95	1.41
20	60	2	0.0	2.32	1.99	4.31	1.94	2.69	1.00	3.69	1.24
40	30 1		0.6	2.74	1.89	4.63	2.25	2.91	0.95	3.86	1.13
20	15	2	1.2	2.63	1.80	4.43	2.13	2.26	1.12	3.38	1.19
0	0	1	0.6	2.28	1.76	4.04	2.53	2.26	0.99	3.25	1.03
0	0	2	1.2	2.40	1.47	3.87	2.29	2.19	0.94	3.13	1.01
0	0	0	0.6	2.23	1.46	3.69	2.28	2.15	0.91	3.06	1.09
0	0	1	0.0	2.19	2.84	4.03	2.28	2.26	0.89	3.15	1.08
0	0	0	1.2	2.23	1.80	4.03	2.19	2.40 0.92 3.32		1.04	
0	0	2	0.0	2.24	1.94	4.18	2.23	2.09	0.92	3.01	1.16
L.S	S.D. at	0.05 le	vel	0.62	0.34	1.05	0.66	0.52	0.19	0.76	0.58

 Table 5: Effect of mineral and biofertilizers on the leaf pigments (mg/gm dry weight) of sweet potato plants grown in sandy soil in 2003 and 2004 seasons

Nr^{*} = Nitrobein Pr^{**} = Phosphorein.

						Uptake (r	ng/organ)			Total unt	aka/ ma	hy plant)
N	P ₂ O ₅	<u>Nr*</u>	<u>Pr**</u>		Stems			Leaves		Total upt	ake(mg	by plant)
				N	Р	к	Ν	Р	к	Ν	Р	к
	(Kg/fed)				•	TX.		•			•	i v
80	60	0	0.0	3580.15	405.30	2688.49	4306.28	414.96	3259.07	7886.43	820.26	5947.56
80	30	0	0.6	3559.26	388.40	2507.07	3880.97	351.34	3065.34	7440.23	739.75	5572.41
80	15	0	1.2	2680.68	278.74	2050.56	3397.93	321.36	2644.62	6078.61	600.10	4695.18
40	60	1	0.0	2934.80	331.76	2449.92	3048.38	300.38	2380.85	5983.18	632.14	4830.77
20	60	2	0.0	2436.36	277.56	1901.80	2850.78	306.22	2515.39	5287.14	583.78	4417.19
40	30	1	0.6	2925.56	323.73	2565.86	2908.92	280.50	2618.02	5834.48	604.23	5183.88
20	15	2	1.2	2716.60	242.76	1942.08	2450.57	221.86	2266.18	5167.17	464.62	4208.26
0	0	1	0.6	2014.65	214.17	1488.30	1897.48	196.67	1961.44	3912.13	410.84	3449.74
0	0	2	1.2	2260.23	197.40	1431.15	1816.19	157.54	1826.66	4076.42	354.94	3257.81
0	0	0	0.6	1714.23	201.35	1297.01	1809.67	153.69	1794.79	3523.90	355.05	3091.80
0	0	1	0.0	2022.06	188.12	1438.58	1779.58	153.71	1774.73	3801.64	341.83	3213.31
0	0	0	1.2	1551.09	155.98	1402.95	1618.15	146.22	1581.48	3169.24	302.21	2984.43
0	0	2	0.0	2097.62	174.30	1812.03	1790.71	151.98	1891.03	3888.33	326.29	3703.06
L.\$	S.D. at (0.05 le	vel	541.60	146.70	805.40	1003.00	148.80	769.30	1047.00	251.10	632.30
Nr* – N	itrohein	Dr** .	-Phosnh	arain								

 Table 6: Effect of mineral and biofertilizers on uptake and total uptake of sweet potato plants grown in sandy soil in 2004 season

Nr^{*} = Nitrobein Pr^{**} = Phosphorein.

N	D.O.	NI#*	Pr**	No. of tube	Average tub	Yield / plan	Yiel	d of tuber root	ts (ton /fed)			
<u>N</u>	<u>P₂O₅</u>	<u>Nr*</u>		roots /plan			Oversized	Marketable	Culls	Total		
	(Kg/	fed)		roots /pian	(gm)	(kg)						
80	60	0	0.0	2.71	0.225	0.690	2.992	9.866	0.300	13.158		
80	30	0	0.6	2.62	0.263	0.690	2.920	9.716	0.700	13.336		
80	15	0	1.2	2.66	0.241	0.642	2.834	9.300	0.266	12.400		
40	60	1	0.0	2.39	0.256	0.613	3.000	8.666	0.400	12.066		
20	60	2	0.0	2.44	0.244	0.596	3.966	7.400	0.732	12.098		
40	30 1 0.6		0.6	2.64	0.225	0.592	2.266	9.200	0.400	11.866		
20	15	2	1.2	3.43	0.225	0.542	3.134	6.178	0.766	11.078		
0	0	1	0.6	2.73	0.158	0.432	3.434	4.466	0.580	8.400		
0	0	2	1.2	3.11	0.144	0.449	3.526	4.446	0.680	8.652		
0	0	0	0.6	2.94	0.140	0.415	2.000	5.434	0.566	8.000		
0	0	1	0.0	2.82	0.136	0.384	2.400	4.000	0.932	7.332		
0	0	0	1.2	2.86	0.132	0.378	2.086	4.466	0.632	7.184		
0	0 0 2		0.0	2.63	0.147	0.387	2.034	4.700	0.632	7.366		
L.\$	S.D. at (0.05 lev	vel	N.S.	0.106	0.106	1.344	1.730	0.384	2.126		
Ne* _ Nit	to a la selas	D** F	hoopho									

Table 7: Effect of mineral and biofertilizers on yield and its components of sweet potato plants grown in sandy soil in 2003 season

Nr* = Nitrobein

Pr^{**}=Phosphorein.

Yield of tuber roots (ton /fed)										
N	<u>P₂O₅</u>	<u>Nr*</u>	Pr **	No. of tube	Average tub	Yield / plan		d of tuber root	s (ton / <i>fed</i>)	
<u> 11</u>	<u>1 205</u>				root woldni		Oversized	Marketable	Culls	Total
	(Kg/	fed)		roots /plan	(gm)	(kg)				
80	60	0	0.0	2.26	0.353	0.798	3.266	10.754	1.566	15.577
80	30	0	0.6	2.38	0.349	0.826	4.826	9.954	1.526	16.306
80	15	0	1.2	2.42	0.339	0.822	5.849	8.664	1.172	15.980
40	60	1	0.0	2.33	0.320	0.746	5.680	7.660	1.000	14.430
20	60	2	0.0	2.29	0.335	0.761	5.154	7.700	1.280	14.134
40	30	1	0.6	2.04	0.338	0.692	5.100	6.940	1.700	13.740
20	15	2	1.2	2.17	0.298	0.648	4.846	6.320	1.700	12.866
0	0	1	0.6	2.5	0.195	0.488	3.020	5.546	0.946	9.512
0	0	2	1.2	2.26	0.217	0.469	2.674	5.006	1.446	9.126
0	0	0	0.6	2.11	0.218	0.461	2.734	5.054	1.235	9.029
0	0	1	0.0	2.30	0.215	0.495	2.546	5.014	1.926	9.786
0	0	0	1.2	1.89	0.221	0.418	1.486	4.924	1.732	8.142
0	0	2	0.0	2.19	0.194	0.425	1.434	5.136	1.734	8.343
L.	S.D. at (0.05 lev	vel	N.S.	0.075	0.238	1.680	2.036	N.S.	2.526
Nr* - Nit	(nakalu	D** I	boenho							

 Table 8: Effect of mineral and biofertilizers on yield and its components of sweet potato plants grown in sandy soil in 2004 season

Nr* = Nitrobein Pr^{**} = Phosphorein.

•

NI		NI#*	D**				Tuber root qu	ality				
<u>N</u>	<u>P₂O₅</u>	<u>Nr*</u>	<u>Pr**</u>	Carotene	TSS	Dry mottor	Total (%)	Mine	ral content	(%)	
	(Kg/	fed)		(mg/gm FW)	(%)	Dry matter (%)	Carbohydrat es	sugars	Ν	N P I		
80	60	0	0.0	2.41	9.83	18.73	82.53	13.81	1.94	0.251	1.90	
80	30	0	0.6	2.40	10.00	18.85	83.73	13.47	1.97	0.225	2.01	
80	15	0	1.2	2.51	10.33	18.74	80.40	14.37	1.97	0.210	1.68	
40	60	1	0.0	1.86	9.83	17.88	82.53	13.73	1.92	0.248	2.41	
20	60	2	0.0	1.74	9.16	16.67	83.80	14.54	1.88	0.250	2.55	
40	30	1	0.6	1.73	10.00	17.26	80.80	13.77	2.03	0.244	1.94	
20	15	2	1.2	1.93	8.33	17.84	84.73	13.46	1.72	0.230	2.33	
0	0	1	0.6	1.89	9.66	16.96	84.80	14.16	1.51	0.215	1.95	
0	0	2	1.2	2.06	10.33	17.23	83.80	14.18	1.59	0.204	1.62	
0	0	0	0.6	1.93	9.16	17.30	84.07	14.52	1.45	0.210	1.78	
0	0	1	0.0	1.72	9.33	17.94	84.60	13.93	1.69	0.222	2.12	
0	0	0	1.2	1.70	9.83	17.59	80.67	14.14	1.43	0.206	2.15	
0	0	2	0.0	1.94	8.33	17.43	84.60	13.48	1.59	0.222	2.29	
L.S.D. at 0.05 level 0.36 1.02 N.S. 2.55								0.65	0.38	N.S.	0.44	
lr* = Nit	troboin	Dr** _	Phosnho	roin								

Table 9: Effect of mineral and biofertilizers on the tuber root quality at harvest date of sweet potato plants grown in sandy soil in 2004 season.

Nr* = Nitrobein Pr^{**} = Phospho rein

									Weight	loss (%)					
N	<u>P₂O₅</u>	Nr*	<u>Pr**</u>		Over	sized			Mark	etable			Cu	lls	
									Days in	storage					
	(Kg/	fed)		30	60	90	120	30	60	90	120	30	60	90	120
80	60	0	0.0	28.52	44.52	55.90	67.05	24.26	38.52	48.75	50.68	18.33	25.56	36.67	47.78
80	30	0	0.6	38.17	49.30	57.61	67.69	23.30	38.80	47.20	53.78	22.42	30.33	38.83	47.17
80	15	0	1.2	42.40	52.07	55.61	60.96	2305	35.39	44.29	55.56	17.78	23.11	38.11	40.00
40	60	1	0.0	35.35	53.84	61.43	64.78	20.74	37.38	41.83	56.97	15.67	23.22	38.33	39.22
20	60	2	0.0	22.53	27.62	34.17	38.43	2308	33.78	40.51	52.94	15.25	21.13	28.38	37.98
40	30	1	0.6	31.83	39.18	45.07	50.05	22.37	31.31	40.28	56.95	12.94	23.97	32.38	40.12
20	15	2	1.2	20.26	39.19	43.74	49.91	22.41	36.99	45.02	56.06	20.83	36.94	44.35	48.83
0	0	1	0.6	15.56	21.19	27.34	31.19	13.49	25.27	30.42	44.74	13.83	22.50	31.83	34.00
0	0	2	1.2	15.88	20.38	22.93	27.90	14.84	26.50	34.32	48.94	12.44	21.06	32.56	40.65
0	0	0	0.6	21.41	17.01	22.20	26.46	13.94	25.78	33.55	47.03	14.88	19.40	33.98	33.17
0	0	1	0.0	13.75	18.23	23.28	28.05	11.65	24.49	29.97	39.98	11.83	15.50	22.56	28.11
0	0	0	1.2	13.83	18.02	24.48	29.35	13.37	25.51	29.47	38.53	12.68	19.24	29.55	29.05
0	0	2	0.0	16.49	22.90	25.42	30.01	10.98	18.90	30.17	43.72	12.08	16.67	24.58	27.33
L.S	S.D. at	0.05	level	10.05	12.80	12.58	12.05	5.57	9.51	10.32	15.46	8.04	9.49	11.07	9.41
Mr*		hain	D	r** – Phosn	horoin						•		•		

 Table 10: Effect of mineral and biofertilizers on weight loss (%) in tuber roots of sweet potato during storage period in 2003 season

Nr* = Nitrobein Pr^{**} = Phosphorein.

	<u>P2O5</u>	<u>Nr*</u>							Weight	loss (%)						
Ν			<u>Pr**</u>	Oversized				Marketable				Culls				
									Days in	storage						
	(Kg	lfed)		30	60	90	120	30	60	90	120	30	60	90	120	
80	60	0	0.0	24.26	38.52	48.75	50.68	18.24	32.03	42.09	54.43	16.92	33.93	40.00	50.96	
80	30	0	0.6	23.30	38.80	47.20	53.78	20.73	27.98	36.99	45.90	15.73	25.91	38.95	52.87	
80	15	0	1.2	23.05	35.39	44.29	55.56	20.53	29.59	37.15	47.82	19.23	31.79	46.40	49.46	
40	60	1	0.0	20.74	37.38	41.83	56.97	23.35	32.54	39.65	50.53	17.01	28.69	39.73	48.16	
20	60	2	0.0	23.08	33.78	40.51	52.94	18.02	29.41	38.81	45.95	18.95	27.80	38.52	47.72	
40	30	1	0.6	22.37	32.31	40.28	56.95	17.75	24.74	37.32	46.25	18.58	24.18	33.03	40.90	
20	15	2	1.2	22.41	36.99	45.02	56.06	24.22	30.50	38.48	49.04	16.01	26.88	35.72	43.50	
0	0	1	0.6	13.49	25.27	30.42	44.74	11.66	19.67	33.67	37.87	13.58	23.01	32.58	38.46	
0	0	2	1.2	14.84	26.50	34.32	48.94	17.33	22.32	34.04	40.02	17.20	23.60	26.67	34.92	
0	0	0	0.6	13.94	25.78	33.55	47.03	13.56	21.40	27.50	39.61	15.28	25.83	31.22	37.00	
0	0	1	0.0	11.65	24.49	29.97	39.98	13.93	22.53	32.81	40.01	15.97	16.82	24.83	28.11	
0	0	0	1.2	13.37	25.51	29.47	38.53	14.16	23.07	31.27	35.72	15.74	22.71	26.51	33.21	
0	0	2	0.0	10.98	18.90	30.17	43.72	20.47	21.62	25.00	35.26	10.18	15.73	23.09	26.59	
	L.S.D. at 0. 5.57 9.51 10.32 15.46 12.12 N.S. 14.52 16.58 8.28 11.00 11.04 9.13												9.13			
Nr*																

Table 11: Effect of mineral and biofertilizers on weight loss (%) in tuber roots of sweet potato during storage period in 2004 season

Nr^{*} = Nitrobein Pr^{**} = Phosphorein.

	<u>P2O5</u>	<u>Nr*</u>							Sprout	ting (%)						
N			<u>Pr**</u>		Over	sized		Marketable				Culls				
									Days in	storage	;					
((Kg/feddan)		30	60	90	120	30	60	90	120	30	60	90	120		
80	60	0	0.0	16.67	25.00	41.67	50.00	6.66	26.67	33.33	46.67	0.00	13.33	13.33	13.33	
80	30	0	0.6	20.00	26.67	33.33	53.33	10.32	20.63	38.73	38.73	0.00	15.76	15.76	15.76	
80	15	0	1.2	8.33	13.89	32.78	46.67	8.33	16.67	27.78	38.89	0.00	4.16	4.16	8.33	
40	60	1	0.0	15.00	21.67	36.67	46.67	16.67	16.67	30.00	53.33	0.00	4.16	4.16	8.33	
20	60	2	0.0	19.44	19.44	27.78	33.33	8.33	8.33	17.86	47.62	0.00	5.55	5.55	5.55	
40	30	1	0.6	8.33	8.33	16.67	30.00	11.43	11.43	16.10	29.52	0.00	0.00	0.00	0.00	
20	15	2	1.2	0.00	6.66	17.78	28.11	0.00	0.00	16.10	26.51	0.00	6.66	6.66	6.66	
0	0	1	0.6	0.00	8.33	8.33	8.33	0.00	0.00	10.32	17.50	0.00	4.44	4.44	4.44	
0	0	2	1.2	0.00	8.33	16.67	30.33	4.16	8.33	13.89	13.89	0.00	1.58	1.58	1.58	
0	0	0	0.6	0.00	0.00	6.66	6.66	0.00	0.00	10.83	10.83	0.00	0.00	0.00	0.00	
0	0	1	0.0	0.00	0.00	0.00	8.33	5.55	5.55	10.32	10.32	0.00	5.59	5.59	8.37	
0	0	0	1.2	0.00	0.00	7.66	6.66	0.00	0.00	13.10	13.10	0.00	2.56	2.56	2.56	
0	0	2	0.0	0.00	0.00	0.00	6.66	0.00	0.00	4.66	8.92	0.00	0.00	4.16	6.25	
	L.S	S.D.	at 0	14.43	21.91	22.38	20.66	N.S.	17.82	16.80	19.03		11.90	12.19	14.52	

Table 12: Effect of combination with mineral and biofertilizers on sprouting (%) in tuber roots of sweet potato during storage period in 2003 season

Nr* = Nitrobein Pr^{**} = Phosphorein.

N	<u>P₂O₅</u>	<u>Nr*</u>		Sprouting (%)												
			<u>Pr**</u>		Ove	rsized			Marketable				Culls			
									Days in	storage						
	(Kg/fed)			30	60	90	120	30	60	90	120	30	60	90	120	
80	60	0	0.0	26.11	34.44	45.56	58.89	0.00	38.89	53.22	61.11	0.00	13.89	20.56	20.56	
80	30	0	0.6	13.33	13.33	46.67	60.00	0.00	40.12	56.67	57.62	0.00	19.76	25.00	33.93	
80	15	0	1.2	12.17	28.04	28.04	52.38	0.00	35.95	35.95	53.21	0.00	10.37	17.04	17.04	
40	60	1	0.0	4.76	16.19	16.19	48.49	0.00	36.67	40.00	53.33	0.00	4.16	10.83	18.92	
20	60	2	0.0	5.55	10.32	10.32	15.08	0.00	24.52	31.19	40.12	0.00	7.40	7.40	7.40	
40	30	1	0.6	0.00	6.66	6.66	13.33	0.00	24.07	24.07	36.11	0.00	0.00	8.70	8.70	
20	15	2	1.2	11.43	11.43	11.43	24.76	0.00	19.44	24.21	26.11	0.00	8.33	8.33	8.33	
0	0	1	0.6	4.16	4.16	4.16	8.33	0.00	12.04	21.30	23.24	0.00	5.00	5.00	8.33	
0	0	2	1.2	0.00	0.00	0.00	8.33	0.00	13.89	13.89	25.00	0.00	4.76	4.76	9.52	
0	0	0	0.6	0.00	4.76	4.76	13.10	0.00	8.92	14.52	23.14	0.00	0.00	0.00	0.00	
0	0	1	0.0	0.00	0.00	0.00	6.66	0.00	5.55	11.11	11.11	0.00	3.70	7.40	15.87	
0	0	0	1.2	4.76	4.76	4.76	10.32	0.00	7.40	18.98	18.98	0.00	4.38	9.72	13.06	
0	0	2	0.0	4.76	4.76	4.76	10.32	0.00	4.16	4.16	8.92	0.00	4.33	7.50	7.50	
		LSD.	at 0.	9.54	15.20	15.20	18.29		14.32	14.86	17.04		16.31	18.43	14.99	
$Pr^* = Nitrobein Pr^*_{i=1}$ Phosphorein																

 Table 13: Effect of mineral and biofertilizers on sprouting (%) in tuber roots of sweet potato during storage period in 2004 season

Nr* = Nitrobein Pr^{**} = Phosphorein