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1. INTRODUCTION 

 The metric fixed point theory is very important and useful in 

Mathematics. It can be applied in various areas, for instance, matrix, 

differential and functional equations (see, e.g. [21, 22, 23]). There are 

different generalizations of metric spaces. One of them, Gahler [8] 

introduced the concept of 2-metric space. On the other hand, Dhage [6] 

gave the concept of D -metric space. On the third hand, Mustafa and Sims 

[20] presented some remarks on topological structure of D -metric spaces. 

Consequently, they defined more generalized metric spaces so-called G
-metric spaces as follows.  

Definition 1.1 [19] Let X  be a nonempty set and )[0,: 3 XG  be a 

function satisfying the following conditions, for all Xazyx ,,, ,   

)( 1G    0=),,( zyxG  if zyx == ,  

)( 2G    ),,(<0 yxxG  whenever yx  ,  

)( 3G    ),,(),,( zyxGyxxG   whenever yz  ,  

)( 4G    =),,(=),,(=),,( xzyGyzxGzyxG ,  

)( 5G    ),,(),,(),,( zyaGaaxGzyxG  .  

Then the pair ),( GX  is called a G -metric space.  
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Also, in 2012, Sedghi et al. [26] established the concept of an S -metric 

space in the following way.  

Definition 1.2 Let X  be a non-empty set. An S -metric on X  is a 

function )[0,: 3 XS  that satisfies the following conditions, for each 

Xazyx ,,, ,   

)( 1S    zyxzyxS ==0=),,(  ,  

)( 2S    ),,(),,(),,(),,( azzSayySaxxSzyxS  .  

Then the pair ),( SX  is called an S -metric space.  

  

Lemma 1.1 [26] If ),( SX  is an S -metric space, then ),,(=),,( xyySyxxS .  

  

Lemma 1.2 [7] Let ),( SX  be an S - metric space. Then  

 

),,,(),,(2),,( zyySyxxSzxxS   

 

for all Xzyx ,, .  

  

Definition 1.3 [26] Let ),( SX  be an S -metric space. For Xx  and 

0>r , we recall the open ball ),( rxBS  and the closed ball ),( rxBS  with 

center x  and radius r  as follows  

 

}.),,(:{=),(},<),,(:{=),( ryxxSXyrxBryxxSXyrxB SS   

 

Definition 1.4 [26] Let ),( SX  be an S -metric space.   

)1(    A sequence }{ nx  in X  converges to x  iff 0),,( xxxS nn  as 

n .  

)2(    A sequence }{ nx  in X  is called a Cauchy iff 0),,( mnn xxxS  

as mn, .  

)3(    An S -metric space X  is said to be complete iff every Cauchy 

sequence is convergent.  

   

Lemma 1.3 [26] Let ),( SX  be an S -metric space. If there exist 

sequences }{ nx  and }{ ny  in X  such that lim =n
n

x x


 and lim =n
n

y y


, 

then lim ( , , ) = ( , , )n n n
n

S x x y S x x y


.  

In recent years, there has been a growing interest in studying the 
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existence of fixed points for contractive mappings satisfying monotone 

properties in ordered metric spaces. This trend was initiated by Ran and 

Reurings in [22] where they extended Banach Contraction Principle (BCP) 

in partially ordered metric spaces.  

Definition 1.5 [17] A partially ordered space is a nonempty set X  with a 

binary relation  , which satisfies the three conditions, for all ,,, Xzyx    

)1(     x x    (reflexivity),  

)2(     if x y  and y x  then yx =  (antisymmetry),  

)3(     if x y  and y z  then x z  (transitivity).  

  

Definition 1.6 [3] Let ),( X  be an ordered space. X  is said to have the 

sequential monotone property if it verifies the following properties:   

.I    if }{ nx  is an increasing sequence with xxn  , then nx x , for all 

Nn ,  

.II    if }{ ny  is a decreasing sequence with yyn  , then ny y , for all 

Nn .  

  

The study of fixed points for multi-valued contractions using the 

Hausdorff metric was initiated by Nadler [18] who extended the BCP to 

multi-valued setting. Later many authors developed the existence of fixed 

points for various multi-valued contractions. For example, see [1, 4, 5, 11, 

12, 13, 16, 24, 25]. On the other hand, in 2006, Bhaskar and 

Lakshmikantham [3] introduced the concept of coupled fixed point and 

proved some fixed point results under certain conditions in a complete 

metric space endowed with a partial order. They applied their results to 

study the existence of a unique solution for a periodic boundary value 

problem associated with a first order ordinary differential equation. Later, 

Lakshmikantham and C iri c  [15] generalized the results in [3].  

Definition 1.7 [3] Let ( , )X   be a partially ordered space and 

XXXF : . We say that F  has the mixed monotone property iff 

),( yxF  is monotone non-decreasing in x  and monotone non-increasing 

in y , that is, for any Xyx , ,  

1 2 1 2 1 2, , implies ( , ) ( , )x x X x x F x y F x y    

and  

1 2 1 2 1 2, , implies ( , ) ( , ).y y X y y F x y F x y    

Definition 1.8 [3] An element XXyx ),(  is called a coupled fixed 

point of the mapping F  if  
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.=),(,=),( yxyFxyxF  

 

Following Bhaskar and Lakshmikantham [3], Beg and Butt [2] proved 

some coupled fixed point results for multi-valued mappings in partially 

ordered metric spaces. For this purpose, they gave a generalized mixed 

monotone property for a multi-valued mapping.  

Definition 1.9 [2] Let ( , )X   be a partially ordered space and 

)(: XCBXXF   be a multi-valued mapping. F  is said to be a mixed 

monotone mapping if F  is order-preserving in x  and order-reversing in 

y , i.e., 
1 2x x , 2 1y y , 1,2)=(, iXyx ii   imply for all ),( 111 yxFu   

there exists ),( 222 yxFu   such that 1 2u u  and for all ),( 111 xyFv   

there exists ),( 222 xyFv   such that 2 1v v .  

  

Definition 1.10 [2] A point XXyx ),(  is said to be a coupled fixed 

point of the multi-valued mapping F  if ).,(),( xyFyandyxFx    

On the third hand, in 2012, Gordii et al. [9] generalized the concept of 

mixed monotone property to two single-valued mappings. They proved 

coupled common fixed point results using this property. Therefore, Gupta 

and Deep [10] used altering distance function generalizing these results to 

S -metric spaces.  

Definition 1.11 [9] Let ( , )X   be a partially ordered space and 

XXXGF :,  be mappings. We say that a pair GF ,  has the mixed 

weakly monotone property on X  if, for any Xyx ,   

( , ), ( , ),

( , ) ( ( , ), ( , )) , ( , ) ( ( , ), ( , ))

x F x y y F y x

F x y G F x y F y x F y x G F y x F x y

 

  
 

 and  

( , ), ( , ),

( , ) ( ( , ), ( , )) , ( , ) ( ( , ), ( , )).

x G x y y G y x

G x y F G x y G y x G y x F G y x G x y

 

  
 

  

Theorem 1.1 [10] Let ( , , )X S  be a partially ordered complete S

-metric space and XXXGF :,  satisfies the mixed weakly monotone 

property on X , 0 0 0( , )x F x y , 0 0 0( , )y F y x  or 0 0 0( , )x G x y , 

0 0 0( , )y G y x  for some Xyx 00 , . Consider a function 

)[0,)[0,:   with tt <)(  and lim ( ) <
r t

r t


 , 0>t , such that  
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,
2

),,(),,(
)),(),,(,),(( 







 


vyySuxxS
vuGyxFyxFS  

 for all Xvuyx ,,,  with x u  and y v . 

Also, assume that either F  or G  is continuous or X  has the 

sequential monotone property, then F  and G  have a coupled common 

fixed point in X .  

In this paper, we state and prove extension of Theorem 1.1 to 

multi-valued arena. Our theorem extends some known results in S -metric 

spaces to multi-valued setting (see, [14, 27]).  

2. MAIN RESULT 

 Firstly, we define the Hausdorff S -metric as follows.  

Definition 2.1 Let ),( SX  be an S -metric space and )(XCB  be the 

class of all nonempty closed and bounded subsets of X . For 

)(, XCBBA  , define the Hausdorff S -metric 

)[0,)()()(:  XCBXCBXCBHS  by  

)},,,(sup),,,(sup),,,(sup{max=),,( BAcSACbSCBaSCBAH
CcBbAa

S


 

 where  

).,(inf=),(),,(),(),(=),,(
,

badBAdCBdCadBadCBaS S
BbAa

SSSS




 

Secondly, we give the following definition.  

Definition 2.2 Let BA,  be two subsets of X , we define the binary 

relation between A  and B  as:   

 • 1A B  if for any Aa  we can find Bb  such that a b ,  

  • 2A B  if for any Bb  we can find Aa  such that a b ,  

 • A B  if 1A B  and 2A B .  

  

     Therefore, we extend Definition 1.11 to multi-valued setting by the 

following way.  

Definition 2.3 Let ( , )X   be a partially ordered space and 

)(:, XCBXXGF   be multi-valued mappings. We say that a pair 

),( GF  has the mixed weakly monotone property on X  if for any 

Xyx ,   

{ } ( , ) { } ( , )

( , ) ( ( , ), ( , )) ( , ) ( ( , ), ( , ))

x F x y and y F y x

F x y G F x y F y x and F y x G F y x F x y

 

  
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 and  

{ } ( , ) { } ( , )

( , ) ( ( , ), ( , )) ( , ) ( ( , ), ( , )).

x G x y and y G y x

G x y F G x y G y x and G y x F G y x G x y

 

  

 

  

  

Example 2.1 Let )[0,= X  be endowed with its usual order ""  and 

)(:, XCBXXGF   defined by  

 }].,{max[0,=),(=),( yxyxGyxF  

 We find that,  

 

)).,(),,((),()),(),,((][0,=),(

},{max=0=

}],{max[0,}{}],{max[0,}{

),(}{),(}{

yxFxyFGxyFandxyFyxFGyyxF

yxyandx

xyyandyxx

xyFyandyxFx









 

 Similarly, one can show that  

 

{ } ( , ) { } ( , )

( , ) ( ( , ), ( , )) ( , ) ( ( , ), ( , )).

x G x y and y G y x

G x y F G x y G y x and G y x F G y x G x y

 

  
 

  

Now, we are ready to state and prove our main theorem as follows.  

Theorem 2.1  Let ( , , )X S  be a partially ordered complete S -metric 

space and )(:, XCBXXGF   be multi-valued mappings such that 

F  and G  have the mixed weakly monotone property on X . Assume that 

there exists a function )[0,)[0,:   with tt <)(  and 

lim ( ) <
r t

r t


 , 0>t , such that 

,
2

),,(),,(
)),(),,(),,(( 







 


vyySuxxS
vuGyxFyxFH S             (2.1)  (2.1) 

 for all Xvuyx ,,,  with x u  and y v . 

Suppose that one of the following conditions is satisfied:   

)(i    F  is continuous,  

)(ii   G  is continuous,  

)(iii  X  has the sequential monotone property.  

If there exist Xyx 00 ,  such that  
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0 0 0 0 0 0 0 0 0 0 0 0{ } ( , ), { } ( , ) { } ( , ), { } ( , ),x F x y y F y x or x G x y y G y x     

then F  and G  have a coupled common fixed point in X . Furthermore, 

if we assume that the set of coupled common fixed points is totally ordered 

and  

)),,(),,(),,((),,( *** yxGyxFyxFHxxxS S  

for two coupled common fixed points ),( yx  and ),( ** yx , then F  and 

G  have a unique coupled common fixed point.  

  

Proof. Assume that 0 0 0{ } ( , )x F x y  and 0 0 0{ } ( , )y F y x . Since F  and 

G  satisfy the mixed weakly monotone property, then  

 

0 0 0 0 0 0 0 0 0 0 0 0( , ) ( ( , ), ( , )) ( , ) ( ( , ), ( , )).F x y G F x y F y x and F y x G F y x F x y 

 

Let ),( 001 yxFx   and ),( 001 xyFy  , then we have  

0 0 1 1 0 0 1 1

1 1 1 1 1 1

( , ) ( , ) ( , ) ( , )

{ } ( , ) { } ( , ).

F x y G x y and F y x G y x

x G x y and y G y x

 

  
                          

                                               (2.2) 

Again by monotonicity  

 

1 1 1 1 1 1 1 1 1 1 1 1( , ) ( ( , ), ( , )) ( , ) ( ( , ), ( , )).G x y F G x y G y x and G y x F G y x G x y   

Let ),( 112 yxGx   and ),( 112 xyGy  , then we have  

2 2 2 2 2 2{ } ( , ) { } ( , ).x F x y and y G y x                                    (2.3) 

By (2.2), for ),( 112 yxGx   and ),( 112 xyGy   we have  

 1 2 1 2.x x and y y                           (2.4) 

Also, by (2.3), for ),( 223 yxFx   and ),( 223 xyFy   we have  

 2 3 2 3.x x and y y                           (2.5) 

Continuing in this way, we can construct two sequences }{ nx  and }{ ny  

in X  for which  

 
),(,),(

),,(,),(

1212222212

1212222212









nnnnnn

nnnnnn

xyGyxyFy

yxGxyxFx
  (2.6) 

 and  

 1 1, .n n n nx x y y  
                          

(2.7) 

By definition of Hausdorff S -distance, we obtain that for 
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),( 2212 nnn yxFx   there exists ),( 121222   nnn yxGx  such that
 

)),(),,(),,((),,( 12122222221212   nnnnnnSnnn yxGyxFyxFHxxxS . 

Therefore, by (2.1), we have  

.
2

),,(),,(

)),(),,(),,((),,(

12221222

12122222221212








 








nnnnnn

nnnnnnSnnn

yyySxxxS

yxGyxFyxFHxxxS

  (2.8) 

  (2.8) 

Also, for ),( 2212 nnn xyFy   there exists ),( 121222   nnn xyGy  such that 

)),(),,(),,((),,( 12122222221212   nnnnnnSnnn xyGxyFxyFHyyyS . Then, 

by (2.1), we get  

2 2 2 1 2 2 2 1
2 1 2 2 2 2

( , , ) ( , , )
( , , )

2

n n n n n n
n n n

S y y y S x x x
S y y y  

  

 
  

 
.  (2.9) 

  (2.9) 

Adding (2.8) and (2.9) to obtain  

.
22

,
2

),,(),,(

2

212

1222122212


















 






nn

nnnnnnn yyySxxxS





                 (2.10)  (2.10) 

Interchanging the role of mappings F  and G  and using (2.1), yield that  








 








2

),,(),,(

)),(),,(),,((),,(

221212221212

222212121212322222

nnnnnn

nnnnnnSnnn

yyySxxxS

yxFyxGyxGHxxxS

 

                                                                    (2.11)  (2.11) 

and  

 

.
2

),,(),,(
),,( 221212221212

322222 






 
 


nnnnnn

nnn

xxxSyyyS
yyyS                

(2.12) 

Adding (2.11) and (2.12) to obtain  
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.
22

,
2

),,(),,(

2

),,(),,(

1222

221212221212

322222322222


















 










nn

nnnnnn

nnnnnn

yyySxxxS

yyySxxxS



  (2.13) 

From (2.10) and (2.13) and using the fact that tt  )(  give  

 

.

,
22

1

1

nn

nn





















                        (2.14) (2.14) 

That is, }{ n  is decreasing sequence of nonnegative real numbers. 

Therefore there exists some 0  such that  

 .=lim n
n 

 

   Now we want to show that 0= . Assume the contrary that 0> . By 

taking limit as n  tends to infinity in equation (2.14) and having in mind 

lim ( ) <
r t

r t


 , we have 

.<
2

lim2=
2

lim2lim=

22

1 
































n

n

n

n
n

n

               (2.15)  

  (2.15) 

By repeatedly use of property of S -metris space, for every Nmn ,  with 

nm > , we get 

.0

),,(),,(

)],,(),,(),,(2[

)],,(),,(),,(2[

),,(),,(2),,(2

),,(),,(2),,(2

),,(),,(2

),,(),,(2),,(),,(

1111

1222111

1222111

222111

222111

111

111































nas

yyySxxxS

yyySyyySyyyS

xxxSxxxSxxxS

yyySyyySyyyS

xxxSxxxSxxxS

yyySyyyS

xxxSxxxSyyySxxxS

mmmmmm

mmmnnnnnn

mmmnnnnnn

mnnnnnnnn

mnnnnnnnn

mnnnnn

mnnnnnmnnmnn







  

This shows that }{ nx  and }{ ny  are Cauchy sequences in X . Since X  

is complete, then there exist Xyx ,  such that  



On Coupled Fixed Points for Two Multi-Valued Mappings in Ordered…         19 

 

 . nasyyandxx nn                
(2.16) 

Using the continuity of F  to obtain  

2 1 2 1 2 1 2 1

2 1 2 1 2 2 2 2

( , , ( , )) 2 ( , , ) ( , , ( , ))

2 ( , , ) ( ( , ), ( , ), ( , )) 0

n n n n

n n S n n n n

S x x F x y S x x x S x x F x y

S x x x H F x y F x y F x y as n

   

 

 

   
 

  

and  

2 1 2 1 2 1 2 1

2 1 2 1 2 2 2 2

( , , ( , )) 2 ( , , ) ( , , ( , ))

2 ( , , ) ( ( , ), ( , ), ( , )) 0 .

n n n n

n n S n n n n

S y y F y x S y y y S y y F y x

S y y y H F y x F y x F y x as n

   

 

 

   
 

  

Hence, ),( yxFx  and ),( xyFy . From (2.1) we get  

 

( ( , ), ( , ), ( , ) ( ( , ), ( , ), ( , ))

( , , ) ( , , ) ( , , ) ( , , )

2 2
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Hence ),( yx  is coupled common fixed point of F  and G . Similarly, the 

result follows when G  is assumed to be continuous. 

Now, consider that X  has the sequential monotone property. If 

xx n =2  and yy n =2  for some 0n , then 2 2 1 2= =n n nx x x x x   and 

2 2 1 2= n n ny y y y   imply that ),(= 22122 nnnn yxFxx   and 

),(= 22122 nnnn xyFyy  . Also, from (2.1) we get  

 

00),,(2

2

),,(),,(
),,(2

)),(),,(),,((),,(2)),(,,(

1212

2222
1212

22221212










 










xxxS

yyySxxxS
xxxS

yxGyxFyxFHxxxSyxGxxS

nn

nnnn
nn

nnnnSnn

 

 and  

 

0.)),(),,(),,((),,(2)),(,,( 22221212   xyGxyFxyFHyyySxyGyyS nnnnSnn

 

 So, ),( 22 nn yx  is a coupled common fixed point of F  and G . 

Suppose that ),(),( 22 yxyx nn   for all n . 

Thus, 
2

),,(),,(
<

2

),,(),,( 2222222 yyySxxxSyyySxxxS nnnnnnn 







 
 . 



20                                              R. A. Rashwan and S. I. Moustafa 

From (2.1) we have  
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 Therefore, ),( yxGx . Similarly, ),( xyGy . By interchanging the role 

of functions F  and G , we get the same result for F . Thus ),( yx  is the 

common coupled fixed point of F  and G . 

Let ),( yx  and ),( ** yx  be two coupled common fixed points for 

F  and G . Without loss of generality we may assume that 
* *( , ) ( , )x y x y . Then from (2.1), we have  
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 Assume that 
*xx   and *yy   and adding the above inequalities imply  
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 which is a contradiction. Hence 
*= xx  and *= yy . This proves that the 

coupled common fixed point of F  and G  is unique. Again from (2.1), 

we have  
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 This implies to yx = .  

Finally, we establish a fixed point result in ordered complete S -metric 

space involving contractive conditions of integeral type.  

Theorem 2.2  Let ( , , )X S  be an ordered complete S -metric space and 

)(:, XCBXXGF   be multi-valued mappings such that F  and G  

have the mixed weakly monotone property on X . Assume that there exists 
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 for all Xvuyx ,,,  with x u  and y v . Here )[0,)[0,:   is a 

Lebesgue integrable function as a summable for each compact R , 

non-negative and such that for each 0> , 0>)( dtt . 

Suppose that one of the following conditions is satisfied:   

)(i    F  is continuous,  

)(ii    G  is continuous,  

)(iii   X  has the sequential monotone property.  
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 1 1, .n n n nx x y y                            (2.19) 

Using (2.17), we have  
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This implies,  
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By a similar way, we get  
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Adding (2.21) and (2.22) to obtain  
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where ),,(),,(= 1111   nnnnnnn yyySxxxS  as in Theorem 2.1. 

Interchanging the role of mappings F  and G  and using (2.17), yield that  
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Which is contradiction, then 0= . By repeatedly use of property of S

-metris space we observe that }{ nx  and }{ ny  are Cauchy sequences in 

X  and  

, nasyyandxx nn                                            (2.25) 

for some Xyx , . By continuity of F , we have ),( yxFx  and 
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    Now from (2.17), we get  
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 Hence ),( yx  is coupled common fixed point of F  and G . Similarly, 

the result follows when G  is assumed to be continuous. 
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 So, ),( 22 nn yx  is a coupled common fixed point of F  and G . 

Suppose that ),(),( 22 yxyx nn   for all n . Thus,  
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From (2.17) we have  
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Therefore, ),( yxGx . Similarly, ),( xyGy . By interchanging the role 
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of functions F  and G , we get the same result for F . Thus ),( yx  is the 

common coupled fixed point of F  and G .  

Remark 2.1 If we put 1=)(t  for all )[0,t , then Theorem 2.2 

reduces to Theorem 2.1 as a special case.  
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شيواء إبراهين هصطفيم.  م.أ.د. رشواى أحود رشواى            
جاهعة أسيوط -كلية العلوم -قسن الرياضيات  

 

  الاطراد انًختهطتفي ىزا انبحث نقذو تعريف نخاصيت   

 (weakly mixed monotone property)  نذًال يتعذدة انقيى في فراغاث

ً كزنك (partially ordered S- metric spaces)  يتريو راث ترتيب جزئي

   نقٌو بإثباث بعض نظرياث عهي ًجٌد ًًحذانيت اننقطت انثابتو انًزدًجت

(coupled fixed point) في ًجٌد شرط تضاغطي. نتائج  ًانًشتركت نيزه انذًال

 .[  10في انًرجع ]اننتائج انًناظره ىزا انبحث تعًى بشكم أساسي 


