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1. INTRODUCTION

The metric fixed point theory is very important and useful in
Mathematics. It can be applied in various areas, for instance, matrix,
differential and functional equations (see, e.g. [21, 22, 23]). There are
different generalizations of metric spaces. One of them, Gahler [8]
introduced the concept of 2-metric space. On the other hand, Dhage [6]
gave the concept of D -metric space. On the third hand, Mustafa and Sims
[20] presented some remarks on topological structure of D -metric spaces.
Consequently, they defined more generalized metric spaces so-called G
-metric spaces as follows.
Definition 1.1 [19] Let X be a nonempty set and G: X* —[0,0) bea
function satisfying the following conditions, for all x,y,z,ae X,
(G,) G(xvy,2)=0if x=y=1z,
(G,) 0<G(x,xYy) whenever x=Yy,
(G;)  G(XxY)<G(X,Y,z) whenever z=y,

G,) G((xVY,2)=G(x2Yy)=G(Y,z,x)=...,
(G) G(xYy,2)<G(x,a,a)+G(a,y,z).
Then the pair (X,G) iscalleda G -metric space.
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Also, in 2012, Sedghi et al. [26] established the concept of an S -metric
space in the following way.
Definition 1.2 Let X be a non-empty set. An S -metricon X isa

function S: X*® —[0,0) that satisfies the following conditions, for each
X, y,z,ae X,

(S) S(xy.2)=0ex=y=z,

(S,)  S(Xxy,2)<S(x,x,a)+S(y,y,a)+S(z,z,a).

Then the pair (X,S) iscalled an S -metric space.

Lemma 1.1 [26] If (X,S) isan S-metric space, then s(x,x,y)=S(y,y,x)-
Lemma 1.2 [7] Let (X,S) be an S - metric space. Then

S(X,%,2) <2S(X, X, ¥)+S(Y,V,2),
forall x,y,zeX.

Definition 1.3 [26] Let (X,S) bean S -metric space. For xe X and
r >0, we recall the open ball B (x,r) and the closed ball Bs(x,r) with
center x and radius r as follows

Bs(X,r)={ye X:S(x,x,y) < r},§s(x, rN={yeX:S(x,x,y)<r}.

Definition 1.4 [26] Let (X,S) be an S -metric space.
() Asequence {x,} in X convergesto x iff S(x,x,,x)—>0 as

n—o0.
(2) Asequence {x,} in X iscalled a Cauchy iff S(x,,X,,X,)—0

as n,m-—oo.
(3) An S-metric space X issaid to be complete iff every Cauchy
sequence is convergent.

Lemma 1.3 [26] Let (X,S) be an S -metric space. If there exist
sequences {x,} and {y,} in X suchthat limx =x and limy, =y,

then 1imS(x,,x,,¥,) =S(X,X,y).
In recent years, there has been a growing interest in studying the
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existence of fixed points for contractive mappings satisfying monotone
properties in ordered metric spaces. This trend was initiated by Ran and
Reurings in [22] where they extended Banach Contraction Principle (BCP)
in partially ordered metric spaces.

Definition 1.5 [17] A partially ordered space is a nonempty set X with a
binary relation <, which satisfies the three conditions, for all x,y,z € X,
@ X<x  (reflexivity),

(2) if x<y and y<x then x=y (antisymmetry),

(3) if x<y and y<z then x<z (transitivity).

Definition 1.6 [3] Let (X,°) beanorderedspace. X issaid to have the
sequential monotone property if it verifies the following properties:
I. if {x,} isan increasing sequence with x, — x, then x, <x, for all

neN,
I1. if {y,} isadecreasing sequence with y, —y,then y >y, forall

neN.

The study of fixed points for multi-valued contractions using the
Hausdorff metric was initiated by Nadler [18] who extended the BCP to
multi-valued setting. Later many authors developed the existence of fixed
points for various multi-valued contractions. For example, see [1, 4, 5, 11,
12, 13, 16, 24, 25]. On the other hand, in 2006, Bhaskar and
Lakshmikantham [3] introduced the concept of coupled fixed point and
proved some fixed point results under certain conditions in a complete
metric space endowed with a partial order. They applied their results to
study the existence of a unique solution for a periodic boundary value
problem associated with a first order ordinary differential equation. Later,
Lakshmikantham and C'iric’ [15] generalized the results in [3].
Definition 1.7 [3] Let (X,<) be a partially ordered space and

F:XxX —X.Wesaythat F has the mixed monotone property iff
F(x,y) is monotone non-decreasing in x and monotone non-increasing

in y,thatis, forany x,ye X,

X, X, € X, X <X, implies F(x,y)<F(X,,Y)
and

Vi Yo € X, Y, <Y, implies F(X,Y;) > F(X,Y,).
Definition 1.8 [3] An element (x,y) e X x X is called a coupled fixed
point of the mapping F if
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F(XY) =% F(y,x) =Y.

Following Bhaskar and Lakshmikantham [3], Beg and Butt [2] proved
some coupled fixed point results for multi-valued mappings in partially
ordered metric spaces. For this purpose, they gave a generalized mixed
monotone property for a multi-valued mapping.

Definition 1.9 [2] Let (X,<) be a partially ordered space and

F: XxX —CB(X) beamulti-valued mapping. F is said to be a mixed
monotone mapping if F isorder-preservingin x and order-reversing in
y, e, X <X, ¥, <Y, X,Y; € X(i=12) implyforall u, eF(x,Y,)
there exists u, € F(x,,y,) suchthat u, <u, andforall v, e F(y;,%)
there exists v, € F(y,,X,) suchthat v, <v,.

Definition 1.10 [2] A point (X,y) € X x X is said to be a coupled fixed
point of the multi-valued mapping F if xe F(x,y)and y e F(y,X).

On the third hand, in 2012, Gordii et al. [9] generalized the concept of
mixed monotone property to two single-valued mappings. They proved
coupled common fixed point results using this property. Therefore, Gupta
and Deep [10] used altering distance function generalizing these results to
S -metric spaces.

Definition 1.11 [9] Let (X,<) be a partially ordered space and

F,G: XxX — X be mappings. We say that a pair F,G has the mixed
weakly monotone property on X if, forany x,ye X
x<F(xy), y2F(y,x),

= F(X y)<G(F(x,y),F(y,x)) ,F(y,x)=G(F(y,x),F(xY))
and
x<G(x,y), y=G(y,x),

=G(x y)<F(G(x¥),G(y,x)) G(y,x) = F(G(y,x),G(x,Y)).

Theorem 1.1 [10] Let (X,<,S) be a partially ordered complete S
-metricspaceand F,G: X x X — X satisfies the mixed weakly monotone
property on X, X, <F (X, ¥5): Yo 2 F (Yo, %) 0r X, <G(Xy, o),

Yo = G(Y,, %,) forsome x,,Yy, € X . Consider a function

@ :[0,00) > [0,00) with ®(t)<t and Iirrl d(r)<t, vt>0, such that

r—t
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S(F(x,y) F(x,¥),G(u,v)) < (D(S(X’ X,U) ; S(y, y,V)j,

forall x,y,u,ve X with x<u and y>v.

Also, assume that either F or G is continuous or X has the
sequential monotone property, then F and G have a coupled common
fixed pointin X.

In this paper, we state and prove extension of Theorem 1.1 to
multi-valued arena. Our theorem extends some known results in S -metric
spaces to multi-valued setting (see, [14, 27]).

2. MAIN RESULT
Firstly, we define the Hausdorff S -metric as follows.
Definition 2.1 Let (X,S) be an S -metric space and CB(X) be the
class of all nonempty closed and bounded subsets of X . For
A, B eCB(X), define the Hausdorff S -metric
H, :CB(X)xCB(X)xCB(X)—[0,0) by

Hs (A, B,C) = max{supS(a, B,C),supS(b,C, A),supS(c, A, B)},
acA beB ceC
where

S(a,B,C) =d,(a,B)+d,(a,C)+d(B,C), d;(A,B)= inf d(a,b).

acAbeB

Secondly, we give the following definition.
Definition 2.2 Let A,B be two subsets of X , we define the binary
relation between A and B as:

« A< B ifforany ae A wecanfind be B suchthat a<b,

« A<’B ifforany beB wecanfind ac A suchthat a<b,

« A<B if A<'B and A<’ B.

Therefore, we extend Definition 1.11 to multi-valued setting by the
following way.

Definition 2.3 Let (X,<) be a partially ordered space and
F,G: XxX —CB(X) be multi-valued mappings. We say that a pair
(F,G) has the mixed weakly monotone property on X if for any
X,ye X
{3 <F(x,y) and {y}=>F(y,x)
= F(x,¥) <G(F(x,y), F(y,x)) and F(y,x) = G(F(y,X), F(x,y))
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and
{3<G(x y) and {y}=G(y,x)
= G(x,¥) <F(G(x,¥),G(y,x)) and G(y, x) = F(G(Y, x),G(X, Y)).

Example 2.1 Let X =[0,o) be endowed with its usual order "<" and
F,G: XxX —CB(X) defined by

F(xy) =G(x,y) = [0, max{x, y}].
We find that,

{G<F(x,y)and {y}=F(y,X)
= {xX}<L[0,max{x, y}] and {y}>[0, max{y, x}]
= x=0and y=max{Xx, y}
=  Fy)=[0,yI<G(F(x,y),F(y,x)) and F(y,x) = G(F(y,x), F(x,y)).

Similarly, one can show that

U3<G(x,y) and {y}=G(y, )
= G(x,y) <F(G(x,¥),G(y,x)) and G(y, x) = F(G(y, x),G(x, y)).

Now, we are ready to state and prove our main theorem as follows.
Theorem 2.1 Let (X,<,S) be a partially ordered complete S -metric
space and F,G: X xX —CB(X) be multi-valued mappings such that
F and G have the mixed weakly monotone property on X . Assume that
there exists a function @ :[0,0) —[0,0) with ®(t)<t and
limd(r) <t, vt>0, such that

rott

He (F(x,y), F (% y),G<u,v»scb(s(x’x’“);s(y’ y’V)j, (2.1)

forall x,y,u,ve X with x<u and y>v.

Suppose that one of the following conditions is satisfied:
(1)  F iscontinuous,

(i) G is continuous,
(iii) X has the sequential monotone property.
If there exist Xx,,Yy, € X such that
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P} < F (X, Vo) ot = F(Yo: %) or {X3<G (X, Yo)s {Yo}=G (Yo, %),

then F and G have a coupled common fixed point in X . Furthermore,
if we assume that the set of coupled common fixed points is totally ordered
and

S(x, % X) <Hg(F(x,y), F(x ¥),G(x,y)),
for two coupled common fixed points (x,y) and (x’,y"), then F and
G have a unique coupled common fixed point.

Proof. Assume that {x,}<F(X,,Y,) and {y,}=F(y,,X,). Since F and
G satisfy the mixed weakly monotone property, then

F (X1 Yo) SG(F (X, Vo) F(Yo: %)) @nd F(y,, %) = G(F (Yo, %), F (%, Yo))-

Let x, € F(X,,Y,) and y, € F(y,,X%,), then we have
F (X, Yo) <G(x, ¥1) and F(Y,, %) 2 G (Y, %)

={x}<G(x,y,) and {y,} = G(y;, x,).
(2.2)
Again by monotonicity

G(x,, ¥1) < F(G(X, Y1), G(y1, ) and G(y,, x,) = F(G(yy, %), G(x,, 1))-
Let x, eG(x,Y;) and vy, eG(y;, %), then we have

{3 <F(%,y,) and {y,}2 G(y,, %,). (2.3)
By (2.2), for x, eG(x,,Y,) and Yy, eG(y,,%) we have

X, <X, and y, > ,. (2.4)
Also, by (2.3), for x; € F(x,,Yy,) and y, e F(Yy,,X,) we have

X, <X and y, >y,. (2.5)

Continuing in this way, we can construct two sequences {x,} and {y.}
in X for which
Xonin € F(Xons Yan) 1 Xonso € G(Xonias Yonin)s

(2.6)
Yona € F(Yanr Xon) 5 Yaniz € G(Yaniar Xonia)

and
Xn = Xn+1’ yn 2 yn+1' (27)
By definition of Hausdorff S -distance, we obtain that for
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Xoni1 € F (X0, Y,,) there exists X,.., € G(Xo.1, Yon,y) SUCH that
S(X2n+l’ X2n+l’ X2n+2) < HS (F(XZn' y2n)’ F(XZn' y2n)’G(X2n+l' y2n+l))
Therefore, by (2.1), we have

S(X2n+l’ X2n+1’ X2n+2) S H S (F (XZn ' y2n )’ F (X2n ' y2n )' G(X2n+l’ y2n+1))

< CD(S(XZ,] Xons Xonin) + S (Yon1 Yon Yona) | (2.8)
2

Also, for vy, , € F(Y,,,X,,) there exists Y,.., € G(Y,n.1,%n,,) SUCh that

S(y2n+l’ y2n+l’ y2n+2) < HS (F(yZn ! XZn)’ F(yZn ! X2n)' G(y2n+11 X2n+1)) : Then!
by (2.1), we get

S(y2n+1’ y2n+2’ y2n+2) < q)[

S(yZn’ y2n’ y2n+1) + S(in , in, X2n+1) j . (29)
2

Adding (2.8) and (2.9) to obtain

w2n+l < q)(S(XZn1X2n’X2n+1)+ S(yZn’ yZn’ y2n+l))
2 2 ’

Do | Pon |
2 2

Interchanging the role of mappings F and G and using (2.1), yield that
S(XZn+2 ! X2n+2’ X2n+3) < H S (G(X2n+l’ y2n+l)! G(X2n+l’ y2n+1)! F(X2n+2! y2n+2))

< @(S(XZMP X2n+1’ X2n+2) + S(y2n+1' y2n+1’ y2n+2)j
2

(2.10)

(2.11)
and

S (y2n+2 ’ y2n+2 ’ y2n+3) < (D( S (y2n+1’ y2n+1’ y2n+2) + S(X2n+l1 X2n+17 X2n+2 ) j

2

(2.12)
Adding (2.11) and (2.12) to obtain
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S(X2n+2 ! X2n+2 ' X2n+3) + S(y2n+2 ' y2n+2 ! y2n+3)
2

S(X2n+l’ X2n+1’ X2n+2) + S(y2n+l’ y2n+1! y2n+2)]

<o

Wyn.o <® Wrniq .
2 2

From (2.10) and (2.13) and using the fact that ®(t) <t give

2

a)n+l <(D &
2 (2 j (2.14)

< w,.

a,

n+l
That is, {®,} is decreasing sequence of nonnegative real numbers.
Therefore there exists some @ >0 such that

limo, = o.

nN—o0

Now we want to show that @ = 0. Assume the contrary that o >0. By
taking limit as n tends to infinity in equation (2.14) and having in mind
lim ®(r) <t, we have

rott

@ = limw,, S2Iim®(a;”j 2 lim q)( 2j<a). (2.15)

nN—o0 nN—o0 n w
L BN,

2 2
By repeatedly use of property of S -metris space, for every n,me N with
m>n, we get
S(X,, n,Xm)+S(yn, Yoo Yn) S 28X Xos Xpg) + S (X0 Xogs X))
+28(Yn1 Yoo Vo) + S(Yauar Youar Yim)
S 28Xy Xns Xoi1) + 28 (X i1y Xosas Xiia) + S (Xiz Xpiz Xi)
25(Yn» Yar Vo) + 28 (Yt Ynurs Ynu2) + S (Yoizr Yoizr Vi)

S 2[S (Xn 1 Xn 1 Xn+1) + S(Xn+l’ Xn+1’ Xn+2) +...t S(mez 1 Xm—2 ] mel)]
+2[S(Yns Yo Your) +S(Ynias Yoias Yoi2) +oo o+ SV 20 Yinos Yina)]

+ S (X X1 Xn) + S(Yinets Yinar Yin)
—>0asn— o,

This shows that {x.} and {y,} are Cauchy sequences in X . Since X
is complete, then there exist X,y € X such that
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X,—>x and y, >y as n—oo. (2.16)
Using the continuity of F to obtain
SO X, F (X, ¥)) £ 28 (a1, Xon.10 X) + S (Xape1: Xonias F (X, Y))
<28 (Xon,00 Xoniar X) + Hg (F (X500 Yan)s F (%o, Y20), F(X,Y)) > 0asn —

and
S(Y, Y, F(Y, X)) < 28(Yanaas Yonias Y) +S(Vanias Yanias F (Y, X))
<2S(Yonias Yonars ¥) + Hs (F(Yans Xo0)s F (Yo X5,), F(Y, X)) > 0a@s n — oo,

Hence, xe F(Xx,y) and yeF(y,x).From (2.1) we get

Hs (F(xy), F (%, y),G(x, y) + Hg (F(y, X), F(y, %), G(y, X))
SGI)(S(x, X, X)+S(¥,Y, y)}r@(s(y, Y, y)+S(x,X,X)j

2 2
SXX,G(X,Y)+H(y,y,G(Y,x)) =0,= xeG(x,y) and y € G(Y, X).
Hence (X,y) iscoupled common fixed pointof F and G. Similarly, the
result follows when G is assumed to be continuous.

Now, consider that X has the sequential monotone property. If
X,, =X and y,, =y for some n>0, then Xx=X,, <X, , <X=X,, and
Y= Yon = Yonua = Yon imply  that Xon = Xonua € F (X501 Yan) and
Yon = Yonu € F(Yan, %,,) - Also, from (2.1) we get

S(X! X!G(X’ y)) < 28(X2n+1’ X2n+1’ X) + H S (F (X2n ! y2n)’ F(XZn! y2n)7G(X’ y))

< 28 (Xypys Xoms X) + (D[s(xzn X x)+2 SV, Yors y)j

< 25(X2n+1’ X2n+1! X) + O - 0
and
S(y! y,G(y, X)) < 28(y2n+1’ y2n+l! y) + HS (F(yZn' X2n)' F(yZn ' XZn)'G(y! X)) _)O

So, (X,,,Y,,) isacoupled common fixed pointof F and G.
Suppose that (X,,,Y,,) = (x,y) forall n.

ThUS, (I)( S(XZn ! X2n ! X) _; S(yZn ’ y2n ! y)j < S(XZn ’ X2n ! X)2+ S(yZn ' y, y)




20 R. A. Rashwan and S. I. Moustafa

From (2.1) we have

SO X G(X,Y)) < 2S(Xypgs Xonir X) + Hg (F (X1 You s F (Xors Yar ) G(X, ¥))
< 28(X2n+1’ Xonts X) " CD(S(in 1 Xons X) ';S(yzn Yo y)
S(XZn’XZn'X)_;S(yznyyZn, y) %0

< 28(X2n+1’ X2n+1’ X) +

Therefore, xeG(x,Yy). Similarly, ye G(y,X). By interchanging the role
of functions F and G, we get the same result for F. Thus (x,Yy) isthe
common coupled fixed pointof F and G.

Let (x,y) and (x',y") be two coupled common fixed points for
F and G . Without loss of generality we may assume that
(x,¥) <(X",y"). Then from (2.1), we have

S(6%X") = Hg (F(x, ), F (%, ), G(X,y) sq{S(X’X’XW; S(v.Y, y*)J

and

S(y, v, ¥") = Hs (F(y,X), F(y,%),G(y", x")) < q)(s(y! Y, y*);S(x, X, X*)j'

Assume that X=X and y=y" and adding the above inequalities imply

S X X)+S(Y, YY) g SCXX)+S(y.y.Y)
2 B 2
< SO X)+S(y,y,y7)
2 ]
which is a contradiction. Hence x=x" and y =y". This proves that the

coupled common fixed point of F and G is unique. Again from (2.1),
we have




On Coupled Fixed Points for Two Multi-Valued Mappings in Ordered... 21

S(x,x, ) = Hg (F(x,y),F(x, ¥),G(y,X)) < q)(s(x’ X, Y) ; S(y, Y, X))

< S(X,X,y)-l—S(y,y,X) (|f X % y)

< S(X,X,Y)+S(x,X,Y)

2
<S(X,X,Y).

This impliesto x=vy.
Finally, we establish a fixed point result in ordered complete S -metric
space involving contractive conditions of integeral type.
Theorem 2.2 Let (X,<,S) be anordered complete S -metric space and

F,G: XxX —CB(X) be multi-valued mappings such that F and G

have the mixed weakly monotone property on X . Assume that there exists

a function @:[0,00) —[0,00) with ®(t) <t and lim®d(r)<t, vt>0,
rott

such that
IHS(F(x,y)ﬂx,y),G(u,v» SCux )50y )

) $(t)dt <D jo 2 g(t)dt, (2.17)
forall x,y,u,ve X with x<u and y>v.Here ¢:[0,00) >[0,) isa
Lebesgue integrable function as a summable for each compact R™,
non-negative and such that for each ¢ >0, I¢(t)dt >0.

Suppose that one of the following conditions is satisfied:
(1) F iscontinuous,
(i) G iscontinuous,
(iii) X has the sequential monotone property.

If there exist X,,Y¥, € X with {X,}<F(X,,¥,), {Yo}=F (Yo, %)
or {%}<G(X o), {Yo}=G(Y,,%) . Then F and G have coupled
common fixed pointin X .

Proof. As in Theorem 2.1, we can construct two sequences {x,} and {y,}
in X such that
Xonin € F(Xons Yan) 1 Xonso € G(Xon.as Yonsa):

(2.18)
Yona € F(Yani Xan) 5 Yaniz € G(Yanias Xoni1)

and
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X <X ., Y. 2V .. (2.19)
n+1 n n+l

n
Using (2.17), we have
J‘S(X2n+1'X2n+1'X2n+2)¢(t)dt < J‘OHS(F(in'yzn)'F(in'V2n)'G(X2n+1'y2n+1»¢(t)dt

0
S(Xan *on *2n41)+SVon Yon Yons1)

<® JO 2 H(t)dt (2.20)
S(XZn’XZn'X2n+1)+8(y2n'y2n'y2n+1)
<), 2 $(t)dt.
This implies,
S (X Xons Xon1) S (Yans Yons Yons
S(X2n+l’ X2n+l' X2n+2) < ( 2 : : l) 2 (yz y2 yz l)' (221)

By a similar way, we get

S(yZn! y2n! y2n+1) + S(XZn’ X2n ! X2n+1) (2 22)
2 . .

S(y2n+17 y2n+1! y2n+2) <

Adding (2.21) and (2.22) to obtain
WDoni < & 2.23
2 2 1 ( . )
where @, =S(X,, X1, X,,1) +S(Y,, Yourr Youe) @S in Theorem 2.1,
Interchanging the role of mappings F and G and using (2.17), yield that

w2n+2 < a)2n+l . (224)
2 2

So we get {w,} be decreasing sequence and lim,_,..®, = ®>0. Assume

that @ >0 and then take limitsas n— oo in (2.20) to get
$(%an %20 *2n41)+S Won Yan Yonia)

[[s)dt <iim o] 2 A(t)cl

n—oo 0

< j;¢(t)dt.

S (XonXon*2n41)*5Wan YonYonsa) ot &)
Note that | 2 $(t)dt — joz $(t)dt = ( jo 2g(t)dt)*.
Which is contradiction, then @ =0. By repeatedly use of property of S
-metris space we observe that {x,} and {y,} are Cauchy sequences in
X and
X,—>x and y, >y as n— oo, (2.25)
for some Xx,ye X . By continuity of F, we have xeF(xy) and
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yeF(y,Xx).
Now from (2.17), we get

Hg (F(x,y).F (x,y).G(x,y)) Hg (F(y.%),F (y,x),.G(y.x))
[T et [T (ot

0
S(x,x,X)+S(y.Y,Y) S(Y,Y,¥)+S(x,%,X)

scpjo 2 ¢(t)dt+c1>j0 2 p(t)dt=
S(%G(X,Y),G(x, y) +S(y,G(y,x),G(y,x)) =0=xeG(x,Y), y € G(Y, X).

Hence (X,y) is coupled common fixed point of F and G. Similarly,
the result follows when G is assumed to be continuous.

Now, consider that X has the sequential monotone property. If

X,, =X and y, =y for some n=0, then x,, =X,,,; € F(X,,,Y,,) and

Yon = Yonu € F(Yan, %5,) - Also, from (2.17) we get

J-Os(><,><,G(><,y))¢(t)dt SJ~Ozs(x2n+1,x2n+1,x)¢(t)dt+JOHS(F(xzn,y2n),F(x2n»Y2n)YG(x,y))¢(t)dt
$(XanXan X)*+S (Yo Yon ¥)
25(X2n41%2n+1%)
SJ‘ Xon41%2 1X¢(t)dt+q).| 2 ¢(t)dt
o 0
=0
and
J-Os(%y,<3(y,x))¢(t)dt < J"OZS(y2n+1vyzn+1'y)¢(t)dt+J'OHS(F(y2”'X2“)’F(yzn'xzn)'e(y'xnﬂt)dt =0.

So, (X,,,Y,,) isacoupled common fixed pointof F and G.
Suppose that (x,,,Y,,) = (X,y) forall n.Thus,

S(XanXan ¥)*+S (Yo Yo ¥) S(xanXon ¥)*+S(Yon Yon ¥)

) jo : P(t)dt < JO 2 H(t)dt.

From (2.17) we have

J-S(x,x,G(x,y))¢(t)dt <J-zs(x2n+1’in+1,x)¢(t)dt+J-HS(F(x2n,y2n),F(x2n,y2n),G(X,y))¢(t)dt
25(Xo 11 Xo 11X) S (X X X)+S (Yo Yop¥)
< J'O 2n+1%2n+1" ¢(t)dt +(Dj0 5 ¢(t)dt
25(Xo 1 41 Xor 1.X) S(on Xon )45 (Yo Yop )
< J'o 2n+1%2n+1 ¢(t)dt+J0 2 ¢(t)dt 0.

Therefore, xeG(x,Yy). Similarly, yeG(y,X). By interchanging the role
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of functions F and G, we get the same result for F. Thus (x,Yy) isthe
common coupled fixed pointof F and G.

Remark 2.1 If we put ¢(t) =1 for all t€[0,0), then Theorem 2.2
reduces to Theorem 2.1 as a special case.
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Adalidall o YY) dualdl Cay et 2383 Candl 13a
Glel 8 A .l 3202 JI sl (weakly mixed monotone property)
SIX 5 (partially ordered S- metric spaces) (& > < 5 il 4y yia
Aa 52 jall 4Bl Adadall dilas g5 293 5 Ao Dl el pany il o
E | e laih b asa 5 8 Jlsall eded 4S yildall 5 (coupled fixed point)
D) 0] el (o bl il il JSE s sl 13



