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In this article, constant partially accelerated life tests are considered. Based on a 

progressive first-failure censoring scheme, the maximum likelihood and the Bayes 

estimates for the parameters of the Weibull-Geometric distribution as well as the 

acceleration parameter are obtained. The Bayes estimates are derived using the 

Markov Chain Monte Carlo (MCMC) technique. A Monte Carlo simulation study 

has been conducted to compare the different estimates.  

Keywords: Weibull-Geometric distribution; progressive first-failure 

censoring scheme; partially accelerated life test; Markov Chain Monte 
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1.  INTRODUCTION 

Most modern products are designed to have long lifetimes. So, it is too 

difficult to obtain reliable information about the lifetimes of these products 

at the time of testing under normal conditions due to high coasts. For this 

reason, accelerated life tests (ALTs) are used to estimate the lifetime of 

these products within a reasonable testing time. The test products are run at 

higher than usual levels of stress which include pressure, temperature, load, 

etc. The stress can be applied in different ways: commonly used methods 

are constant stress, progressive stress and step stress, see Nelson (1990). 

In ALTs, the test items are tested only at accelerated conditions and the 

data collected are then extrapolated through a physically appropriate 

statistical model to estimate the life distribution at normal use conditions. 

On the other hand, in partially accelerated life tests (PALTs) items are 

tested at both normal and accelerated conditions. There are two major types 

of PALTs, constant PALT (C-PALT) and step-stress PALT (SS-PALT). 

Under SS-PALT, a test involves two levels of stress with the first one being 

at the normal level and at a specific time point, the stress changes. In a 

constant PALT, which is the main topic of this article, each item runs at 

either use condition, or accelerated condition only. PALTs have been 

extensively studied in recent years, see for example, Cheng and  
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Wang (2012), Zarrin et. al. (2012), Ismail (2014), Jaheen et. al. (2014), 

Abd El-Monem and Jaheen (2015), Abushal and Soliman (2015), Hyun 

and Lee (2015), Abdel-Hamid (2016), Abd-Elmougod and Mahmoud 

(2016) and Ismail (2016). 

The Weibull-Geometric (WG) distribution was first introduced by 

Barreto-Souzaa et. al. (2011). With different parametrization, the same 

distribution has been studied by Tojeiro et al. (2014), under the name, the 

complementary Weibull-geometric distribution. The WG distribution 

generalizes the exponential-geometric (EG) distribution, proposed by 

Adamidis and Loukas (1998), and also the Weibull distribution. The 

hazard rate function of the EG distribution is monotone decreasing while 

that of the WG distribution can take more general forms. Unlike the 

Weibull distribution, the WG distribution is useful for modeling unimodal 

failure rates. 

The Weibull-Geometric distribution with the parameters    ,     

and         (denoted by            has the following probability 

density function       and cumulative distribution function        

                                                            (1.1) 

  

                                                               (1.2) 

 respectively. 

As it can be seen from (1.1), when     we obtain the two-parameter 

Weibull distribution. Another special case is obtained for    , which 

corresponds to the exponential-geometric (EG) distribution with 

parameters      . 

The corresponding reliability and failure rate functions are given, 

respectively, by  

                                                         (1.3) 

 and  

      
     

     
                                                  (1.4) 

 The hazard rate function (1.4) is decreasing for      . However, for 

    it can take different forms. 

Hamedani and Ahsanullah (2011) presented various characterizations of 

the Weibull-geometric distribution. Jodra and Jimenez-Gamero (2014) 
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obtain explicit expressions for the moments of order statistics from the 

half-logistic distribution, the Weibull-geometric distribution and the 

long-term Weibull-geometric distribution. In (2015), Elhag et al. discussed 

the Bayesian inferences of unknown parameters of the progressively 

Type-II censored Weibull-geometric (WG) distribution. Jaheen and Ali 

(2016) estimated the parameters of the Weibull-Geometric distribution 

based on progressive first-failure censoring scheme. Also, in (2017) Jaheen 

and Ali predicted future observables from the Weibull-Geometric model 

based on progressively Type-II censored data. 

The rest of the article is as follows: The model description and basic 

assumptions are described. The maximum likelihood and Bayes methods 

of estimation are used for estimating the unknown parameters of the WG 

model and the acceleration factor based on progressive first-failure 

censored data. Metropolis-Hastings (MH) algorithm is used to draw 

Markov Chain Monte Carlo (MCMC) samples from the posterior 

distributions, and they are in turn used to compute the Bayes estimates 

under two different loss functions. Monte Carlo simulation study is used to 

compare the different estimates. 

 

2.  THE CONSTANT PARTIALLY ACCELERATED LIFE TEST 

MODEL 

  According to constant PALTs, there are two groups of test items. The 

first group is under normal conditions while the second one is under 

accelerated condition. Progressive first-failure censoring is applied as 

follows. The first group has    sets, each set has    items. The second 

group has    sets, each of which has    items. In group j,      , as 

soon as the first failure (say             
) has occurred     groups with the 

group in which the first failure is observed are randomly removed from the 

test, when the second failure (say             
) has occurred     groups 

and the group in which the second first failure is observed are removed 

from the test, and finally as soon as the       failure (say              
) 

has occurred     
         groups and the group in which the       

first failure is observed are randomly removed from the test. The life times 

            
             

                  
,       are called 

progressive first-failure censored order statistics with the progressive 

censoring scheme                     
 . It is clear that   ,      , is 

number of the observed first-failures           and ∑  
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     . If the failure times of the       items originally in the test are 

from a continuous population with cdf s       and pdf s      , the joint 

probability density function for             
             

                  
 

is given by  

 

             ∏   
       

   ∏  
  

   
  (            

) (    (            
)   (     )  ]  (2.1) 

 where  
              

             
                  

   

 and  
                                                               

 It is clear from (2.1) that the progressive first-failure censored scheme 

includes the first-failure censored scheme, the progressive Type-II 

censored order statistics, usual Type-II censored ordered statistics and the 

complete ordered sample as special cases.  

2.1  BASIC ASSUMPTIONS 

 In this study, the lifetimes of items under normal conditions are 

assumed to follow the WG distribution having pdf, cdf, reliability and 

failure rate functions given in (1.1)-(1.4). The failure rate function of an 

item tested at accelerated condition is given by              where   

is an acceleration parameter satisfying    . Therefore the failure rate 

and the reliability functions are given, respectively, by  

                                                         (2.2) 

 and  

                   ∫  
 

 
        

                               
           (2.3) 

 Then the     and     under accelerated condition can be written, 

respectively, by  

                             

                                   
     (2.4) 

 and  

 

                                                             (2.5) 
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3.   MAXIMUM LIKELIHOOD ESTIMATION 

 In this section we derive the maximum likelihood estimates (MLEs) of 

the acceleration parameter and the unknown parameters   and   of the 

WG distribution when   is known. For      , the life times 

            
             

                  
 denote two progressive 

first-failure censored samples from two populations with (pdf s) and (cdf s) 

given by (1.1), (1.2), (2.4) and (2.5), with the progressive censoring 

scheme                     
 . Thus, from (1.1), (1.2), (2.4), (2.5) and 

(2.1) the likelihood function takes the following form  

 

                   
    

               ∏   
   ∏  

  

   
   

            
   

         
      

                
 
       

       
(3.1) 

 where               and  

                                                               

 The logarithm of (3.1) can be written as  

 

             ∑   
          

  
                         

 ∑   
   ∑  

  

   
                  

      
          

           

      
                    

 
   

   (3.2) 

 

Taking the derivatives with respect to  ,   and   of (3.2), 

assuming   is known, and putting them equal to zero we get  

 
  

  
         

 

 
      ∑   

   ∑  
  

   
        

       
            

 
     

                
 
                

 (3.3) 

 

           
  

  
 ∑   

   ∑  
  

   
 
    

   

   
 

     
       

       
 

    
       

            (3.4) 

 

 
  

  
 

  

 
 ∑   

   ∑  
  

   
                   

                        
 
     (3.5) 

 It follows from (3.5) that  

  
  

∑  
  
   

          
                        

 
  
                           (3.6) 
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 By solving the non-linear equations (3.3), (3.4) and (3.6) together, 

numerically, we get the maximum likelihood estimates of the parameters 

 ,   and  . 

 

4.   BAYESIAN ESTIMATION 

 Assume that the parameter   is a random variable with Gamma prior 

distribution with pdf of the form  

      
  

  

     
                                                   (4.1) 

 Assuming also that the parameter   is independent of   and has a Beta 

prior distribution with pdf given by  

      
 

        
                                             (4.2) 

 The prior density for the acceleration factor   can be taken as  

                                                               (4.3) 

 Hence, the pdf for the joint prior distribution of  ,   and   is  

         
   

  

             
                                      (4.4) 

 From (3.1) and (4.4), the joint posterior distribution takes the form  

 

                  
    

                                       

               ∏   
   ∏  

  

   
   

            
   

        
      

    

             
 
       

       

     (4.5) 

 where   is the normalizing constant given by  

     ∫  
 

 
∫  

 

 
∫  

 

 
                          

 and            is the likelihood function given by (3.1). 

The marginal posterior distributions and hence the Bayes estimates are 

computed from the posterior distribution (4.5) which includes complicated 

integrals that cannot be obtained in closed forms. Therefore the MCMC 

sampling procedure will be used to compute these Bayes estimates. 
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The most two often utilized techniques of the MCMC methods are the 

Gibbs sampler and the MH techniques. The Gibbs sampler technique needs 

the conditional posterior distributions to be in closed forms that can be 

simply generated from them. On the other hand, the MH technique needs 

only to use a jumping or a proposal distribution to generate from it instead 

of some complex distribution. For the algorithm to be efficient, the 

jumping distribution should be easy to sample from it. These techniques 

have been established in a number of references, see for example, 

Upadhyay and Gupta (2010) and Jaheen and Al Harbi (2011). 

From (4.5) the conditional posterior density functions are given, 

respectively, by  

 
                                       

 ∏   
   ∏  

  

   
   

           
      

                
 
       

       
(4.6) 

 
                            

 ∏   
   ∏  

  

   
         

   
            

 
       

       
              (4.7) 

 

               

       ∏  
  
                 

 
            

 
                    (4.8) 

As can be seen from (4.6), (4.7) and (4.8) these conditional posteriors 

cannot be reduced to closed forms and therefore we cannot sample directly 

from them applying the Gibbs sampler technique. So, we will consider the 

MH algorithm to generate samples from these conditional posterior 

distributions and then compute the Bayes estimates under the squared error 

and Linex loss functions. For this purpose, we use the MH algorithm, 

described in Metropolis and Ulam (1949) and Metropolis et al. (1953), as 

follows:   

    1.  Start with initial values     ,      and      and set    .  

    2.  Generate a candidate point    from a proposal Uniform 

(0,1) distribution, and calculate the ratio  

    
                  

                      
  

  

    3.  Generate   from a Uniform (0, 1) distribution, If     , 

accept    and set        , else set            .  

    4.  i=i+1.  

    5.  Repeat steps from 2-4 N times.  
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    6.  Calculate the Bayes estimator of   under a squared error 

loss function from  

  ̂   
 

   
∑   

           

 where M is the burn-in period.  

    7.  Repeat steps from 2-6 for the parameters   and  . The 

proposal distribution for the parameter   is the normal distribution 

           , and for the parameter   is             . Calculate the 

ratio    from  

    
       ̂          

           ̂          
  

 for the parameter  , and for the parameter   calculate the ratio    from  

    
       ̂    ̂     

           ̂    ̂     
  

 where  ̂   is the Bayes estimator of   under a squared error loss 

function which calculated from  

  ̂   
 

   
∑   

           

  

    8.  Calculate the Bayes estimator of   under a squared error 

loss function as follows  

  ̂   
 

   
∑   

           

 and under a Linex loss function, with the asymmetric parameter  , 

calculate the Bayes estimators of  ,   and   in the forms  

 ̂   
  

 
   

∑   
            

   
  

 ̂   
  

 
   

∑   
            

   
  

 

  

 ̂   
  

 
   

∑   
            

   
   

  

 It may be noted that we use the maximum likelihood estimates of the 

parameters as the initial values     ,      and      in step 1. 



Estimation for the Weibull-Geometric distribution based on constant…          35 

 

5.  SIMULATION STUDY 

 The performance of the different methods cannot be compared 

theoretically. Therefore, in order to compare the estimators of the 

parameters, Monte Carlo simulations are performed. Based on progressive 

first-failure censoring scheme, the different estimators are computed and 

compared numerically. All computations are performed using 

Mathematica 7.0. We mainly compare the performance of the MLEs and 

Bayes estimators of the unknown parameters  ,   and   when   is 

known under two different losses. 

The comparison between the estimates is taking place according to the 

following steps.   

    1.  For given hyper parameters,             and  , generate 

 ,   and   from the prior densities given by (4.1), (4.2) and (4.3). 

 

    2.  For given values of    and the progressive schemes    , 

     , with the generated values  ,   and   in step (1), generate 

two progressive first-failure censored samples of size    using the 

algorithm described in Balakrishnan and Sandhu (1995) with the 

distribution functions                 where       is given 

by (1.2) and (2.4) for       respectively. 

 

    3.  The maximum likelihood estimators are then obtained by 

solving the three nonlinear equations given by (3.3), (3.4) and 

(3.5) numerically. 

 

    4.  The Bayes estimators under the two different loss functions 

are then obtained by applying the MCMC technique, as 

described above. 

 

    5.  The above four steps are repeated 500 times and the mean 

squared errors (MSE) are then computed for the different 

estimators.  

 

The Bayes estimates are computed based on 10,000 MCMC samples, 

where the first 1000 values discarded as burn-in. Two different values of 

the asymmetric parameter         are considered to get the 

corresponding Bayes estimates. 

Different combinations of       and the progressive schemes     are 
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considered. A special case from the progressive first-failure censored 

scheme, which is progressive censored scheme, are considered as well. The 

results of this simulation are presented in tables (1) and (2). 

 

Table  1: Mean squared error of the ML and Bayes estimators with 

hyperparameters                        , and 

        
   

   

   

   

   

   

 MLE       MCMC 

SEL Linex 

         

20 

20 

10 

15 
      

          

  

  

  

0.1674 

0.0468 

1.4595 

0.1017 

0.0343 

0.1261 

0.1039 

0.0384 

0.0342 

0.1079 

0.0314 

0.8712 

      

         

  

  

  

0.2568 

0.0470 

3.0037 

0.1580 

0.0348 

0.1793 

0.1500 

0.0376 

0.0512 

0.1742 

0.0330 

0.9601 

25 

35 

15 

30 
         

         

  

  

  

0.0861 

0.0397 

0.6636 

0.0629 

0.0328 

0.1438 

0.0639 

0.0360 

0.0440 

0.0651 

0.0303 

0.5766 

         

         

  

  

  

0.0925 

0.0344 

0.7469 

0.0666 

0.0286 

0.1596 

0.0661 

0.0310 

0.0558 

0.0700 

0.0268 

0.5617 

30 

40 

20 

35 
          

         

  

  

  

0.0689 

0.0304 

0.5458 

0.0524 

0.0261 

0.1596 

0.0537 

0.0284 

0.0783 

0.0536 

0.0242 

0.4754 

          

         

  

  

  

0.0868 

0.0341 

0.5965 

0.0640 

0.0287 

0.1579 

0.0629 

0.0306 

0.0659 

0.0673 

0.0272 

0.4853 

 *The scheme:          means                                    
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Table  2: Mean squared error of the ML and Bayes estimators with hyper 

parameters                        , and 

        
  

   

   

   

   

   

   

 MLE        MCMC 

SEL Linex 

          

20 

20 

10 

15 
      

          

  

  

  

0.2566 

0.0499 

1.2699 

0.1028 

0.0317 

0.1112 

0.1236 

0.0362 

0.0499 

0.1228 

0.0288 

0.7758 

      

         

  

  

  

0.2752 

0.0481 

2.1335 

0.1258 

0.0324 

0.1571 

0.1420 

0.0375 

0.0678 

0.1475 

0.0290 

0.8396 

25 

35 

15 

30 
         

         

  

  

  

0.1332 

0.0419 

0.7388 

0.0802 

0.0317 

0.1653 

0.0904 

0.0359 

0.0694 

0.0854 

0.0285 

0.5678 

         

         

  

  

  

0.1262 

0.0368 

0.7464 

0.0755 

0.0288 

0.1612 

0.0848 

0.0326 

0.0644 

0.0815 

0.0260 

0.5463 

30 

40 

20 

35 
          

         

  

  

  

0.0764 

0.0400 

0.6292 

0.0542 

0.0308 

0.1583 

0.0661 

0.0352 

0.0654 

0.0528 

0.0273 

0.5233 

          

         

  

  

  

0.1025 

0.0353 

0.5759 

0.0657 

0.0284 

0.1549 

0.0726 

0.0315 

0.0761 

0.0701 

0.0259 

0.4699 

 

6.  CONCLUSIONS 

 In this article we discussed the estimation of the two unknown 

parameters       of the Weibull-Geometric distribution and the 

acceleration parameter  , when the parameter   is known, based on 

constant partially accelerated life tests. Based on a progressive first-failure 

censored sample the maximum likelihood and the Bayes estimates are 

obtained. It is observed that the Bayes estimators cannot be obtained in 

explicit forms and they need complicated integrals to be performed 

numerically. Because of that, the MCMC method, namely the MH 

sampling technique, is applied to obtain the Bayes estimates under squared 

error and Linex loss functions. 
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From the results, in tables (1) and (2), it can be observed that the 

Bayes estimates under the symmetric (SEL) and the asymmetric (Linex) 

loss functions are generally better than their corresponding MLEs. It can 

also be seen that the mean squared errors decrease as the sample sizes 

increase. Also there is no large effect of exchanging the censoring scheme 

on results. 
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 اخخباراث أساش عهى انهنذسً - واٌبم حىزٌع يعانى حقذٌر

 طرٌقت باسخخذاو جسئٍا ثابج إجهاد ححج انًسرعت انحٍاة

MCMC 

*عهً يحًذ عادل يحًذ و د سارة  *جاهٍن فكري زٌنهى .د.أ
 

 أسيىط جاهؼت- الؼلىم كليت - قسن الزياضياث*

 - وايبل حىسيغ لوؼالن الأػظن والخزجيح بييش هقذراث إيجاد البحث هذا في حن

 الوسزػت الحياة اخخباراث أساص ػلى (γ) الخسارع هَؼلوتإلى  بالاضافت الهنذسي

 Markov Chainطزيقت  باسخخذام بييش هقذراث حساب حن .جشئيا ثابج اجهاد ححج

Monte Carlo .هحاكاة طزق باسخخذام الوخخلفتالخقذيزاث  بين بالوقارنت وقونا 

 (Monte Carlo simulation study).كارلى  هىنج

 

 

 


