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Abstract: Kinematic analysis of phantom AX12 robot is discussed in this paper. Each leg 

contains three revolute joints in order to mimic the structure of an insect. Denavit-Hartenberg 

(D-H) conventions are used to perform kinematic analysis of the six-legged robot. To develop 

the overall kinematic model of phantom ax12 robot, direct and inverse kinematic analyses for 

each leg have been considered. Trajectory of each leg is also considered for both swing and 

support phases. In swing phase analysis, cubic and quantic polynomials are used. The 

proposed model is then implemented and visualized to verify its performance in comparison 

with an actual phantom ax12 robot. 
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Introduction 
Walking machines are desirable because they can navigate terrain features that are similar in 

size to the size of the robot, whereas wheeled and tracked vehicles are only suitable for 

obstacles smaller than half the diameter of the wheel. Furthermore, if given an ability to find 

locally horizontal footholds in regionally steep terrain, they can climb extreme angles. 

Applications potentially include reaching territories which are unreachable or dangerous for 

humans, exploration, mining, military, rescue, and industrial environments, on earth and 

beyond. Nevertheless, legged robots are also used for experimental studies on the behavior of 

living animals and for testing Artificial Intelligence (AI) techniques[1]. 

 

The available options in legged robots are enormous, configuration from 2 legged 

(Humanoid),4 legged (Quadrupeds), 6 legged (Hexapod) and the 8 legged (Octopod) 

configuration like spiders[2]. 

 

Typical hexapod robots can be classified into rectangular and hexagonal ones Fig. 1. 

Rectangular hexapods are inspired from insects have six legs distributed symmetrically along 

two sides; each side having three legs, this design is fast in forward direction but less flexible 

in turning or moving sideways. 

Hexagonal hexapods have six legs distributed axisymmetrically around the body. The 

hexagonal hexapod has the advantage of being more flexible in moving and achieving the 

same walking speeds in all directions. A lot of examples can be found of the 6 legged robot 

design, we will study phantom Ax12 rectangular hexapod see Fig. 2.. 
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Fig. 1 Two types of hexapod robots[3] 

 

 

 

 
 

Fig. 2   3D model of phantom AX12 hexapod 

with the body axis at its CG  
 

One of the main challenges in the development of hexapod robot is the locomotion system 

design. It involves the interaction of structures composed of prismatic or rotational joints 

which emulates the nature motion mechanism, allowing adapting to uneven terrain. It also 

needs to deal with problems like the mechanical complexity existing in legs, the mechanism 

stability, power consumption, synchronization of the links in each of the robots joints and the 

control of required number of degrees of freedom. In case of a hexapod robot with three 

degrees of freedom per leg it is required to synchronize eighteen degrees of freedom. 

 

The organization of the paper is as follows: In Section 2, kinematic model of hexapod is 

presented. In Section 3, a leg trajectory generation algorithm for a hexapod is developed, and 

validation results are presented in Section 4. Section 5 concludes the paper. 
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Kinematic Model of Hexapod 
To be able to control the robot, kinematic model of the robot is developed. Coordinate frames 

are defined for all important parts of the system. The defined coordinate systems will be used 

throughout the paper. To be able to coordinate the movement of the robot in relation to the 

environment, a kinematic model is created. The kinematic model consists of both the 

kinematic description of the robot and its legs and an IK solution for the legs and the robot 

body itself. This makes it possible to calculate the joint angles for the robot legs, for a given 

leg and robot configuration. To derive the kinematic model, the following assumptions are 

made: 

 

a) The robot moves forward in a straight path on flat surface with alternating tripod gait. 

b) The trunk body is held at a constant height and parallel to the ground plane during 

locomotion. 

c) The center of gravity of the trunk body is assumed to be at the geometric center of the 

body. 

 

Forward Kinematics Problem 
The forward kinematics generally means given the joint variables we get the position and 

orientation of the end effector in our study of phantom ax12 hexapod it means knowing the 

joint variables θ1, θ2 and θ3 we know the position and orientation of leg tip. 

 

Leg kinematics 
Phantom ax12 leg consists of three main links coxa, femur and tibia as shown in Fig. 3, the 

robotic leg, with rotational axes added. The green axis no(1) is named coxa joint at the 

beginning of the coxa link, the Red axis no(2) is Named femur joint at the beginning of the 

femur link, and the blue axis no(3) is named tibia joint at the beginning of the tibia link, each 

link is actuated through a Dynamixel AX-12 servo motor. 

 

 

 

 
 

Fig. 3 The robotic leg rotational axes 

 

 

 

Kinematic modeling of each leg using the Denavit-Hartenberg (D-H) notations[4], Fig. 4, 

shows the coordinate frames attached to each joint. 
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Fig. 4 One of the robot legs with 

 all link frames 

 

The D-H parameters of the hexapod leg are illustrated in Table 1 where: 

 Link length ai is the distance from Zi to Zi+1 measured along Xi.  

 Link twist αi is the angle from Zi to Zi+1 measured about Xi. 

 Link offset di is the distance from Xi-1 to Xi measured along Zi.   

 Joint angle θi is the angle from Xi-1 to Xi measured about Zi. 

 

Table 1   D-H parameters of the hexapod leg 
 

Transformation/parameter αi-1 ai-1 di θi 

1              0 0 0 0 θ1 

2              1 90 52 0 θ2 

3              2 0 82 0 -θ3 

4              3 0 140 0 0 

 

 

Transformation matrix defines frame (i) relative to the frame (i -1) equals 

 

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii

i
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c s a
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 

 

 



   

   
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 

     
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    
 
 

 (1) 

 

 

where: 

 

cθi=cosθi , si=sinθi 

cαi-1=cosαi-1,
 
sαi-1=sinαi-1 

 

The specific leg transformation matrices, transforming the coordinates from one link frame to 

the next frame, are shown below 

 

1 1

1 10

1

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

T
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 
   

(2) 
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(6)

 

 

Body kinematics 
The position of legs on the body is defined through a transformation matrix the rotation part is 

only a rotation about the z axis with the angles of coxa point of the legs which equal (135, 

180, 225, 315, 0, 45) relative to the order in figure of the legs (measured from the x axis of the 

body) The notations (rm), (rf) (lm) and so on Are shorthand names for the leg positions, eg. 

rm is right middle and lf is left front, also the numeration of the legs are shown in  

Fig. 5  

 

 
 

Fig. 5 The position of the leg frames 

 relative to the robot body frame 
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Transformations are denoted 
B

lfT for the transformation from the front left leg (lf) frame to 

the body frame (B) 
 

cos sin 0

sin cos 0

0 0 1 0

0 0 0 1

B

l

x

y
T

   
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 
 

 

 

 

(7) 

 

 

where: 

k  is the angle about z axis of the k’th leg, relative to the body frame. 

The roll, pitch and yaw angles (α, β and  ) rotates the body around the y-axis, the x-axis and 

the z-axis correspondingly. The rotation of the body frame consists of three rotations, one 

about each axis. In this case the rotations occur in the yxz (roll-pitch-yaw) order 
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(8) 

 

where:  

α is the roll angle.  

β is the pitch angle. 


 
is the yaw angle. 

 

Now the transformation from the leg end points to the global frame can be written as  

4 4

G G B

rm B rmT T T 
 

 

(9) 

 

At the end of this part if we know the joint angles and the position and orientation of the CG 

of the body of the hexapod we can know the position of all leg tips we build a simulator with 

the help of Matlab software to verify the kinematic model as shown in Fig. 6. 

 

Inverse kinematics problem 
As seen in the previous section a forward kinematic problem is solved but the reverse 

operation is often interesting, and if it is possible for the leg end point to reach a position in 

space, it is also possible to determine the angles at all the joints, for the given position To be 

able to find the angles of all the joints on the robot, it is necessary to know the goal  position 

of the end points, and also the pitch, yaw, roll, and position of the  CG of robot body, in the 

global frame. There are two main methods to solve inverse kinematics: 

 Numerical solutions 

Because of their iterative nature, numerical solutions generally are much slower than the 

corresponding closed-form solution so much so, in fact, that, for most uses, we are not 

interested in the numerical approach to solution of kinematics. 

 Closed-form solutions 

Means a solution method based on analytic expressions or on the solution of a polynomial 

of degree 4 or less. Within the class of closed-form solutions, we distinguish two methods 

of obtaining the solution: 

o Algebraic  

o Geometric 
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Fig. 6 Kinematic simulator 

 

 

Transforming from Global Frame to Leg Frame 
Before the IK can be solved for the individual legs, the leg end point coordinates, which are 

referenced in the global frame, needs to be transformed to the individual leg frames. This 

inverse transformation is the pseudo inverse of the body to leg transformation B

lT  and global 

to body frame transformation G

BT  pseudo inverse of B

lT and G

BT  is shown in Equations (10) 

and (11). 
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(11) 

 

 

where: 
G

BR is the rotational transformation from the body frame to the global  frame. 
G

Bd  is translational transformation from the body frame to the global  frame. 
B

lR  is the rotational transformation from the leg frame to the body  frame. 
B

ld  is translational transformation from the leg frame to the body  frame. 

 

 



Paper: ASAT-15-137-CT 

 

 

8 

 

Solving IK for Each Leg Geometrically 
 

 
 

Fig. 7  The coxa joint angle, 

in the leg-frame 

 

The following equations show how to solve inverse kinematics 

 

1 4

4

coxa angle  tan
Y

X




 

(12) 

 

 
2 2TrueX  X Y   Lcoxa    (13) 

  
2 2Im  (TrueX) Z   (14) 

 

Get femur angle above horizon 

 

1

1

Z
q   tan

TrueX


 

(15) 

 

Apply law of cosines in the triangle abc 

 
2 2 2

1

2

Im
q   cos

2 Im

Lf Lt

Lf

  


   
(16)

 

 

And tibia angle from femur 

 
2 2 2

1 Im
   cos

2

Lf Lt

Lf Lt
   


 

 (17) 

 

 

3 tibia angle   180  
 

(18) 
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Leg Trajectory Planning 
Walking speed of legged robots is also an extremely important factor for robot locomotion it 

depends on the number of legs (which means the more legs the robot has the speeds can 

achieve), the gait type and also depends on the leg trajectory of the robot 

The leg trajectory will be explained in this section. All individual leg trajectories will be 

combined into a walking gait to move robot. The leg trajectory describes the angle of each 

link as a function of cycle time. 

 

The leg trajectory parameters are: cycle time T, duty factor β and step size Ls, these 

parameters determine the body velocity 

 

n sV  = L /T 
 

(19) 

 

 

 (1 )tT T   (20) 

  

sT T  (21) 

 

where:
 

Vn is the speed of a legged robot with n amount of legs performing a wave gait 

Cycle time: This is defined as the time for a complete cycle of the leg locomotion of a 

periodic gait. 

Transfer phase tT : The transfer phase of a leg is the period during which the foot is in the air 

(no ground contact). 

Support phase sT : The support phase of a leg is the period during which the foot is on the 

ground and supports the robot. 

Duty factor: is the ratio of the support phase and the transfer phase with respect to the Cycle 

time. 

 

Gait is a description of how the robot moves its legs, there many types of gaits can the six 

legged robot can achieve. In our work we choose tripod gait where the robot moves two legs 

in one side and the middle leg on the opposite side as seen in Fig. 9. Tripod gait is the fastest 

gait of hexapods while keeping static stability (static stability means CG of the robot is 

always inside the polygon of stability).  

Fig. 8 The 2D triangle with vertices of the femur 

and the tibia link frame origins[5] 
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Fig. 9 Tripod gait of a hexapod robot, here three legs move 

 at the same time while keeping static stability[2] 

 

For our hexapod we choose the following value for simulation Gait type Tripod, Step length 

26 mm, Step height 30 mm, (these values are taken from the real phantom Ax12 hexapod) 

We solve inverse kinematics at start point  for the right middle leg (219.1705,-13,0) , via point 

(intermediate point) (219.1705,0,30),(219.1705,13,0)(all point in the global frame, all units in 

mm) and at end point the values of θ1 , θ2, θ3(in degrees) are listed in Table 2 

 

Table 2 joint angles for start point, 

mid-point and end points 
 

Point/ 

         angle 
θ1 θ2 θ3 

start point θ0 -6.2256 35.0059 124.7146 

via point θv 0 63.7989 141.0204 

end point θg 6.2256 35.0059 124.7146 

 

Leg trajectory can be divided into two main parts: swing and support phases. 

 

Swing (transfer) phase 
 

Cubic polynomial 
2 3

0 1 2 3

2

1 2 3

2 3

( )

( ) 2 3

( ) 2 6

t a a t a t a t

t a a t a t

t a a t











   

    

   

 (22)

 

 

 

For the Calculation of the trajectory of θ1 (coxa angle), θ2 (femur angle) and θ3 (tibia angle) 

we divide the trajectory into two cubic segments where the initial angle is θ0, the via point is 

θv and the goal point is θg with Continuous velocity and acceleration at via point. 

These constrains specify a linear equation problem having eight equations and eight 

unknowns; solving them we get the trajectory of each joint. For calculating Trajectory of 1 ,

2 and 3  we assume 1 2 0.13secf f ft t t  
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Fig.10  Coxa angle trajectory 

 

Fig. 11 Femur angle trajectory 

 

Fig. 12 Tibia angle trajectory 

 

 

Disadvantage of cubic paths is the acceleration jump at boundaries that introduces infinite 

jerks so we will use another method. 
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Quantic polynomial 
For the process of trajectory planning the quantic polynomials are chosen in the form 

 
2 3 4 5

0 1 2 3 4 5

2 3 4

1 2 3 4 5

2 3

2 3 4 5

( )

( ) 2 3 4 5

( ) 2 6 12 20

t a a t a t a t a t a t

t a a t a t a t a t

t a a t a t a t











     

        

       
 

(23)

 

 

Here we have rest-to-rest path with no acceleration at the rest positions with the following 

conditions: 

 

0(0) , (0) 0, (0) 0

( ) , ( ) 0, ( ) 0f f f ft t t

   

   

 

 

  

  
 

(24)

 

 

 

 
Fig. 13 Coxa angle trajectory 

 

 
Fig. 14 Femur angle trajectory 
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Fig. 15 Tibia angle trajectory 

 

 

The motion is forced to have zero acceleration and zero jerk at start and stop. Hence, it shows 

the smoothest start and stop. 
 

 

Support Phase 
During support phase the robot stands on the swing legs and move the body in the direction of 

motion(forward, backward, sideward or rotational) when the body move it is only changes the 

values of θ1 for all the legs and the values of  θ2and θ3 remains constant. Here we will use a 

quantic polynomial with rest to rest conditions at the start and end of the path as seen in 

Fig. 16. 

 

 

 
Fig. 16 Body motion during support phase 
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Validation of Results of Leg Trajectory 
To validate our calculation we compare the results with the results in [6], Table 3 contains the 

values of joint angle, and Fig.17 illustrates simulation results and the results of quantic 

polynomial are shown in Fig. 18. 

 

 

Table 3  Initial and final values 

 of joint angles 
 

Point/ 

                             angle 
θ1 θ2 θ3 

start point θ0 345 310 4 

via point θv 355 330 34 

end point θg 365 310 4 

  

 

 

 
 

 

 
 

Fig. 17 Simulation results[6] 
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Fig. 18 current model results 

 

Conclusions 
The proposed kinematic model shows ability of modeling phantom AX12 hexapod robot 

since output control commands are continuous and differentiable functions. Given the 

position of leg tip, all joint variables are then calculated graphically using inverse kinematics 

and the results are visualized for the sake of validation. Cubic polynomial trajectory gives 

zero initial and finial velocities of leg tip at the desired points determined by forward 

kinematic analysis. Quantic polynomials prove its ability to perform a smooth trajectory with 

both zero velocities and acceleration at initial and final leg configurations. Leg trajectory 

model results are then compared to come previously publish research and gives even 

smoother motion in case of quantic functions. 
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