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Lie symmetry group analysis is applied to determine the exact solution of the one-
dimensional convection-diffusion equation. The similarity transformation is found
using symmetries, and the invariant solution of the original partial differential equation
(PDE) is produced from the solution of transformed ordinary differential equation
(ODE). The analytical solutions are obtained using symmetries and summarized in
tabulated form.
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1. Introduction

Convection-diffusion equation is one of the most important partial
differential equations. The equation appears in a wide range of engineering
and various fields of science, for instance: radial physics, hydrology, building
physics, chemistry. Daga and Pradhan [1] presented an analytical solution to
describe the uniform dispersion of a solute in uniform flow. Fallahzadeh and
Shakibi [2] solved the convection-diffusion equation using homotopy
analysis method. Veling [3] presented an analytical solution of the
convection-diffusion equation in radial physics. Tracy [6] applied an
analytical solution to study the relation between moisture content and relative
conductivity against pressure head to unsaturated flow in groundwater. Hu et
al. [8] used Fourier series to obtain new analytical solution for convection-
diffusion equation to calculate soil thermal diffusivity, water flux density and
soil temperature. Svoboda [19] showed that the modern construction
containing permeable thermal insulation are very sensitive to the convective
component of the heat transfer.

Many researchers have used various numerical methods to solve
convection-diffusion equation. Baza'n [5] studied numerical solution of
convection-diffusion equation by Chebyshev pseudospectral method. In
Boztosun and Charafi [10], mesh-free and mesh-dependent methods were
used to solve convection-diffusion equation. Ghasemi and Kajani [12] solved
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the convection-diffusion equation using He’s homotopy perturbation method.
Olayiwola [13] presented Variational iteration method to solve convection-
diffusion equation. Feng [17], Explicit finite difference method was used to
solve convection-diffusion equation. EL-Wakil and Elhanbaly [18] solved the
convection-diffusion equation using Adomian decomposition method.

The purpose of this paper is to use Lie group analysis method, also called
classical symmetries method (CSM) to obtain the exact solution of
convection-diffusion equation. Some applications of this method in
differential equations can be found in [4; 7; 9; 11; 14; 15 and 16].

2. A Model Problem
We consider the one-dimensional convection-diffusion equation

ou ou 0%u
E+aa—sﬁ—0, OSXSl,OStST,
(1.1)

With initial condition

u(x,0)=f(x), 0<x<1,
(1.2)

and boundary conditions
u(0,t) = go(t), 0<t<T,

u(l,t) =g,(t), 0<t<T
(1.3)

where f,go,and g, are known functions, the parameters oand € are
convection and diffusion coefficients respectively and both are assumed to be
positive.

In fluid mechanics, Eq. (1.1) describes the transport occurring through the
combination of convection and diffusion. The analytical solution of
convection-diffusion equation (1.1) along with the initial and boundary
conditions (1.2), (1.3) describe practically the behavior of the pollutant
concentration distribution through an open medium like rivers [1].

3. Lie Group Transformation Method

The Lie group transformation method [4, 9, 14, 16] is one of the group
theoretic methods, which is used to transform the partial differential equation
(PDE) to ordinary differential equation (ODE) by so-called similarity
transformation. In this study, we present the method of Lie group of
transformations, which makes Eqg. (1.1) invariant.
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We start with the system of M differential equations

A (x,u,u,..,u )=0, i=12,...m
1 (k)

(1.4)
of order k , with p independent variables x:(xl,xz,...,xp)eRp, and q
dependent variables u =(u1,u2,...,uq) eRY.where m,k, p and gare positive
integers, and uk is the set corresponding to all kth order partial derivatives of
U with respect to x.

Suppose that the one-parameter ¢ -Lie group point of transformations are
given by

X=X (XU;8) =x +&& (x,u)+0(&?),

(L5)
u™ =U%(x,u;¢) =u” + ¢ (x,u) + O(&?),
(L.6)
U =U7(x,u,u;8) =u” +£4(x,u,u ) +0(s?),
(1.7)
ut o =us o (Xuu .U GE)
'1'2 7N '1'2 7
=u® +eg"  (xu,u .U ) +O0(e?)
'2 7k '2 7k
(1.8)

where & is the group parameter, and & (x,u), ¢“(x,u) are the infinitesimals

and ¢™“ are given by
2k
$O* =D ¢ —(D; EWY, i =12..pi @ =12,
(1.9)
and
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g =Dy P —(D &It
12 N ' o1 19 N Z1
ir =12,...,pfor £=12,...k withk =23,...
(1.10)
where D is the total derivative operator defined as
0 v O « O a 0
= +U +u’ +..4U0"
ox ou® ou” M2 ou,
J 12" p
(1.11)

with summation over a repeated index.

The infinitesimal generator of the one-parameter Lie group of
transformations for the system (1.4) is

X = éfi (X, u)% + éqﬁ“ (x,u) 0

ou”
(1.12)
and the k™ prolongation of the infinitesimal generator (1.12) is
Pr X =X +4%(x,u,u) 0 T A (A TRTIN T 0 (1.13)
i 1 aua |1|2---|k 1 k 8u“

i P
12k

The invariance condition of the system (1.4) is given by the following
equations:

(k) i ) — Poi
Pr X(A)‘AJZO—O, i,j=12,...m (1.14)

Thus, the system of differential equations (1.4) is an invariant under the
transformations of a one-parameter group with the infinitesimal generator

(1.12) if the & s and ¢“'s are determined from (1.14). Hence, condition
(1.14) expresses that pr* X vanishes on the solution set of system (1.4).

Now, we consider

2
LA (1.15)
ot OX OX
and the following Lie group of transformations with independent variables
X,t and dependent variable U

A
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x=x(x,t,u;e), t=t(x,t,u;e), u=1u(xtu;e) (1.16)

The infinitesimal generator (1.12) for (1.16) can be expressed in the
following form

X=s‘1(x,t,u)%+fz(x,t,u)%+ ¢(x,t,u);—u (1.17)

Here u' =u, x,=X, X, =t and ¢'=¢.

To calculate the infinitesimals & , & and ¢ from the condition (1.14) we

need to write the second prolongation of the infinitesimal generator given by
(1.12) since the governing equation include the second order partial
derivative. Then from the formula (1.13), we get
0 0 0 0 0
Pri¥ X =X + + + + + 1.18
¢xau ¢taut ¢xt6uxt ¢xx ou ¢tt8u (1.18)

X XX tt

where ¢ ¢t¢xt ,¢ and ¢nare given from the expressions (1.9) and
(1.10).
Applying the second prolongation (1.18) to (1.15), that is,

Pr¥? X(A)=0, when A=0
(1.19) Eq. (1.19) then leads to

qﬁt+a¢ —-c¢ =0 (1.20)
Conditions on the infinitesimals &, &, and ¢ are determined by equating
coefficients of similar derivatives of monomials in u,, u, and higher

derivatives by zero. This leads to a system of partial differential equations
from which we can determine &, & and ¢. Solving these equations to get

the infinitesimals solutions &, & and ¢ in the following forms:
(xtu)—lxtc +1( t+x)c —2&tc +cC
51 T, 1 9 @ , CE Ty
§z(x,t,u)_5t c1+tc2+c3,
¢(x,t,u)=ceexp(at+2i(a—\/a2+4ag)x)+c7exp(at+2i(a+\/a2+4ag)x)
& &

1 1 2
+uc, —(at—x)u05 —Z(t—z(at—x) )ucl

(1.21)
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where ¢ ,i=12,...,8 are arbitrary constants.
1

Egs. (1.21) show that the convection-diffusion equation has the following
generators symmetry group:

1 1 1 1 2
X, ==Xtd, +-t%0, —=(t——(at—x)°)ud,,
T R S 4( 25( ))ua,

1
X, =E(oct+x)aX +t0,,

X,=0,, X,=U0,, Xy =—2¢t0, —(at—x)ud,,

X :exp(at+2i(a—\la2 +4ag)x)0,,
&

X, =exp(at+2i(a+\la2 +4aeg)x)0,, Xg =0,
&

(1.22)
4. Similarity Reduction And Similarity Solutions

We consider the generators (X, +cXg), (X, +X), (X, +X,), and (X,) .

Now, we classify and organize the similarity transformations and the exact
solutions of Eq. (1.1) by using above generators in the following tables.

Table 1. (For X; +cXj)

X3 +C Xg at +C 8X
Similarity transformation n=x—ct,u(x,t)= ()
Similarity reduced ODE ef"m+(Cc—-a)f'(n)=0

Similarity solution _ a—cC
fn)=c, +c,en(™~n)

Exact solution
a—C

u(x,t)=c1+c2 exp( (x—ct))

Table 2. (For X, +X,)
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X, +X, 0, +U0,
Similarity transformation n=t,u(x,t) =exp(x+ f(n))
Similarity reduced ODE f'(7)+(a—€)=0

Similarity solution
Exact solution

f(n)=(e-a)n+c

u(x,t) =C exp X+ (e—a)t)

Table 3. (For X; +X,)

X;+X,

Similarity
transformation

Similarity reduced ODE

Similarity solution

Exact solution

0, +uad,
=X, u(xt) =ep(t+ ()

s(f" )+ £2(m) - () —1=0

o —~ A ~ A

f@7) =( —)77—Ln
2e s[c op (Y2, e j
1 & 2

a_\/z)x—Ln VA
2¢ JA
g(clexp (g)X_CZJ

u(x,t)y=exp<t+(

Where A=a? +4¢
Table 4. (For X,)
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X,

Similarity transformation
Similarity reduced ODE
Similarity solution

Exact solution

%(at+x)8x +to,

n:%_a VE, u(x,t) = f(77)
2t (n)+n f'(m) =0

f (1) =c1+czerf(232)
u(xt)=c +c erf ety

2zt

LH 04 L1} oE 1
1

Figure (la): 6‘126‘1 =l.a=2e=1Ltr=1

Figure (1b): £ = =l a=2 =1
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Figure (2a): < =lLa=0%5s=1Lr=1
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Figure (2b): c1=L a=05 =1
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[ 02 04 3 0z 1

0s
Figue (32): ¢ =c =1 a=05 s=1 =1 . ® 00

] oz 04 o8 ]

Figure (4a): ¢ =€, =1. =05, &=1¢t=005

Figure (4b): ¢ =¢, =1, =05, =1

5. Symmetry Reduction And Exact Solution Of The Initial Boundary
Value Problem (Ibvp) (1.1)-(1.3)

In this section, we present the similarity transformations and exact
solution for one of the above generators for the convection-diffusion equation
(1.1) with initial and boundary conditions (1.2) and (1.3). We will consider a
linear combination of generators X,and Xz ( X;+CX; ) as in the table 1,

we get

n=x-—ct,u(x,t)=f(n) (1.23)
It is interesting to note that, if ¢ =0 equation (1.1) becomes steady, in such
case n=x and f(n)=u(x).

The similarity transforms in (1.23) change the original governing equations
to the reduced system of the BVP in the following form of ordinary
differential equation:

ef"(n)+(c—a)f'())=0, nel[-ctl-ct] (1.24)

with the moving boundary conditions
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f=g,t) atn—>-ct, f=g,(t) atnp—>1-ct (1.25)

The ordinary differential equation (1.24) with boundary conditions (1.25)
will be solved by any suitable method, and then we can obtain the solution of
the original problem.

6. Discusion And Concludig Remarks

In this paper, we apply Lie group method for Eq. (1.1), then we have
found the infinitesimals (1.21) and its similarity generators (1.22) for Eq.
(1.1). The similarity transformation and exact solutions for some generators
are presented in tables as follow:

Tables (1), (2) and (3), contain the similarity transformation, similarity
reduction, similarity solution and exact solutions of Eq. (1.1) for the linear
combinations of generators (X;,X;), (X,,Xg),and (X;, X, ) respectively.

Table (4) contains the similarity transformation, similarity reduction,
similarity solution and exact solution of Eq. (1.1) for the generator X, .

Figures (la,b)- (4a,b) show the behavior of the exact solutions for the
original partial differential equation as in tables (1)-(4) respectively for
various arbitrary values of quantities.

Finally, its demonstrated by using the similarity transforms (1.23), the
original partial differential equation (1.1) with initial and boundary
conditions (1.2) and (1.3) respectively that can be transformed to boundary
value problem (1.24) and (1.25) of ordinary differential equation.
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