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Lie symmetry group analysis is applied to determine the exact solution of the one-

dimensional convection-diffusion equation.  The similarity transformation is found 

using symmetries, and the invariant solution of the original partial differential equation 

(PDE) is produced from the solution of transformed ordinary differential equation 

(ODE). The analytical solutions are obtained using symmetries and summarized in 

tabulated form.  
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1. Introduction 

Convection-diffusion equation is one of the most important partial 

differential equations. The equation appears in a wide range of engineering 

and various fields of science, for instance: radial physics, hydrology, building 

physics, chemistry. Daga and Pradhan [1] presented an analytical solution to 

describe the uniform dispersion of a solute in uniform flow. Fallahzadeh and 

Shakibi [2] solved the convection-diffusion equation using homotopy 

analysis method. Veling [3] presented an analytical solution of the 

convection-diffusion equation in radial physics. Tracy [6] applied an 

analytical solution to study the relation between moisture content and relative 

conductivity against pressure head to unsaturated flow in groundwater. Hu et 

al. [8] used Fourier series to obtain new analytical solution for convection-

diffusion equation to calculate soil thermal diffusivity, water flux density and 

soil temperature. Svoboda [19] showed that the modern construction 

containing permeable thermal insulation are very sensitive to the convective 

component of the heat transfer.    

Many researchers have used various numerical methods to solve 

convection-diffusion equation. Baza'n [5] studied numerical solution of 

convection-diffusion equation by Chebyshev pseudospectral method. In 

Boztosun and Charafi [10], mesh-free and mesh-dependent methods were 

used to solve convection-diffusion equation. Ghasemi and Kajani [12] solved 
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the convection-diffusion equation using He’s homotopy perturbation method. 

Olayiwola [13] presented Variational iteration method to solve convection-

diffusion equation. Feng [17], Explicit finite difference method was used to 

solve convection-diffusion equation. EL-Wakil and Elhanbaly [18] solved the 

convection-diffusion equation using Adomian decomposition method. 

The purpose of this paper is to use  Lie group analysis method, also called 

classical symmetries method (CSM) to obtain the exact solution of 

convection-diffusion equation. Some applications of this method in 

differential equations can be found in [4; 7; 9; 11; 14; 15 and 16]. 

2. A Model Problem 

    We consider the one-dimensional convection-diffusion equation  

                               
  

  
   

  

  
   

   

                                            

(1.1)                                         

With initial condition  

                                                                                                                      
(1.2) 

and boundary conditions 

                        

                                                                                                                       
(1.3) 

where             are known functions, the parameters           are 

convection and diffusion coefficients respectively and both are assumed to be 

positive. 

In fluid mechanics, Eq. (1.1) describes the transport occurring through the 

combination of convection and diffusion. The analytical solution of 

convection-diffusion equation (1.1) along with the initial and boundary 

conditions (1.2), (1.3) describe practically the behavior of the pollutant 

concentration distribution through an open medium like rivers [1].    

3. Lie Group Transformation Method  

The Lie group transformation method [4, 9, 14, 16] is one of the group 

theoretic methods, which is used to transform the partial differential equation 

(PDE) to ordinary differential equation (ODE) by so-called similarity 

transformation. In this study, we present the method of Lie group of 

transformations, which makes Eq. (1.1) invariant.  
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We start with the system of  m  differential equations 
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of order k  , with p  independent  variables 
p

p Rxxxx  ),...,,(
21

, and q  

dependent variables .),...,,( 21 q
Ruuuu

q
 where qandpkm ,, are positive 

integers, and 
k

u is the set corresponding to all kth
 order partial derivatives of 

u with respect to x .   

    Suppose that the one-parameter -Lie group point of transformations are 

given by   
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where   is the group parameter, and ),( ux
i
 , ),( ux  are the infinitesimals 

and  
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and  
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where D is the total derivative operator defined as  
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with summation over a repeated index.  

The infinitesimal generator of the one-parameter Lie group of 

transformations for the system (1.4) is                                                       
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(1.12) 

and the  thk  prolongation of the infinitesimal generator (1.12) is 

(1.13)
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The invariance condition of the system (1.4) is given by the following 

equations:  

       
mjij
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       (1.14) 

Thus, the system of differential equations (1.4) is an invariant under the 

transformations of a one-parameter group with the infinitesimal generator 

(1.12) if the s
i

' and s'
 are determined from (1.14). Hence, condition 

(1.14) expresses that )(kpr  vanishes on the solution set of system (1.4). 

Now, we consider  
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and the following Lie group of transformations with independent variables 

tx, and dependent variable u  



 Exact Solutions Of The One-Dimensional Convection-Diffusion Equation . . .            5 

         ̅   ̅         ,   ̅   ̅         ,    ̅   ̅                      (1.16) 

The infinitesimal generator (1.12) for (1.16) can be expressed in the 

following form  
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Here txxxuu  21

1 ,, and   1 . 

To calculate the infinitesimals 
21 ,  and  from the condition (1.14) we 

need to write the second prolongation of the infinitesimal generator given by 

(1.12) since the governing equation include the second order partial 

derivative. Then from the formula (1.13), we get 
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Applying the second prolongation (1.18) to (1.15), that is, 
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where 8,,2,1, i
i

c  are arbitrary constants. 

Eqs. (1.21) show that the convection-diffusion equation has the following 

generators symmetry group:         
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4. Similarity Reduction And Similarity Solutions 

      We consider the generators ),(),(),( 438483  c and )( 2 . 

Now, we classify and organize the similarity transformations and the exact 

solutions of Eq. (1.1) by using above generators in the following tables. 

Table 1. (For 83  c )  
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Similarity solution 
 

Exact solution 
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Table 2. (For 84  )   
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84   
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Similarity reduced ODE 

Similarity solution 

Exact solution 
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Where  42 A  

Table 4. (For 2 )   
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2  

Similarity transformation 

 

Similarity reduced ODE 

 

Similarity solution 

 

Exact solution 
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5. Symmetry Reduction And Exact Solution Of The Initial Boundary 

Value Problem (Ibvp) (1.1)-(1.3) 

In this section, we present the similarity transformations and exact 

solution for one of the above generators for the convection-diffusion equation 

(1.1) with initial and boundary conditions (1.2) and (1.3). We will consider a 

linear combination of generators 3 and 8 ( 83  c
 
) as in the table 1, 

we get 

                                     )(),(,  ftxutcx                1.23)(  

It is interesting to note that, if 0c  equation (1.1) becomes steady, in such 

case x  and )()( xuf  . 

The similarity transforms in (1.23) change the original governing equations 

to the reduced system of the BVP in the following form of ordinary 

differential equation: 

      ]1,[,0)()()( tctcfcf             (1.24)                                                              

with the moving boundary conditions 
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tcattgftcattgf  1)(,)( 10        (1.25) 

The ordinary differential equation (1.24) with boundary conditions (1.25) 

will be solved by any suitable method, and then we can obtain the solution of 

the original problem.  

6. Discusion And Concludig Remarks 

In this paper, we apply Lie group method for Eq. (1.1), then we have 

found the infinitesimals (1.21) and its similarity generators (1.22) for Eq. 

(1.1). The similarity transformation and exact solutions for some generators 

are presented in tables as follow: 

Tables (1), (2) and (3), contain the similarity transformation, similarity 

reduction, similarity solution and exact solutions of Eq. (1.1) for the linear 

combinations of generators ),(),,(),,( 438483 and  respectively. 

Table (4) contains the similarity transformation, similarity reduction, 

similarity solution and exact solution of Eq. (1.1) for the generator 2 . 

 Figures (1a,b)- (4a,b) show the behavior of  the exact solutions for the 

original partial differential equation as in tables (1)-(4) respectively for 

various arbitrary values of quantities. 

  Finally, its demonstrated by using the similarity transforms (1.23), the 

original partial differential equation (1.1) with initial and boundary 

conditions (1.2) and (1.3) respectively that can be transformed to boundary 

value problem (1.24) and (1.25) of ordinary differential equation. 
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فً  لنا علٍها بالحناظز لخصثصالحلىل الححلٍلٍة الحً ح حل الوعادلة الحفاضلٍة العادٌة.

     جذاول.

حل ، وحواثلةال تححىٌلاال، هجوىعة لً، هعادلة الانحشار، هعادلة الانحقال :هفتاحيهكلوات 

  .لاجغٍزي
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