GENERALIZED $\delta - s \wedge_{ij}$ -SETS IN BITOPOLOGICAL SPACES

F.H.Khedr

Department of Mathematics-Faculty of Sciences-University of Assiut-Assiut 715161- Egypt E.mail : <u>Khedrfathi@gmail.com</u>

Received: 19/9/2016 **Accepted:** 6/11/2016

In this paper, we introduce and study $ij - \delta$ -semi closed and $ij - \delta$ -semi open sets in bitopological spaces. Furthermore, we introduce and study the notions of $\delta - s \wedge_{ij}$ -sets and $g \delta - s \wedge_{ij}$ -sets in bitopological spaces. Also, we define a new closure operator $Cl_{\delta}^{s \wedge_{ij}}$ and associated topology $\tau_{\delta}^{s \wedge_{ij}}$ on the bitopological space (X, τ_1, τ_2) .

Mathematics Subject Classification: 54 A10, C05, E55

Keywords: Bitopological space, $ij - \delta$ -semi open set, $\delta - s \wedge_{ij}$ - set,

 $g \delta - s \wedge_{ii}$ – set.

INTRODUCTION

A triple (X, τ_1, τ_2) , where X is nonempty set τ_1 and τ_2 are topologies on X, is called a bitopological space and Kelly [4] in 1963 initiated the systematic study of such spaces. After the work of Kelly various authors have contributed to the development of this theory. In 1981, Bose [2] introduced the notion of ij – semi open sets in bitopological spaces. In 1987, Banerjee [1], introduced the notion of $ij - \delta$ – open sets in such spaces. Further investigations of $ij - \delta$ – open sets were found in [5,6]. In this paper we introduce and study $ij - \delta$ – semi closed and $ij - \delta$ – semi open sets in bitopological spaces and then we introduce and study the notions of $\delta - s \wedge_{ij}$ – sets and $g \delta - s \wedge_{ij}$ – sets in bitopological spaces by generalizing the results obtained in [3] to the bitopological setting. Also, we define a new closure operator $Cl_{\delta}^{s \wedge ij}$ and associated topology $\tau_{\delta}^{s \wedge ij}$ on the bitopological space (X, τ_1, τ_2) .

Throughout this paper (X, τ_1, τ_2) (or briefly X) always means a bitopological space on which no separation axioms are assumed unless

explicitly stated. Let *A* be a subset of *X*, by i -Cl(A) and i -Int(A) we denote the closure and the interior of *A* in the topological space (X, τ_i) . By *i*-open (or τ_i - open) and *i*-closed (or τ_i - closed) we mean open and closed in the topological space (X, τ_i) . $X \setminus A = A^c$ will denote the complement of *A* and *I* denote for an index set. Also i, j = 1, 2 and $i \neq j$.

Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . A point *x* of *X* is called an $ij - \delta$ -cluster point of *A* [1] if $i - Int(j - Cl(U)) \cap A \neq \phi$ for every τ_i -open set *U* containing *x*. The set of all $ij - \delta$ -cluster points of *A* is called the $ij - \delta$ -closure of *A* and is denoted by $ij - Cl_{\delta}(A)$. A subset *A* is said to be $ij - \delta$ -closed if $ij - Cl_{\delta}(A) = A$. The complement of an $ij - \delta$ -closed set is called $ij - \delta$ -open. A subset *A* of *X* is called ij-semi open [2] if $A \subset j - Cl(i - Int(A))$.

2. $ij - \delta$ – semi open sets.

Definition 2.1 A subset A of bitopological space (X, τ_1, τ_2) is called $ij - \delta$ -semi open if there exists $ij - \delta$ -open set U such that $U \subset A \subset j - Cl(U)$. The complement of an $ij - \delta$ -semi open set is called $ij - \delta$ -semi closed.

A point $x \in X$ is called an $ij - \delta$ -semi cluster point of A if $A \cap U \neq \phi$ for every $ij - \delta$ -semi open set U of X containing x. The set of all $ij - \delta$ -semi cluster points of A is called the $ij - \delta$ -semi closure of A and is denoted by $ij - \delta sCl(A)$. The collection of all $ij - \delta$ -semi open (resp. $ij - \delta$ -semi closed) sets of X will be denoted by $ij - \delta SO(X)$ (resp. $ij - \delta SC(X)$).

A subset U of X is called $ij - \delta$ -semi neighborhood (briefly, $ij - \delta$ -semi nbd) of a point x if there exists an $ij - \delta$ -semi open set V such that $x \in V \subseteq U$.

Lemma 2.1. The union of arbitrary collection of $ij - \delta$ – semi open sets in (X, τ_1, τ_2) is $ij - \delta$ – semi open.

Proof: Since arbitrary union of $ij - \delta$ – open sets is $ij - \delta$ – open [4 Lemma 2.2], the result follows directly.

Lemma 2.2. The intersection of arbitrary collection of $ij - \delta$ – semi closed sets in (X, τ_1, τ_2) is $ij - \delta$ – semi closed.

Proof: Follows directly by Lemma 2.1.

Corollary 2.3. Let $A \subset X$, $ij - \delta sCl(A) = \bigcap \{F : A \subseteq F, F \in ij - \delta SC(X)\}$. **Corollary 2.4.** $ij - \delta sCl(A)$ is $ij - \delta$ -semi closed, that is $ij - \delta sCl(ij - \delta sCl(A)) = ij - \delta sCl(A)$.

Lemma 2.5. For subsets A, B and A_k ($k \in I$) of a bitopological space (X, τ_1, τ_2) , the following hold

- (1) $A \subseteq ij \delta sCl(A)$. (2) $A \subset B \Rightarrow ij - \delta sCl(A) \subset ij - \delta sCl(B)$.
- (3) $ij \delta sCl(\bigcap_k A_k) \subseteq \bigcap_k \{ij \delta sCl(A_k)\}.$
- (4) $ij \delta sCl(\bigcup_k A_k) = \bigcup_k \{ij \delta sCl(A_k)\}$.
- (5) A is $ij \delta$ semi closed if and only if $A = ij \delta sCl(A)$

3. $\delta - s \wedge_{ii}$ - sets and $g \delta - s \wedge_{ii}$ - sets.

Definition 3.1. For a subset *B* of a bitopological space (X, τ_1, τ_2) , we define

$$B_{\delta}^{s \wedge_{ij}} = \bigcap \{ O \in ij - \delta SO(X) : B \subseteq O \}$$
$$B_{\delta}^{s \vee_{ij}} = \bigcup \{ F \in ij - \delta SC(X) : F \subseteq B \}.$$

Definition 3.2. A subset *B* of a bitopological space (X, τ_1, τ_2) is called

 $\delta - s \wedge_{ij}$ - set (resp. $\delta - s \vee_{ij}$ - set) if $B = B_{\delta}^{s \wedge_{ij}}$ (resp. $B = B_{\delta}^{s \vee_{ij}}$). **Definition 3.3**. A subset *B* of a bitopological space (X, τ_1, τ_2) is called

(1) generalized $\delta - s \wedge_{ij}$ - set (briefly, $g \delta - s \wedge_{ij}$ - set) if $B_{\delta}^{s \wedge_{ij}} \subseteq F$ whenever $B \subseteq F$ and $F \in ji - \delta SC(X)$.

(2) generalized $\delta_{-s \vee_{ij}}$ -set (briefly, $g \delta_{-s \vee_{ij}}$ -set) if B^c is $g \delta_{-s \wedge_{ij}}$.

By $G_{\delta}^{s \wedge ij}$ (resp. $G_{\delta}^{s \vee ij}$) we will denote the family of all $g \delta - s \wedge_{ij}$ -sets (resp. $g \delta - s \vee_{ij}$ -sets).

Proposition 3.4. Let *A*, *B* and { $B_k : k \in I$ } be subsets of a bitopological space (X, τ_1, τ_2) . The following properties hold:

(1)
$$B \subseteq B_{\delta}^{s \wedge ij}$$
.
(3) $\left(B_{\delta}^{s \wedge ij}\right)_{\delta}^{s \wedge ij} = B_{\delta}^{s \wedge ij}$.
(5) If $A \in ij - \delta SO(X)$, then
 $A = A_{\delta}^{s \wedge ij}$.
(7) $B_{\delta}^{s \vee ij} \subseteq B$.

(2) If
$$A \subseteq B$$
, then $A_{\delta}^{s \wedge ij} \subseteq B_{\delta}^{s \wedge ij}$.
(4) $\left(\bigcup_{k \in I} B_{\lambda}\right)_{\delta}^{s \wedge ij} = \bigcup_{k \in I} (B_{k})_{\delta}^{s \wedge ij}$.
(6) $(B^{c})_{\delta}^{s \wedge ij} = (B_{\delta}^{s \vee ij})^{c}$.

(8) If
$$B \in ij - \delta SC(X)$$
, then
 $B = B_{\delta}^{s \lor_{ij}}$.

$$(10)\left(\bigcup_{k\in I}B_{\lambda}\right)_{\delta}^{s\vee_{ij}}\supseteq\bigcup_{k\in I}\left(B_{k}\right)_{\delta}^{s\vee_{ij}}\cdot$$

Proof: (1) Clear by Definition 3.1.

 $(9)\left(\bigcap_{k\in I} B_k\right)_{\mathcal{S}}^{\mathcal{S}\wedge_{ij}} \subseteq \bigcap_{k\in I} (B_k)_{\mathcal{S}}^{\mathcal{S}\wedge_{ij}} \cdot$

(2) Suppose $x \notin B_{\delta}^{s \wedge_{ij}}$. Then there exists an $ij - \delta$ -semi open set U such that $B \subseteq U$ and $x \notin U$. Since $A \subseteq B$, then $x \notin A_{\delta}^{s \wedge_{ij}}$ and therefore $A^{s\wedge_{ij}}_{\delta} \subseteq B^{s\wedge_{ij}}_{\delta} \cdot$ (3) Follows from (1) and Definition 3.2. (4) Let $x \notin \left(\bigcup B_k\right)^{s \wedge i_j}$. Then there exists an $ij - \delta$ -semi open set U such that $\bigcup_{k \in I} B_k \subseteq U \text{ and } x \notin U.$ Thus for each $k \in I$ we have $x \notin (B_k)^{s \wedge_{ij}}_{\delta}$. This implies that $x \notin \bigcup (B_k)^{s \wedge_{ij}}_{\delta}$. Conversely, let $x \notin \bigcup_{\delta} (B_k)^{s \wedge i_j}_{\delta}$. Then there exists an $ij - \delta$ -semi open set U_k (for each $k \in I$) such that $x \notin U_k$, $B_k \subseteq U_k$. Let $U = \bigcup_{k \in I} U_k$. Then we have $x \notin U = \bigcup_{k \in I} U_k$, $\bigcup_{k \in I} B_k \subseteq U$ and U is $ij - \delta$ -semi open. This implies that $x \notin \left(\bigcup_{i=1}^{N} B_{k}\right)^{s \wedge ij}$. This completes the proof of (4). (5) By definition and since A is an $ij - \delta$ -semi open set, we have $A_{\delta}^{s \wedge_{ij}} \subseteq A$. By (1), we have $A_{\delta}^{s \wedge_{ij}} = A$. (6) $\left(B^{s \lor ij}_{\delta}\right)^c = \cap \{F^c : F^c \supseteq B^c, F^c \in ij - \delta SO(X)\} = \left(B^c\right)^{s \land ij}_{\delta}.$ (7) Clear by definition.

(8) If
$$B \in ij - \delta SC(X)$$
, then $B^{c} \in ij - \delta SO(X)$. By (5) and (6)
 $B^{c} = (B^{c})^{s \wedge ij}_{\delta} = (B^{s \vee ij}_{\delta})^{c}$. Hence $B = B^{s \vee ij}_{\delta}$.
(9) Let $x \notin \prod_{k \in I} (B_{k})^{s \wedge ij}_{\delta}$. Then there exists $k \in I$ such that $x \notin (B_{k})^{s \wedge ij}_{\delta}$.
Hence there exists $U \in ij - \delta SO(X)$ such that $B_{k} \subseteq U$ and $x \notin U$. Thus
 $x \notin \left(\prod_{k \in I} B_{k}\right)^{s \wedge ij}_{\delta}$.
(10) $\left(\bigcup_{k \in I} B_{k}\right)^{s \vee ij}_{\delta} = \left(\left(\bigcup_{k \in I} B_{k}^{c}\right)^{s \vee ij}\right)^{c} = \left(\prod_{k \in I} (B_{k})^{s \vee ij}_{\delta}\right)^{c} = \left(\prod_{k \in I} (B_{k})^{s \vee ij}_{\delta}\right)^{c} = \left(\prod_{k \in I} (B_{k})^{s \vee ij}_{\delta}\right)^{c}$.
Theorem 3.6. Let *B* be a subset of a bitopological space (X, τ_{1}, τ_{2}) . Then
(1) ϕ and *X* are $\delta - s \wedge_{ij}$ - sets and $\delta - s \vee_{ij}$ - sets.
(2) Every union of $\delta - s \wedge_{ij}$ - sets (resp. $\delta - s \vee_{ij}$ - sets) is
 $\delta - s \wedge_{ij}$ - sets (resp. $\delta - s \vee_{ij}$ - sets).
(3) Every intersection of $\delta - s \wedge_{ij}$ - sets $(resp. \delta - s \vee_{ij}$ - sets) is
 $\delta - s \wedge_{ij}$ - sets (resp. $\delta - s \vee_{ij}$ - sets).
(4) *B* is a $\delta - s \wedge_{ij}$ - set if and only if B^{c} is a $\delta - s \vee_{ij}$ - set.
Proof. (1) and (4) are obvious.
(2) Let $\{B_{k}: k \in I\}$ be a family of $\delta - s \wedge_{ij}$ - sets in (X, τ_{1}, τ_{2}) . Then by
definition and Proposition 3.4 (4) we have $\bigcup_{k \in I} B_{k} = \bigcup_{k \in I} B_{k} = \bigcup_{k \in I} B_{k} = \prod_{k \in I} B_{$

on X containing all $ij - \delta$ -semi open (resp. $ij - \delta$ -semi closed) sets. Clearly $(X, \lambda_{\delta}^{s \wedge ij})$ and $(X, \lambda_{\delta}^{s \vee ij})$ are Alexandroff spaces, i.e., arbitrary intersection of open sets are open. **Proposition 3.8.** Let (X, τ_1, τ_2) be a bitopological space. Then (1) Every $\delta_{-s \wedge_{ij}}$ -set is a $g \delta_{-s \wedge_{ij}}$ -set. (2) Every $\delta_{-s \vee_{ij}}$ -set is a $g \delta_{-s \vee_{ij}}$ -set. (3) If B_k is a $g \delta_{-s \wedge_{ij}}$ -set for all $k \in I$, then $\bigcup_{k \in I} B_k$ is a $g \delta_{-s \wedge_{ij}}$ -set. (4) If B_k is a $g \delta_{-s \vee_{ij}}$ -set for all $k \in I$, then $\bigcap_{k \in I} B_k$ is a $g \delta_{-s \vee_{ij}}$ -set. (4) If B_k is a $g \delta_{-s \vee_{ij}}$ -set for all $k \in I$, then $\bigcap_{k \in I} B_k$ is a $g \delta_{-s \vee_{ij}}$ -set. (5) Let B be a $\delta_{-s \vee_{ij}}$ -subset of X. Then $B = B_{\delta}^{s \vee_{ij}}$. By Proposition 3.4(6) $(B^c)_{\delta}^{s \wedge_{ij}} = (B_{\delta}^{s \vee_{ij}})^c = B^c$. Therefore, by (1) and definition, B is a $g \delta_{-s \vee_{ij}}$ -set. (3) Let B_k is a $g \delta_{-s \wedge_{ij}}$ -subset of X for all $k \in I$. Then by Proposition 3.4(4) $(\bigcup_{k \in I} B_k)_{\delta}^{s \wedge_{ij}} = \bigcup_{k \in I} (B_k)_{\delta}^{s \wedge_{ij}}$. Hence, by hypothesis and definition, $\bigcup_{k \in I} B_k$ is a $g \delta_{-s \wedge_{ij}}$ -set.

(4) Follows from (3) and definition.

Proposition 3.9. A subset *B* of a bitopological space (X, τ_1, τ_2) is a $g \,\delta - s \lor_{ij}$ – set if and only if $U \subseteq B_{\delta}^{s \lor_{ij}}$, whenever $U \subseteq B$ and U is an $ij - \delta$ – semi open subset of *X*.

Proof. Let U be an $ij - \delta$ -semi open subset of X such that $U \subseteq B$. Then, since U^c is $ij - \delta$ -semi closed and $B^c \subseteq U^c$, we have $(B^c)^{s \wedge ij}_{\delta} \subseteq U^c$ by definition. Hence by Proposition 3.4(6) $(B^{s \vee ij}_{\delta})^c \subseteq U^c$. Thus $U \subseteq B^{s \vee ij}_{\delta}$. On the other hand, let F be an $ij - \delta$ -semi closed subset of X such that $B^c \subseteq F$. Since F^c is $ij - \delta$ -semi open and $F^c \subseteq B$, by assumption we have $F^c \subseteq B^{s \vee ij}_{\delta}$. Then $F \supseteq (B^{s \vee ij}_{\delta})^c = (B^c)^{s \vee ij}_{\delta}$. Thus B^c is a $g \delta - s \wedge_{ij}$ -set, i.e., B is a $g \delta - s \vee_{ij}$ -set.

4. *ij* $-Cl^{s \wedge_{\delta}}$ - closure operator and associated $\tau_{\delta}^{s \wedge_{ij}}$.

In this section, we define a closure operator $Cl_{\delta}^{s \wedge_{ij}}$ and the associated topology $\tau_{\delta}^{s \wedge_{ij}}$ on the bitopological space (X, τ_1, τ_2) using the family of $g \delta - s \wedge_{ij}$ – sets.

Definition 4.1. For any subset *B* of a bitopological space (X, τ_1, τ_2) , define $Cl_{\delta}^{s \wedge ij}(B) = \bigcap \{U : B \subseteq U, U \in G_{\delta}^{s \wedge ij}\}$ and $Int_{\delta}^{s \wedge ij}(B) = \bigcup \{F : B \supseteq F, F^c \in G_{\delta}^{s \wedge ij}\}.$

Proposition 4.2. Let A, B and $\{B_{\lambda} : \lambda \in I\}$ be subsets of a bitopological space (X, τ_1, τ_2) . Then the following properties are hold:

- (1) $B \subseteq Cl_{\delta}^{s \wedge ij}(B)$. (2) $Cl_{\delta}^{s \wedge ij}(B^{c}) = \left(Int_{\delta}^{s \wedge ij}(B)\right)^{c}$. (3) $Cl_{\delta}^{s \wedge ij}(\phi) = \phi$. (4) $\bigcup_{k \in I} Cl_{\delta}^{s \wedge ij}(B_{k}) = Cl_{\delta}^{s \wedge ij}(\bigcup_{k \in I} B_{k})$.
- (5) $Cl_{\delta}^{s \wedge ij} \left(Cl_{\delta}^{s \wedge ij} (B) \right) = Cl_{\delta}^{s \wedge ij} (B)$. (6) If $A \subseteq B$, then $Cl_{\delta}^{s \wedge ij} (A) \subseteq Cl_{\delta}^{s \wedge ij} (B)$ (7) If *B* is s $g \delta - s \wedge_{ij}$ - set, then (8) If *B* is s $g \delta - s \vee_{ij}$ - set, then $Cl_{\delta}^{s \wedge ij} (B) = B$. $Int_{\delta}^{s \wedge ij} (B) = B$.

Proof: (1), (2), (3) and (6) are clear. (4) Let $x \notin Cl_{\delta}^{s \wedge ij} (\bigcup_{k \in I} B_k)$. Then, there exists $U \in G_{\delta}^{s \wedge ij}$ such that $\bigcup_{k \in I} B_k \subseteq U$ and $x \notin U$. Thus for each $k \in I$ we have $x \notin Cl_{\delta}^{s \wedge ij} (B_k)$. This implies that $x \notin \bigcup_{k \in I} Cl_{\delta}^{s \wedge ij} (B_k)$. Conversely, let $x \notin \bigcup_{k \in I} Cl_{\delta}^{s \wedge ij} (B_k)$. Then there exist subsets $U_k \in G_{\delta}^{s \wedge ij}$ for all $k \in I$ such that $x \notin U_k$ and $B_k \subseteq U_k$. Let $U = \bigcup_{k \in I} U_k$. Then $x \notin U$, $\bigcup_{k \in I} B_k \subseteq U$ and $U \in G_{\delta}^{s \wedge ij}$. Thus $x \notin Cl_{\delta}^{s \wedge ij} (\bigcup_{k \in I} B_k)$.

F.H.Khedr

(5) Suppose that $x \notin Cl_{\delta}^{s \wedge_{ij}}(B)$. Then there exists a subset $U \in G_{\delta}^{s \wedge_{ij}}$ such that $x \notin U$ and $B \subseteq U$. Since $U \in G_{\delta}^{s \wedge_{ij}}$ we have $Cl_{\delta}^{s \wedge_{ij}}(B) \subseteq U$. Thus we have $x \notin Cl_{\delta}^{s \wedge_{ij}}(Cl_{\delta}^{s \wedge_{ij}}(B))$. Therefore $Cl_{\delta}^{s \wedge_{ij}}(Cl_{\delta}^{s \wedge_{ij}}(B)) \subseteq Cl_{\delta}^{s \wedge_{ij}}(B)$. But by (1) $Cl_{\delta}^{s \wedge_{ij}}(B) \subseteq Cl_{\delta}^{s \wedge_{ij}}(Cl_{\delta}^{s \wedge_{ij}}(B))$. Then the result follows. (7) Follows directly by (1) and definition. (8) Follows directly by (7) and (2) and definition. Then we have the following **Theorem 4.3**. $Cl_s^{s \wedge ij}$ is a Kuratowski closure operator on *X*. **Definition 4.4.** Let $\tau_{\delta}^{s \wedge ij}$ be the topology on X generated by $Cl_{\delta}^{s \wedge ij}$ in the usual manner, i.e., $\tau_{\delta}^{s \wedge ij} = \{B \subseteq X : Cl_{\delta}^{s \wedge ij}(B^{C}) = B^{C}\}$. We define a family $\rho_{\delta}^{s \wedge ij}$ by $\rho_{\delta}^{s \wedge ij} = \{B \subseteq X : Cl_{\delta}^{s \wedge ij}(B) = B\}$, equivalently $\rho_{s}^{s \wedge ij} = \{ B \subset X : B^{c} \in \tau_{s}^{s \wedge ij} \}.$ **Proposition 4.5.** Let (X, τ_1, τ_2) be a bitopological space. Then (1) $\tau_{\mathcal{S}}^{s \wedge_{ij}} = \{ B \subseteq X : Int_{\mathcal{S}}^{s \vee_{ij}}(B) = B \}$. (2) $ij - \delta SO(X) \subseteq G_{\delta}^{s \wedge_{ij}} \subseteq \rho_{\delta}^{s \wedge_{ij}}$. (3) $ij - \delta SC(X) \subseteq G_{\delta}^{s \lor_{ij}} \subseteq \tau_{\delta}^{s \land_{ij}}$ (4) If $ij - \delta SC(X) = \tau_{\delta}^{s \wedge ij}$, then every $g \delta - s \wedge_{ii}$ - set of X is $ij - \delta$ - semi open. (5) If every $g \delta - s \wedge_{ii}$ - set of X is $ij - \delta$ - semi open (i.e., if $G_{\delta}^{s \lor ij} \subseteq ij - \delta SO(X)$, then $\tau_{\delta}^{s \land ij} = \{B \subseteq X : B = B_{\delta}^{s \lor ij}\}$. (6) If every $g \delta - s \wedge_{ii}$ - set of X is $ij - \delta$ - semi closed (i.e., if $G_{\delta}^{s \wedge_{ij}} \subseteq ij - \delta SC(X)$, then $ij - \delta SO(X) = \tau_{\delta}^{s \wedge_{ij}}$. Proof. (1) By Definition 4.1 and Proposition 4.2(2), we have: If $A \subseteq X$, then $A \in \tau_{\delta}^{s \wedge_{ij}}$ if and only if $Cl_{\delta}^{s \wedge_{ij}}(A^c) = A^c$ if and only if $\left(Int_{\delta}^{s\vee_{ij}}(A)\right)^{c} = A^{c}$ if and only if $Int_{\delta}^{s\vee_{ij}}(A) = A$. Thus, $\tau_{s}^{s \wedge ij} = \{ B \subseteq X : Int_{s}^{s \vee ij}(B) = B \}.$

(2) Let $B \in ij - \delta SO(X)$. By Proposition 3.4(5) B is a $\delta - s \wedge_{ii}$ - set. By Proposition 3.8 (1), *B* is a $g \delta - s \wedge_{ii}$ – set, i.e., $B \in G_{\delta}^{s \wedge_{ij}}$. Let now, *B* any element of $G_{\delta}^{s \wedge_{ij}}$. By Proposition 3.4(7) $B = Cl_{\delta}^{s \wedge_{ij}}(B)$, i.e., $B \in \rho_{\delta}^{s \wedge ij}$. Therefore $ij - \delta SO(X) \subseteq G_{\delta}^{s \wedge ij} \subseteq \rho_{\delta}^{s \wedge ij}$. (3) Let $B \in ij - \delta SC(X)$. By Proposition 3.4(8) $B = B_{\delta}^{s \vee_{ij}}$. Thus B is a $\delta - s \lor_{ij}$ -set. By Proposition 3.8(2), B is a $g \delta - s \lor_{ij}$ -set. Hence $B \in G_{\delta}^{s \vee_{ij}}$. Now, if $B \in G_{\delta}^{s \vee_{ij}}$, then by (1) and Proposition 3.4(8), $B \in \tau_{\delta}^{s \wedge_{ij}}$. (4) Let B be any $g \delta - s \wedge_{ij}$ - set, i.e., $B \in G_{\delta}^{s \wedge_{ij}}$. By (2), $B \in \rho_{\delta}^{s \wedge_{ij}}$. Thus, $B^c \in \tau_{\delta}^{s \wedge_{ij}}$. From assumption, we have $B^c \in ij - \delta SC(X)$. Hence $B \in ij - \delta SO(X)$. (5) Let $A \subseteq X$ and $A \in \tau_{\delta}^{s \wedge_{ij}}$. Then by Definitions 4.1 and 4.4, $A^{c} = Cl_{\delta}^{s \wedge_{ij}}(A^{c}) = \bigcap \{U : U \supseteq A, U \in G_{\delta}^{s \wedge_{ij}} \}$ $= \bigcap \{ U : U \supseteq A^{c}, U \in ij - \delta SO(X) \} = (A^{c})^{s \wedge_{ij}}_{s}.$ Proposition 3.4(6), we have $A = A_{\mathcal{S}}^{s \vee_{ij}}$, i.e., Using $A \in \{B \subseteq X : B = B_{\delta}^{s \vee_{ij}}\}. \text{ Conversely, if } A \in \{B \subseteq X : B = B_{\delta}^{s \vee_{ij}}\},\$

then by Proposition 3.8(2), A is a $g \delta - s \vee_{ij}$ – set. Thus $A \in G_{\delta}^{s \vee_{ij}}$. By using (3), $A \in \tau_{\delta}^{s \wedge_{ij}}$.

(6) Let
$$A \subseteq X$$
 and $A \in \tau_{\delta}^{s \wedge ij}$. Then $A = \left(Cl_{\delta}^{s \wedge ij}(A^{c})\right)^{c} = \left(\cap\{U: A^{c} \subseteq U, U \in G_{\delta}^{s \wedge ij}\}\right)^{c} = \cup\{U^{c}: U^{c} \in ij - \delta SO(X)\} \in ij - \delta SO(X).$

Conversely, if $A \in ij - \delta SO(X)$, then by Proposition 3.4(5) and Proposition 3.8(1), $A \in G_{\delta}^{s \wedge ij}$. By assumption $A \in ij - \delta SC(X)$. Using (3), $A \in \tau_{\delta}^{s \wedge ij}$. **Lemma 4.6**. Let (X, τ_1, τ_2) be a bitopological space.

(1) For each $x \in X$, $\{x\}$ is an $ij - \delta$ -semi open set or $\{x\}^c$ is a $g \delta - s \wedge_{ii}$ -set of X.

(2) For each $x \in X$, $\{x\}$ is an $ij - \delta$ -semi open set or $\{x\}$ is a $g \delta - s \lor_{ii}$ - set of X.

Proof. (1) Suppose that $\{x\}$ is not $ij - \delta$ -semi open. Then the only $ij - \delta$ -semi closed set *F* containing $\{x\}^c$ is *X*. Thus $(\{x\}^c)^{s \wedge_{ij}}_{\delta} \subseteq F = X$ and $\{x\}^c$ is a $g \delta - s \wedge_{ij}$ -set of *X*.

(2) Follows from (1) and Definition 3.3.

Proposition 3.7. If $ij - \delta SO(X) = \tau_{\delta}^{s \wedge ij}$, then every singleton $\{x\}$ is $\tau_{\delta}^{s \wedge ij}$ open.

Proof. Suppose that $\{x\}$ is not $ij - \delta$ -semi open. Then by Lemma 4.6, $\{x\}^c$ is a $g \delta - s \wedge_{ij}$ -set. Thus $\{x\} \in \tau_{\delta}^{s \wedge_{ij}}$ by Definition 4.4. Suppose that $\{x\}$ is $ij - \delta$ -semi open. Then $\{x\} \in ij - \delta SO(X) = \tau_{\delta}^{s \wedge_{ij}}$. Therefore, every singleton $\{x\}$ is $\tau_{\delta}^{s \wedge_{ij}}$ -open.

REFERENCES

- [1] G. K., Banerjee, On pairwise almost strongly θ continuous mappings, Bull. Cal. Math. Soc. 74(1987), 195-206.
- [2] S., Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Cal. Math. Soc. 73(1981), 237-246.
- [3] M.,Caldas, E., Hatir, and S.,Jafari, On Generalized λ_{δ}^{s} sets and related topics topology, J. Koream Math. Soc. 74 (2010), No. 4, 735-742.
- [4] J. C., Kelly, Bitopological spaces, Proc. London Math. Soc. (3) 13 (1963), 71-89.
- [5] F. H., Khedr, Properties of $ij \delta$ open sets, Fasciculi Mathematici, Nr 52, (2014) 65-81.
- [6] F. H., Khedr, A. M., Alshibani, and T., Noiri, On δ- continuity in bitopological spaces, J. Egypt. Math. Soc. Vol. 5(1) (1997), 57-62.

 $\delta - s \wedge_{ij} - s$ المجموعات المعممة من النوع

في هذا البحث نقوم بتقديم ودراسة المجموعات شبه المغلقة من النوع دلتا و المجموعات شبه المفتوحة من النوع دلتا في الفضاءات ثنائية التوبولوجي ومن ثم نقدم مفهوم المجموعات من النوع – $\delta - s \wedge_{ij} = \delta - s$ أيضا نعرف مؤثر إغلاق جديد $v_{\delta}^{s \wedge ij}$ والتوبولوجي المصاحب $\tau_{\delta}^{s \wedge ij}$ على الفضاء ثنائي التوبولوجي (X, τ_1, τ_2).