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In this paper, by using the power of nonstandard analysis tools, we review some of the 

standard facts on the intermediate value property (IVP) and investigates some new 

nonstandard developments by extending the classical definition. The notions are 

generalized to that of any real values; infinitesimals, infinitely close, unlimited. Finally, 

we give a nonstandard generalization of Sierpinski theorem. We prove that every 

function can be expressed as a sum of four discontinuous nonstandard functions with 

infinitesimal intermediate value property (IIVP). 
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INTRODUCTION 

In this paper, we use E. Nelson's nonstandard analysis construction [10], 

based on the theory which is called internal set theory and denoted by IST. 

The axioms of IST are those axioms of Zermelo-Frankel with the axiom of 

choice (ZFC), together with three new axioms (Principles) which are; 

Transfer, Idealization, and Standardization. Every set defined in ZFC is 

standard, every mathematical objects: a real number, function, … , etc in 

ZFC is regarded to be a set, and any set or formula in IST is called internal in 

case it does not defended with the new predicate "standard" and its 

derivations, otherwise it is called external. Among the three principles, we 

used here, the transfer principle (TP) which ensures that, if F( ) is a standard 

statement, F( ) holds if and only if it holds for all standard  . More 

generally; 

If                 is an internal formula with free variables               , 

then  

                                                        ).   

A real number   is called limited if | |    for some positive standard 

real numbers  , unlimited if | |    for all positive standard real numbers  , 

infinitesimal if | |    for all positive standard real numbers  , appreciable  
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in case   is limited not infinitesimal. Two real numbers   and   are said to be 

infinitely near or infinitely close if      is infinitesimal and denoted by        

   . The set of all real numbers y for which     is limited, is called 

galaxy of   and denoted by gal ( ). Let   be a real number. Then the set of 

all real numbers which are infinitely close to   is called the monad or halo of 

  and denoted by      . Let   be a subset of a space  . The set of all points 

     for which there exist     such that   , is called the monad of   

and denoted by      . Let   be a limited real number. Then it is infinitely 

close to a unique standard real number. This real number is called standard 

part or shadow of   and denoted by      ,        or    . The shadow of a set 

 , denoted by       or   , is the unique standard set whose standard 

elements are precisely those whose monad  intersects is  A. Let BAf :  be 

a function. We call  ; an internal when it is internal as a relation, continuous 

at    if and only if   and    are standards and            for all     ,  

s-continuous if and only if            for all     . A standard sequence 
{  } is converges to   if and only if       for all unlimited  . Let  E be a 

subset of  . If   is a limit point of E, then there exists a sequence {  }    in 

E with      for all    , such that      for all unlimited  . If {  } is a 

sequence such that      for all standard n, there exists a positive unlimited 

integer   such that       for all     (Robinson Lemma). Throughout 

this paper, the following symbols will be used: 

 The symbol   represents the external relation greater than or 

infinitesimal close. 

 The symbol    represents the external relation greater than and 

infinitely close. 

 The symbol       represents the external set right half of the monad of 

 . 

 The symbol         represents the external set right half of the galaxy 

of  . 

Similarly, we can use the representation of the symbols; 

                        . 

For the above definitions and other nonstandard concepts see [5-7, 10, 12].  

Definition 1.1 (Intermediate Value Property-IVP)[1] 

A function       is said to have the intermediate value property (IVP) 

provided that if   and   are real numbers such that     and          , 

then for every   between      and      , there exists a real number   ; 
      such that       . That is, the image of every interval is an 

interval.  
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In 1875 G. Darboux showed that there exist functions with the intermediate 

value property that are not continuous [4]. Because of his work with 

functions having the intermediate value property, these functions are called 

Darboux functions. Some classical works about properties of functions with 

IVP can be found in [1-3, 9, 11, 13]. In this article we construct some unusual 

and unintuitive functions which have interesting properties. In the first part 

we will give an equivalent nonstandard definition of Intermediate Value 

Property, and then generalize the notion to the extendable region of 

nonstandard values to contain (infinitesimals, infinitely close, unlimited) real 

numbers. Finally in the last part, we generalize the famous Sierpinski 

theorem to the sum of four nonstandard functions. 

MAIN RESULTS      

By using (TP), an equivalent statement of Definition 1.1 in nonstandard sense 

can be obtained as follows: 

Definition 2.1 (Intermediate Value Property- Standard Version,(IVP-SV)) 

A standard function       is said to have the intermediate value property 

provided that if   and   are standard real numbers such that     and 

         , then for every standard   between      and      , there exists 

a standard real number  ;       such that       .  

The following definition is a nonstandard generalization of Definition 2.1 

such that the domain includes nonstandard values, and results include 

nonstandard outcomes.  

 Definition 2.2 (Infinitesimal Intermediate Value Property, (IIVP)) 

An internal function       is said to have the infinitesimal intermediate 

value property provided that if   and   are real numbers such that      and 

         , then for every   between      and      ,            , 

there exists a real number   ;       such that       . 

Unfortunately, Definition 2.1 hold only for standards   and  . Here, the 

nonstandardist is caught in a dilemma after where using classical tools, 

between what appears attractive and what is demanded by reality. There are 

several problems which fails to hold for standard values of  , although the 

problem still coherent and practically not break down if there exist some 

            such that        for                 . So, we will see 

that the nonstandard tools make it possible to reformulate, in an often simpler 

setting, the basic definition of IVP. We will observe that the new 

characterization given by Definition 2.2 hold for standard and nonstanderd 

entities. Definition 2.2 it is stronger than both Definitions 1.1 and 2.1 because 
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equality implies the infinitesimally close and internality of the function   

includes the case where   is standard or nonstandard. 

Lemma 2.3.  

Let      . Then   satisfies  IVP if and only if it  is satisfies the IVP-S V.  

Proof:  

Applying backward and forward direction of (TP) to Definitions 1.1 and 2.1 

respectively we get the result.   

In standard analysis it is known that every continuous function has IVP. The 

same argument is also true in nonstandard analysis for both continuity and s-

continuity. Furthermore, IVP implies IIVP but the converse is not hold in 

general, as shown in the following example. 

Example 2.4.  

Let   [0,  ] →   defined by        
 

   where   is infinitesimal. Then   

satisfies IIVP yet   is not s- continuous at    . On the other hand, the 

example shows that for any standard value  ;               there is no 

standard value  ;       such that       . This means that IIVP does 

not imply IVP. 

Lemma 2.5.  

Let       and   be a function such that           for all    . If   

satisfies IIVP, then so does  .  

Proof: 

Assume that   satisfies IIVP and           for all    . Then for every 

  such that                               , where       , there exists 

 ;      such that       . 

Now, to show that   satisfies IIVP on  . Let   be a real number strictly 

between      and     , for      , to prove that there exists  ;       

such that          
Since                       , then we have the following cases: 
 

1)                        . 

2)                          
3)                          
4)                          
5)                          
6)                          
In the above first four cases we have             and from being   

satisfies IIVP then there exists ;       such that        but       
    , therefore         For the case (5), since                      , 
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it follows that             . According to Definition 2.2, it is sufficient 

to take    . The proof of (6) is similar.   

Lemma 2.6. 

Let   [a, ]    be a function satisfies IIVP with the same hypotheses of 

Definition 2.2 and let   : 

1. If   is s-continuous, then      . 

2. If   is limited continuous, then 
o        

Proof: 

1. Assume that     . Since   is s-continuous, then            We 

conclude from IIVP of   that      , hence      .  

 

2. Assume that   is limited continuous. Since   is continuous, then   is 

standard and by the definition of standard part we have, for all    , 

     is infinitely close to a unique standard real number.  

Hence           . Therefore by the first part we deduce          
 .   

Lemma 2.7.  

Let       be s-continuous.  If       such that            , then 

for all standard positive integer   there exists  ;       such that 

 (  
 

 
)         

Proof:  

Let   be standard positive integer. Define        
 

 
      by 

      (  
 

 
)        … (2.1) 

 

Since   is s-continuous, then so is  . Hence   has IIVP. If we prove that 

there exist        
 

 
   such that       , then the assertion follows. 

Now, for   *    
 

 
+ let       . From (2.1) we conclude that  

      (  
 

 
)   (  

  

 
)                         … (2.2) 

Which is impossible because              the impossibility of the case 

        may be proved in similar way. Hence there exist         
 

 
   

such that        . As a consequence of the last result, we get  (  
 

 
)  
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In recent years a number of articles have dealt with questions concerning the 

IVP of the sum of two real functions. Ciesielski and Pawlikowski [3](see also 

[1,8]) showed that for every Darboux function       there exists a 

continuous nowhere constant function       such that     is Darboux.  

Classically known that the sum of a non-constant continuous function and a 

function has IVP might fail to have IVP. In the following theorem we study 

the case where   and   are nonstandard.  

Theorem 2.8.  

Let   and   be two limited infinitely close functions. If   and   are satisfying 

IIVP, then so is             . 

Proof : 

Let   be such that                   . To find   ;       such 

that             We can prove the requirement according to the following 

two cases of limitedness of both   and : 

Case I: If both   and   are infinitesimal. 

Let                    . 

Since both   and   are infinitesimals, then so is    . 

Thus            for all  . Therefore    . 

Hence            for all   ;      . 

Case II: If both   and   are appreciable 

Since both    and   are infinitesimally close, it follows that   
                                for all  . Therefore, 

                                   
                 

 That is      
 

 
       

Since   satisfies IIVP, then there exists   between     such that  

     
 

 
. Thus                 .  

The same proof can be obtained when we drop the assumption 

              , which completes the proof.  

Lemma 2.9. 

Let    be a sequence of functions satisfies IIVP for all  . Suppose that    

converges uniformly to  . Then   satisfies IIVP. 
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Proof: 

Let   be such that            . Since    is converges uniformly to  , 

then            for all unlimited   and for all  , standard or not. To prove 

the requirement, it suffices to fix an unlimited   where            then the 

proof is consequence of Lemma 2.5. That is there exists                      

such that        .   

It is easy to deduce from Lemma 2.9 that for a sequence  {  }    of values 

corresponding with the values of the sequence  ;                for all 

   , there exists          such that    converges uniformly to     .   

Lemma 2.10.  

If   and   are satisfying IIVP and   is s-continuous, then     it satisfies 

IIVP. 

Proof: 

 Let   be such that                 . To find    ;       such that 

           Since   satisfies IIVP, then for  ;                   

there exists  ;             such that        .  

Now, since   satisfies IIVP, then for  ;             there exists 

         such that       . Since   is s-continuous, then (    )  
    . Thus               .   

Lemma 2.11.  

Let X be a connected space and let       be a continuous function. 

Suppose that    is defined from      into . If       is continuous, then    

satisfies IIVP. 

Proof:  

Let              for some  . We must find z;       such that 

      . Let       and let   {                  }   is the 

graph of   . 

Since    and   are continuous then the map               is continuous 

and   is connected. Let 

   {                        }  and  

       {                        }  
Then   and   are closed subsets of    with       . 

Thus (      )    if and only if     , and  (      )    if and only if  

   . By connectedness of         . Say             
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It follows that      and that      . So          and the IIVP has 

been established.   

Theorem 2.12. 

Let           be a function satisfies IIVP. If for each    , the set 

{               } is closed, then   is s-continuous on      . 

Proof: 

 Let        . By hypothesis the set   

  {                  }  {                  } is closed. 

Since      , there exists      such that         . 

To prove that   is s-continuous on       we need to show that      
        for all           . 

By contradiction, suppose that                for some        with 

       . That is          . Thus there exist a standard   such that 
|         |   . Hence             or            . 

Consider the case where            , then                  . 

Since    satisfies IIVP, there exist    ;       such that            . 

But this is not possible since         . The impossibility of the other 

case can be proved in a similar way. 

Hence,   is s-continuous at  .   

  

NONSTANDARD GENERALIZATION OF SIERPINSKI THEOREM        

For  ,   in  , define the relation   by :           . The relation   

has the following properties: 

1. Is an equivalence relation. 

2. For any    ,      {       } is the equivalence class contains  . 

3.   
Rx

x


][  and if                  

Let   {       }. Define      , by               which is 

onto and               

Theorem 3.1.  

There exists an appreciable nowhere discontinuous function       

satisfies IIVP and map any monad onto galaxy.  
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Proof: 

 Let     . Define       {                             }  It is clear 

that              , so we can find a bijective function    E   . 

Define         by                         . 

We shall now prove that for any      the image of      through   is 

exactly      . We notice that         {       }. Because   is 

dense in  , any of its translations is also dense in  , meaning that any 

equivalence class from  E has at least one element common with any     . 

Thus 

 (    )                                         

It remains to prove that   satisfies IIVP, for this purpose, we shall show that 

the image of every interval is an interval. From definition of        we 

conclude that  

      ⋃       

            

                                                                  

which is a closed interval.  

                                               ⋃    ⋃       

                   

 

The consequence of this last result, is also interval. In order to prove that   is 

not continuous, take any infinitesimal interval          ,     and 

   . From (3.1) and (3.2), we conclude that             =    =       
for some limited  .  Hence   is discontinuous at  .   

Corollary 3.2.  

There exists a function         which satisfies IIVP and takes any real 

value in any monad or galaxy of any point in  . 

Proof:  

We proceed the same way of the above proof, defining the bijection     
  and the function      ,            . We see that         =    for 

any interval      , using a similar argument of the above theorem we 

get      =  , for any interval  , hence   satisfies IIVP.  

In the following theorem, we give a nonstandard generalization of 

Sierpiñski Theorem [9, 13] about decomposing any function into two 

discontinuous functions satisfies IVP. The extension leads to decomposing 

any function into four discontinuous nonstandard functions with IIVP. 

Theorem 3.3.  

For any function       there exist functions                 satisfies 

IIVP and are discontinuous at any point in  , such that             
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Proof:  

Take      . Consider a bijection       and we denote    
       ,            ,        , and      \          . Thus 

                     ,  

and we can define the bijections        ,        ,            , 

and            . Now, define 

      {

                       
                          

                          
                                

 ,         {

                               

                      
                         
                         

  , 

        {

                          
                               
                      
                         

 ,         {

                         
                         
                               

                      

 . 

Where   is an infinitesimal. It is clear from their definition that        
        .  Let us prove that               have the IIVP. Consider      

an interval. Since any equivalence class in E is dense in  , we have 

                                             

                                           
 

Therefore from definitions of                 we see that  

                 ,                     
                 ,                    
For all    , yielding                          . We conclude that 

               satisfies IIVP. We see that                          
   for any interval   so the function               are not continuous at any 

points     , because  

        =   (    )           
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 حول بعض التطويرات غير القياسية لخاصية القيمة الوسطى

مشاجؼت بؼض وقذ تم دواث انتحهيم غيش انقياسي قوة أ استخذمنافي هزا انبحث،  

نتائج غيش انبؼض  وايجادقياسيت حول خاصيت انقيمت انوسطى اننتائج انحقائق و ان

قياسيت ) قياسيت جذيذة  ورنك بتؼميم انمفاهيم انقياسيت انموجودة نتشمم ايت قيمت حقيقيتان

ػهى سبيم مثال قيم غيش قياسيت غيش متناهيت في انصغش وغيش متناهيت  (وغيش قياسيت

تم اػطاء تؼميم غيش قياسي نهنظشيت سشبنسكي حول  وفي انكبش وغيش متناهيت انقشب. 

مغ خاصيت نظشيت  غيش مستمشةو  وع اسبغ دوال غيش قياسيت دانت مؼطاة كمجم تمثيم

(IIVP ).  


