Assiut University Journal of Chemistry (AUJC) 45(2016) 99-115

Journal homepage: <u>www.aujc.org</u>

(ISSN 1678-4919) (Print)

(ISSN 2357-0415) (Online)

Vol(45) No(2) 2016

Full Paper

Synthesis, spectroscopic and thermal studies on nano-sized complexes of Co(II),Ni(II),Cu(II)and Cd(II) ions with the bioactive mercaptotriazoles and N,N'-donor secondary ligands

D.M. Fouad^a, M. A. El-Gahami^{a,b},Z. A. Khafagy^a, A. M. Hammam^a(the late) M. S. Al-Salimi^a and S. A. Ibrahim^a ^aChemistryDepartment, Faculty of Science, Assiut University, Assiut, Egypt, ^b ChemistryDepartment, Faculty of Science, Jeddah University, Jeddah, KSA.

Email: saidibrahim7@yahoo.com

Article history : Received: 17/7/2016; Revised : 20/7/2016; Accepted : 10/8/2016; Available Online : 13/12/2016;

Abstract

Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Cd(II)with 4-(2pyridylmethylenamino)-3-mercapto-5-benzayl-1,2,4-triazole $(L_1),$ 4-(3pyridylmethylenamino)-3-mercapto-5-benzayl-1,2,4-triazole $(L_2),$ 4-(4pyridylmethylenamino)-3-mercapto-5-benzayl-1,2,4-triazole (L₃),bipyridyl (bipy) and 1,10phenanthroline (phen) were prepared. They have general formula [M(L)(bipy)Cl₂].nH₂O and [M(L)(phen)Cl₂].nH₂O, where M=Co(II); Ni(II); Cu(II) or Cd(II). The complexes have been characterized by elemental analysis, spectroscopic measurements UV-(FT-IR, Vis.), transmission electron microscopy (TEM), as well as molar conductance, magnetic measurements and thermal studies. The complexes are hexacoordinated and the structure, thus assumed to have an octahedral geometry. The prepared materials show the existence of nanoparticles with spherical shape. The TEM image shows that the particle diameter is 35.2 - 32.8 nm with a mean particle size of 34 nm. The thermal decomposition study of the prepared complexes was monitored by TG, DTG and DTA analysis in a dynamic nitrogen atmosphere. TG, DTG and DTA studies confirmed the chemical formulations of these complexes. The relative thermal stability of the chelates is evaluated. The final decomposition products were found to be the corresponding metal sulfides. The thermodynamic activation parameters such as $\Delta S^{\#}$, $\Delta H^{\#}$ and $\Delta G^{\#}$ were calculated from the TG curves.

Keywords: mixed ligands complexes, nanoparticles, thermodynamic parameters.

1. Introduction

 $\alpha, \dot{\alpha}$ -Bipyridyl (bipy), 1,10-phenanthroline (phen) and their substituted derivatives, both in the metal-free state and as ligands coordinated to transition metals, disturb the functioning of a wide variety of biological systems. When the metal-free N, N-chelating bases are found to be bioactive it is usually assumed that the sequestering of trace metals is involved, and that the resulting metal complexes are the actual active species. Copper and some of its complexes have been shown to induce apoptosis of murine leukemia cell lines [1]. The casiopeinas are a group of Cu(II) mixed-ligand antineoplastic agents which contain 1,10-phenanthroline or $\alpha, \dot{\alpha}$ -bipyridyl and other bidentate ligands. These compounds exhibit cytotoxicity, genotoxicity and antitumor effects, but their mode of action is presently unknown [2]. A number of reports have appeared in the literature highlighting the use of transition metal complexes as both antibacterial and antifungal agents [3]. The *in vitro* antibacterial action of 1.10phenanthroline has been demonstrated in several species of bacteria. Phenanthroline metal complexes can be bacteriostatic and bacteriocidal toward many gram-positive bacteria they are relatively ineffective against gramnegative organisms.1,10-phenanthroline has been extensively used as a ligand in both analytical and preparative coordination chemistry [4]. As an important building block, the 1,10phenanthroline unit plays а very important role in the development of the supramolecular chemistry [5–7]. Furthermore, considering the unique combination of chemical stabilities,

redox properties, luminescence emission and excited state lifetime, derivatives of 1,10-phenanthroline are also used for the polypyridyl preparation of metal complexes, particularly Ru(II) complexes [8]. Those of 1,10-phenanthroline have shown the most encouraging results, probably because of their ability to intercalate between the intercalation between the bases of DNA [9.10] the literature review reveals that the molecular mechanism of copper (II) phenanthroline and copper (II) bipyridyl complex is very minimum. In the present study, we report the synthesis mixed ligand of Cu(II), Ni(II), Co(II) and Cd(II) metal complexes by using $\alpha, \dot{\alpha}$ -bipyridyl and 1,10-phenanthroline in the presence of 4-substituted-amino-3-mercapto-5benzayl-1,2,4-triazoles. The structures of the mixed ligands complexes were characterized by elemental and thermal analyses, FT-IR, and electronic spectra, transmission electron microscopy (TEM), as well as conductivity and magnetic susceptibility measurements at room temperature. The degradation kinetics have been studied by Coats-Redfern and Horowitz-Metzger methods. Thermodynamic parameters (ΔS , ΔH and ΔG) have been evaluated using the standard equations.

2. Experimental

2.1. Materials and Measurements

All chemicals used in the preoperative work were of analytical grade, they include the following:1,10phenanthroline (phen), $\alpha, \dot{\alpha}$ -bipyridyl (bipy),carbon disulphide, potassium hydroxide, absolute ethanol. dimethylformamide (DMF), phenylacetic acid. pyridine-2-carboxyaldehyde, pyridine-3-carboxyaldehyde and

pyridine-4-carboxyaldehyde,

 $CuCl_2 \cdot 2H_2O$, $NiCl_2 \cdot 6H_2O$, $CoCl_2 \cdot 6H_2O$ and $CdCl_2 \cdot 2.5H_2O$. They were used without further purification.

2.2. Synthesis of the 4-Substitutedamino-3-Mercapto-5-Benzayl-1,2,4-Triazoles

The ligands: 4-(2-pyridylmethylenamino) -3-mercapto-5-benzayl-1,2,4-triazole(L₁), 4-(3-pyridylmethylenamino)-3-mercapto-5-benzayl-1,2,4-triazole(L₂), 4-(4-pyridyl methylenamino)-3-mercapto-5-benzayl-

1,2,4-triazole (L_3) were synthesized according to the literature methods [11-19]. The structures of ligands are shown in Scheme1.

2.3. Synthesis of Cu(II), Ni(II), Co(II) and Cd(II) Mixed Ligand Complexes

To 1 mmol of CuCl₂·2H₂O, NiCl₂.6H₂O, CoCl₂.6H₂O or CdCl₂.2.5H₂O in 10 mL hot ethanol, a solution of L₁, L₂ or L₃ (1 mmol in 40 mL hot ethanol) was added dropwise with constant stirring in one direction. When a precipitate was formed, 1mmol in 10 mL hot ethanolic solution of (bipy) or (phen) was added. The pH was adjusted to 7.2 – 8.2 using dilute ammonia solution. Refluxing of the resulting solution carried for 8 hours. The product obtained was left overnight, filtered through sintered glass, washed with ethanol and dried in vacuum over P_4O_{10} .

2.4. Physical Measurements

The carbon, hydrogen, nitrogen and sulfur content of the solid complexes were obtained by elemental analyzer system Gmbh Vario El. Conductivity measurements for the various complexes were carried out using Jenway 4320 meterlab conductivity meter in DMF solutions at 10⁻³M concentrations at room temperature. Electronic spectra of the solid complexes were run on a Perkin Elmer UV/VIS spectrophotometer Lambda 40 using 1-cm matched silica Magnetic cells. susceptibility measurements were carried out at room using temperature a magnetic susceptibility balance of the type MSB-Mk1. Molar susceptibilities were corrected for diamagnetism of the component atoms by the use of Pascal's constants. The infrared spectra of the free ligands and the metal complexes were recorded on a Shimadzu 470 infrared spectrophotometer (4000-400 cm⁻¹) using KBr discs. Thermogravimetric studies of the various complexes were carried out using a Shimadzu DTG-60Hz thermal analyzer, at a heating rate of 10°C/min in a dynamic nitrogen atmosphere. TEM pictures were taken using a JEOL transmission microscope (model JEM-100CXII ELCTRON MICROSCOPE) with an acceleration voltage of 80KV.

Scheme 1: Structure of the ligands

3. Results and discussion 3.1. Elemental Analyses and Conductivity Measurements

Elemental analysis data of the prepared mixed ligand complexes are listed in Table1. The data indicate formation of complexes with a 1:1:1 ratio between the metal and ligands with the general formula[M(L)(L')Cl₂].nH₂O where M= Cu(II), Ni(II), Co(II) or Cd(II), except the two complexes $[Ni(L_1)(bipy)(H_2O)Cl]Cl.3H_2O$ and $[Co(L_2)(phen)(H_2O)Cl]Cl.H_2O.$ The ligand mixed complexes. $[M(L)(L')Cl_2].nH_2O$ have molar conductance values in the range 12.2 -34.7 Ohm^{-1} cm² mol⁻¹ (Table 1) corresponding to a nonelectrolyte nature of their DMF solutions [20]. While the molar conductance values of DMF solutions of the complexes $[Ni(L_1)(bipy)(H_2O)Cl]Cl.3H_2O$ and $[Co(L_2)(phen)(H_2O)Cl]Cl$ are 70.1 and 68.3 Ohm⁻¹ cm² mol⁻¹ respectively, indicating that these two complex solutions are 1:1 electrolytes [20].

3.2. IR Spectra

The IR spectral data of the free ligands and their complexes are given in (Tables 2 and 3). The IR spectrum of the free (bipy) ligand exhibits a series of significant IR absorption bands as appearing in the vibration regions 3040, 1575, 1550 and 750 cm^{-1} , these bands are apparently the characteristic absorptions of the free (bipy) ligand[21, 22]. These bands suffer a positive shift to a higher wavenumbers on complexation. This has been attributed to shift the coordination of the (bipy) ligand to form

the mixed ligand complexes. The IR spectrum of the free (phen) ligand in the absorption region 1417–1580 cm⁻¹, which is concerned with ring vibration modes (C-C) and (C-N), consists of three intense significant bands; one close to 1580 cm⁻¹, the second in the neighborhood of 1500 cm^{-1} and the third is located at 1417 cm^{-1} . the first and the second bands usually split into doublet and triplet bands respectively [23]. These bands were shifted to higher frequencies in the mixed ligand complexes. The free (phen) ligand consistently exhibit two intense bands at 750 and 870 cm⁻¹, the bands related to C-H out-of-plane deformation modes of phen molecules [24, 25] these are situated almost at the same position in the mixed ligand complex spectra. The ligands L_1 , L_2 and L_3 ligands show four bands at 1520-1588 cm⁻¹, 1300-1400 cm⁻¹, 1008–1040 cm⁻¹ and 700-850 cm⁻¹ which are assignable to thioamide I, II, III, IV vibrations, respectively [26] with contributions from $\delta(C-H) + \delta(N-H)$, $\upsilon(C=S) + \upsilon(C-N) + \delta(C-H), \upsilon(C-N) +$ v(C-S) and v(C=S) modes of vibrations, respectively. These bands are expected to be affected differently by the modes of coordination to the metal ions. In the complexes, these bands shift to lower frequency, suggesting the coordination of the sulfur atom to the metal ions [27]. The presence of crystallization water in the complexes [28] is indicated by a broad trough band in the region 3323 - 3441 cm^{-1} related to v_{OH} and two weaker bands in the region 800 - 750 and 610 - 625cm^{-1} due to rocking and wagging modes of the OH group vibration, respectively [29].

Table 1: Analytical and physical data for the mixed ligand complexes of $\alpha, \dot{\alpha}$ -bipyridyl and 1,10-phenanthroline ligands.

				Analyti	cal Data			
	Complexes [Empirical formula]	~ .	(%Found (Calculated)		$\Lambda_{ m m}^{\ *}$	μ_{eff}
No.	(Formula weight)	Colour	С	Η	Ν	S	Ohm	B.M.
							¹ cm ² mol ⁻¹	
	[Cu(L ₁)(bipy)Cl ₂].H ₂ O	Green	49.4	4.14	16.04	5.74	31.7	2.32
1	$CuCl_2C_{25}H_{23}N_7SO$		(49.83)	(3.85)	(16.28)	(5.31)		
1	M.wt = 602.03							
	$[Cu(L_3)(bipy)Cl_2].3.5H_2O$	Brown	46.37	3.84	15.77	4.85	34.7	2.17
2	$CuCl_2C_{25}H_{28}N_7SO_{3.5}$		(46.36)	(4.36)	(15.14)	(4.94)		
	M.wt. = 647.06							
	$[Cu(L_2)(phen)Cl_2]1.5H_2O$	Pale	51.18	3.12	15.52	5.33	34.6	1.77
3	$CuCl_2C_{27}H_{24}N_7SO_{1.5}$	Green	(51.02)	(3.80)	(15.43)	(5.03)		
	M.wt = 635.04	~		2.1.6	1101			
	$[Cu(L_3)(phen)Cl_2].H_2O$	Green	51.10	3.16	14.84	5.07	22.1	1.71
4	$CuCl_2C_{27}H_{23}N_7SO$		(51.75)	(3.70)	(15.65)	(5.10)		
	M.wt. = 626.03	V. 11	16.06	1 6 1	15.07	5.01	70.1	216
	$[N_1(L_1)(b_1py)(H_2O)CI]CI.3H_2O$	Yellow	46.26	4.64	15.87	5.21	/0.1	3.16
5	$N_1Cl_2C_{25}H_{29}N_7SO_4$		(46.07)	(4.48)	(15.05)	(4.91)		
	M.WL = 651.07	Vallary	46.92	4.27	15 71	5.07	20.0	2 4 2
	NiCl C H N SO	Tenow	40.82	4.57	13.71 (15.05)	(4.01)	50.9	5.45
6	$M_{12}C_{25}H_{29}N_{7}SO_{4}$		(40.07)	(4.48)	(15.05)	(4.91)		
	$\frac{1}{(Ni(L_{i})/hipu)Cl_{i}} \frac{1}{2H_{i}}$	Vallow	17 52	4.12	15 67	1 79	22.0	2.42
	NiCl-C-H-N-SO	Tenow	47.32 (47.38)	(4.12)	(15.07)	(5.05)	23.9	5.42
7	M wt = 633.07		(47.50)	(4.29)	(15.40)	(5.05)		
	$Ni(I_{\rm s})$ (phen)Cl ₂] H ₂ O	V /. 11.	52.80	3 40	15.83	5 35	23.6	4 25
	NiCl ₂ Co ₂ H ₂₀ N ₇ SO	rellow	(52.00)	(3.73)	(15, 78)	(5.14)	23.0	4.23
8	M wt = 621.04	Green	(52.17)	(5.75)	(15.70)	(5.11)		
	[Ni(L ₂)(phen)Cl ₂].2H ₂ O		47.14	4.46	14.81	4.62	24.6	3.33
	NiCl ₂ C ₂₇ H ₂₀ N ₇ SO ₄	Green	(47.99)	(4.32)	(14.52)	(4.72)		
9	M.wt. = 675.05		((
	$[Co(L_2)(bipy)Cl_2].1.5H_2O$	brown	49.17	4.19	16.94	5.86	14.4	4.45
10	CoCl ₂ C ₂₅ H ₂₄ N ₇ SO _{1.5}		(49.41)	(3.98)	(16.14)	(5.26)		
10	M.wt. = 607.04							
	[Co(L ₃)(bipy)Cl ₂].H ₂ O	brown	49.22	3.45	16.72	5.48	23.2	4.43
11	$CoCl_2C_{25}H_{23}N_7SO$		(50.16)	(3.87)	(16.39)	(5.36)		
11	M.wt. = 598.03							
	[Co(L ₂)	brown	50.27	3.70	15.73	4.73	68.3	4.83
12	(phen)Cl(H ₂ O)]Cl.H ₂ O		(50.62)	(3.93)	(15.31)	(4.99)		
12	$CoCl_2C_{27}H_{25}N_7SO_2$							
	M.wt. = 640.04							
	$[Co(L_3) (phen)Cl_2].2H_2O$	brown	50.95	4.26	15.48	4.26	18.6	4.57
13	$CoCl_2C_{27}H_{25}N_7SO_2$		(50.62)	(3.93	(15.31)	(4.99)		
10	M.wt. = 640.04							
	$[Cd (L_2)(bipy)Cl_2].4H_2O$	White	42.55	4.57	14.16	4.35	12.6	-
14	$CdCl_2C_{25}H_{29}N_7SO_4$		(42.43)	(4.13)	(13.86)	(4.52)		
	M.wt. = 707.04							

				Analyti				
No. 15 16	Complexes [Empirical formula]		(%Found (Calculated)		- Λ*	Haff
	(Formula weight)	Colour	С	Н	Ν	S	Ohm	B.M.
							¹ cm ² mol ⁻¹	
	[Cd (L ₃)(bipy)Cl ₂].4H ₂ O	White	42.7	4.36	13.78	4.64	27.8	-
15	$CdCl_2C_{25}H_{29}N_7SO_4$		(42.43)	(4.13	(13.86)	(4.52)		
	M.wt. = 707.04							
	$[Cd(L_2)(phen)Cl_2].4.5H_2O$	White	43.49	4.70	13.63	4.10	12.2	-
16	$CdCl_{2}C_{27}H_{30}N_{7}SO_{4.5}$		(43.78)	(4.08)	(13.24)	(4.32)		
	M.wt. = 740.04							
	[Cd (L ₃)(phen)Cl ₂].4H ₂ O	White	44.35	3.97	13.79	3.98	14.2	-
17	$CdCl_2C_{27}H_{29}N_7SO_4$		(44.32	(3.99)	(13.40)	(4.37)		
	M.wt. = 731.04							

Table 1: Analytical and physical data for the mixed ligand complexes of α,ά-bipyridyl and 1,10-phenanthroline ligands(Continue).

Table 2: IR frequency bands (cm⁻¹) of bipyridyl and its mixed ligand complexes

				Ι	II	III	IV				
complexes	v(H ₂ O)	υ(N- H)	v(C=N)	δ(C- H) δ(N-H)	δ(C- H) υ(C=S) υ(C-N)	υ(C- N) υ(C-S)	v(C=S)	bŗ	biy chara ban	acteristi ds	c
bipy	-	-	-	-	-	-	-	3040	1575	1550	750
$[Cu(L_1)(bipy)Cl_2].H_2O$	3378	3011	1607	1598	1345	1050	853	2974	1534	1516	728
$[Cu(L_3)(bipy)Cl_2].3.5H_2O$	3413	3020	1613	1602	1327	1025	817	2919	1534	1500	730
$[Ni(L_1)(bipy)(H_2O)Cl]Cl.3H_2O$	3387	3070	1630	1596	1317	1023	817	3028	1560	1508	745
[Ni(L ₂)(bipy)Cl ₂].4H ₂ O	3340	3020	1595	1594	1336	1032	820	3011	1560	1542	728
[Ni(L ₃)(bipy)Cl ₂].3H ₂ O	3323	3075	1607	1596	1320	1030	817	2985	1551	1539	730
$[Co(L_2)(bipy)Cl_2].1.5H_2O$	3369	3050	1611	1605	1345	1022	817	2930	1560	1533	736
[Co(L ₃)(bipy)Cl ₂].H ₂ O	3423	3046	1600	1595	1336	1023	820	2985	1520	1506	736
[Cd (L ₂)(bipy)Cl ₂].4H ₂ O	3397	3053	1605	1593	1328	1027	821	2916	1560	1543	727
[Cd (L ₃)(bipy)Cl ₂].4H ₂ O	3441	3056	1596	1590	1329	1005	823	3003	1543	1523	745

S. A. Ibrahim et al

	1			· · ·				0				
					Thioamide	bands						
				Ι	II	III	IV	i				
Complexes	$\upsilon(H_2O)$	υ(N- H)	v(C=N	δ(C- H)	δ(C- H)	υ(C- N)	v(C=S	phe	en chara	acterist	ic ban	ds
				δ(N-H)	υ(C=S)	v(C-S)						
					υ(C-N)							
phen	-	-	-	-	-	-	-	1580	1500	1417	870	750
[Cu(L ₂)(phen)Cl ₂]1.5H ₂ O	3426	3012	1616	1534	1328	1026	760	1590	1508	1430	846	733
[Cu(L ₃)(phen)Cl ₂].H ₂ O	3418	3023	1616	1520	1311	1028	768	1592	1520	1423	855	722
[Ni(L ₁)(phen)Cl ₂].H ₂ O	3403	3055	1614	1515	1360	1030	735	1595	1518	1421	815	723
[Ni(L ₂)(phen)Cl ₂].2H ₂ O	3367	3010	1630	1517	1347	1050	780	1586	1530	1440	821	723
[Co(L ₂)(phen)Cl(H ₂ O)]Cl.H ₂ O	3380	3012	1641	1550	1373	1015	784	1591	1530	1450	820	728
[Co(L ₃) (phen)Cl ₂].2H ₂ O	3375	3045	1615	1546	1346	1029	760	1595	1515	1448	845	732
[Cd(L ₂)(phen)Cl ₂].4.5H ₂ O	3395	3055	1603	1555	1352	1058	791	1585	1514	1454	815	729
[Cd (L ₃)(phen)Cl ₂].4H ₂ O	3426	3055	1622	1549	1344	1041	780	1591	1526	1426	856	723

Table 4: Electronic spectral data of mixed ligand complexes of the bipyridyl and 1,10-phenanthroline(1×10^{-3} - 1×10^{-4} M in DMF solution).

No.	Complex	$v_{max}(k.K)$	Assignment
		$(\epsilon_{\rm max}{\rm cm}^2{\rm mol}^{-1})$	
		35.08(24418)	intraligand
1	[Cu(L ₁)(bipy)Cl ₂].H ₂ O	25.31(95029)	LMCT
		15.26(232.09)	d - d
		34.48(18831.2)	intraligand
2	$[Cu(L_3)(bipy)Cl_2].3.5H_2O$	25.64(34953.5)	LMCT
		14.98(299.91)	d - d
		36.36(97899)	intraligand
3	[Cu(L ₂)(phen)Cl ₂].1.5H ₂ O	33.00(11121)	intraligand
		14.83(144.14)	d - d

Table 4: Electronic spectral data of	mixed ligand complexes of the	bipyridyl and 1,10-phenanthroline
$(1 \times 10^{-3} - 1 \times 10^{-4} \text{ M in DMF solution})($	Continue).	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	Complex	$v_{max}(k.K)$	Assignment
$\begin{array}{c ccccc} & 36.36(65607) & intraligand \\ & [Cu(L_3)(phen)Cl_2].H_2O & 21.73(148.77) & LMCT \\ & 15.60(13.19) & d-d \\ \hline \\ & 34.48(625341) & intraligand \\ \hline \\ & 5 & [Ni(L_1)(bipy)(H_2O)Cl](Cl.3H_2O & 16.31(3386) & d-d \\ \hline \\ & 0 & [Ni(L_2)(bipy)Cl_2].4H_2O & 27.02(28328) & LMCT \\ & 16.52(456.47) & d-d \\ \hline \\ & & & & & & & & & & & & & & & & &$			$(\epsilon_{\rm max}{\rm cm}^2{\rm mol}^{-1})$	C C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			26 26(65607)	introligond
$\begin{array}{c c} 1 & (cdc_3)(phen)Cl_3)(120) & 121:5(0)(13.19) & d-d \\ 15.60(13.19) & d-d \\ 15.60(13.19) & d-d \\ \hline \\ & (Ni(L_1)(bipy)(H_2O)Cl](Cl.3H_2O & 16.31(3386) & d-d \\ \hline \\ & (Ni(L_2)(bipy)Cl_2].4H_2O & 27.02(28328) & LMCT \\ 16.52(456.47) & d-d \\ \hline \\ & (Ni(L_1)(bipy)Cl_2].3H_2O & 15.74(313.26) & d-d \\ \hline \\ & (Ni(L_1)(bipy)Cl_2].3H_2O & 15.74(313.26) & d-d \\ \hline \\ & (Ni(L_1)(bipn)Cl_2].H_2O & 25.57(101146) & intraligand \\ \hline \\ & (Ni(L_2)(phen)Cl_2].H_2O & 24.33(15357) & LMCT \\ 16.39(483.23) & d-d \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ \hline \\ & (Co(L_2)(bipy)Cl_2].1.9L_2O & 36.36(424292) & intraligand \\ 11 & (Co(L_3)(bipy)Cl_2].H_2O & 30.30(787) & intraligand \\ 11 & (Co(L_3)(bipy)Cl_2].H_2O & 37.03(27436) & intraligand \\ 12 & (Co(L_3)(phen)(H_2O)Cl](Cl.H_2O & 25.73(5524) & LMCT \\ \hline \\ & 16.52(275.83) & d-d \\ 14.74(183.62) & d-d \\ 14.74(183.62) & d-d \\ 14.74(183.62) & d-d \\ 14.74(183.62) & d-d \\ \hline \\ & 14.74(183.62) & d-d \\ \hline \\ & 14.74(183.62) & d-d \\ \hline \\ & 14.74(183.62) & d-d \\ 14.74(183.62) & d-d \\ \hline \\ & 15. & [Cd(L_3)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ \hline \\ & 14.74(183.62) & d-d \\ \hline \\ & 15. & [Cd(L_3)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ \hline \\ & 14.74(1250) & LMCT \\ \hline \\ \hline \\ & 15. & [Cd(L_3)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ \hline \\ & 14.74(1250) & LMCT & 17. \\ \hline \\ \hline \\ & 14.74(1250) & LMCT & 17. \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline $	4	$[Cu(\mathbf{L})(\mathbf{phen})C]] \mathbf{H} \mathbf{O}$	30.30(03007) 21.73(148.77)	I MCT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$[Cu(L_3)(pnen)Cl_2].H_2O$	21.73(140.77) 15.60(13.19)	LMC1 d - d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			15.00(15.17)	u – u
5 [Ni(L_1)(bipy)(H_2O)Cl]Cl_3H_2O 16.31(3386) $d-d$ 6 [Ni(L_2)(bipy)Cl_2].4H_2O 35.33(12795.7) intraligand 7 [Ni(L_2)(bipy)Cl_2].4H_2O 33.89(60103) intraligand 7 [Ni(L_3)(bipy)Cl_2].3H_2O 15.74(313.26) $d-d$ 8 [Ni(L_1)(phen)Cl_2].H_2O 23.58(45002) LMCT 9 [Ni(L_2)(phen)Cl_2].H_2O 24.33(15357) LMCT 16.94(169.96) $d-d$ -d 16.40(29.96) -d 9 [Ni(L_2)(phen)Cl_2].1.5H_2O 25.57(6556) LMCT 16.66(394.79) d-d 10 [Co(L_2)(bipy)Cl_2].1.5H_2O 25.57(6556) LMCT 16.40(29.2) intraligand 11 [Co(L_2)(bipy)Cl_2].H_2O 30.30(7837) intraligand 11 12 [Co(L_3)(bipy)Cl_2].H_2O 30.30(7837) intraligand 11 13 [Co(L_3)(phen)(H_2O)Cl]Cl.H_2O 28.73(8544) LMCT 14.97(2657.2) $d-d$ 147.4(183.62) $d-d$ 13 [Co(L_3)(phen)Cl_2].2H_2O 15.38(498.08) $d-$			34.48(625341)	intraligand
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$[Ni(L_1)(bipy)(H_2O)Cl]Cl.3H_2O$	16.31(3386)	d - d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			25 22(12705 7)	introligond
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	[Ni(L)(hinv)C11/4H O	33.33(12733.7) 37.02(28328)	IMCT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	$[\mathbf{N}(\mathbf{L}_2)(\mathbf{U}(\mathbf{p}))\mathbf{C}(\mathbf{I}_2)]\mathbf{H}_2\mathbf{C}$	27.02(20520) 16 52(456 47)	LMC1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10.32(430.47)	u – u
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			33.89(60103)	intraligand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	[Ni(L_a)(bipy)Cl_a].3H ₂ O	15.74(313.26)	d – d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[[[[[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	1011 (010120)	
			35 97(101146)	intraligand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	[Ni(L_)(phen)Cl_1]H_O	23 58(45002)	IMCT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0		16 39(483 23)	d – d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10.37(+03.23)	uu
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			35.97(38732)	intraligand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	$[Ni(L_2)(phen)Cl_2].2H_2O$	24.33(15357)	LMCT
$ \begin{bmatrix} Co(L_2)(bipy)Cl_2].1.5H_2O & 31.25(23331.5) & intraligand \\ 25.57(6556) & LMCT \\ 10 & 16.66(394.79) & d-d \\ 14.92(316.76) & d-d \\ 14.92(25.72) & d-d \\ 14.97(265.72) & d-d \\ 14.97(265.72) & d-d \\ 14.97(265.72) & d-d \\ 12 & [Co(L_2) (phen)(H_2O)Cl]Cl.H_2O & 28.73(8544) & LMCT \\ 16.73(529.9) & d-d \\ 14.74(183.62) & d-d \\ 14.74(183.62) & d-d \\ 14.74(183.62) & d-d \\ 15.38(498.08) & d-d \\ 15.38(498.08) & d-d \\ 15.38(498.08) & d-d \\ 14 & [Cd(L_2)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ 30.25(18918.3) & LMCT \\ 16 & [Cd(L_2)(phen)Cl_2].4H_2O & 34.84(29863) & intraligand \\ 16 & [Cd(L_2)(phen)Cl_2].4.5H_2O & 34.84(29863) & intraligand \\ 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ 22.47(2632) & LMCT \\ 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ 24.91(120) & LMCT \\ 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ 24.91(120) & LMCT \\ 18 & 24.91(120) & LMCT \\ 19 & 24.91(120) & LMCT \\ 24.91(120)$			16.94(169.96)	d - d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{bmatrix} Co(L_2)(bipy)Cl_2].1.5H_2O & 25.57(6556) & LMCT \\ 10 & 16.66(394.79) & d-d \\ 14.92(316.76) & 1ntraligand \\ 11 & 10000000000000000000000000000000$			31.25(23331.5)	intraligand
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$[Co(L_2)(bipy)Cl_2].1.5H_2O$	25.57(6556)	LMCT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10		16.66(394.79)	d - d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14.92(316.76)	d – d
$ \begin{bmatrix} Co(L_3)(bipy) Cl_2 \end{bmatrix}.H_2O & 30.30(7837) & intraligand \\ 11 & 16.52(275.83) & d-d \\ 14.97(265.72) & d-d \\ \hline 14.97(183.62) & d-d \\ \hline 14.74(183.62) & d-d \\ \hline 14.74(183.62) & d-d \\ \hline 13 & [Co(L_3) (phen)Cl_2].2H_2O & 16.39(432.5) & d-d \\ \hline 15.38(498.08) & d-d \\ \hline 14 & [Cd(L_2)(bipy)Cl_2].4H_2O & 25.64(54594) & LMCT \\ \hline 15 & [Cd(L_3)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ \hline 14 & [Cd(L_2)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ \hline 15 & [Cd(L_3)(bipy)Cl_2].4H_2O & 35.71(25010.1) & intraligand \\ \hline 16 & [Cd(L_2)(phen)Cl_2].4.5H_2O & 34.84(29863) & intraligand \\ \hline 16 & [Cd(L_2)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ \hline 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ \hline 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ \hline 14 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ \hline 17 & [Cd(L_3)(phen)Cl_2].4H_2O & 34.96(27640) & intraligand \\ \hline 19 & 24.84(126) & LMCT & 1 \\ \hline 10 & 24.84(126) & LMC$			36.36(44292)	intraligand
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$[Co(L_3)(bipy) Cl_2].H_2O$	30.30(7837)	intraligand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11		16.52(275.83)	d - d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14.97(265.72)	d – d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			37.03(172436)	intraligand
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	$[Co(L_2) (phen)(H_2O)Cl]Cl.H_2O$	28.73(8544)	LMCT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			16.73(529.9)	d - d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14.74(183.62)	d – d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			37.03(29519)	intraligand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	$[Co(L_3) (phen)Cl_2].2H_2O$	16.39(432.5)	d - d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15.38(498.08)	d – d
14 $[Cd(L_2)(bipy)Cl_2].4H_2O$ 25.64(54594) LMCT 15 $[Cd(L_3)(bipy)Cl_2].4H_2O$ 35.71(25010.1) intraligand 30.25(18918.3) LMCT 37.45(45352) intraligand 16 $[Cd(L_2)(phen)Cl_2].4.5H_2O$ 34.84(29863) 17 $[Cd(L_3)(phen)Cl_2].4H_2O$ 34.96(27640) 17 $[Cd(L_3)(phen)Cl_2].4H_2O$ 34.96(27640)			34.48(82029)	intraligand
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	$[Cd(L_2)(bipy)Cl_2].4H_2O$	25.64(54594)	LMCT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	[Cd(L ₃)(bipy)Cl ₂].4H ₂ O	35.71(25010.1)	intraligand
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			30.25(18918.3)	LMCT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			37.45(45352)	intraligand
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$[Cd(L_2)(phen)Cl_2].4.5H_2O$	34.84(29863)	intraligand
17 $[Cd(L_3)(phen)Cl_2].4H_2O$ 34.96(27640) intraligand 24.81(126) LMCT		-	22.47(2632)	LMCT
24 91(126) INCT	17	$[Cd(L_3)(phen)Cl_2].4H_2O$	34.96(27640)	intraligand
24.81(150) LMC1			24.81(136)	LMCT

3.3. Electronic Spectra and Magnetic Measurements

The electronic spectra of DMF solution of the mixed ligand complexes are recorded in the wavelength range 200-1100 nm. The $v_{max}(kK)$ and $\varepsilon_{max}(cm^2 mol^2)$ values of the different absorption $^{1})$ bands are recorded in Table 4. The first set with v_{max} in the range 31.25 –37.45 kK could be attributed to intraligand charge transfer transitions [30]. The second set includes bands having v_{max} in the range 21.73 - 28.73 kK. These bands assigned are LMCT as transitions[30]. The third set of bands of Cu(II) mixed ligand complexes (1), (2), (3) and (4) has v_{max} in the range 14.83 – 15.60 kK is assigned for a d-d transition which is typical for Cu(II) distorted octahedral complexes [31]. These bands are assigned to all the three transitions ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}, {}^{2}B_{1g} \rightarrow {}^{2}A_{1g} \text{ and } {}^{2}B_{1g} \rightarrow {}^{2}E_{g}$ which are usually found in tetragonal Cu(II) complexes [30]. The room temperature magnetic moment values of Cu(II) mixed ligand complexes (1), (2), (3) and (4) are 2.32, 2.17, 1.77 and 1.71 B.M. respectively (Table 1) that are in harmony with the proposed geometry of Cu(II) ions [31, 32]. The d-d transition bands observed for Ni(II) mixed ligand

complexes (5), (6), (7), (8) and (9) are found to have v_{max} in the range 15.74 – 16.94 kK could be attributed to ${}^{3}A_{2g(E)} \rightarrow$ ${}^{3}T_{1g(F)}$ transitions, suggesting octahedral geometry for the Ni(II) complexes[33].

3.4 Transmission electron microscopy (TEM)

Electron images from the (TEM) can be used to achieve different information, for example for crystallographic or compositional studies etc. Transmission electron microscope (TEM) examination was used to check the nanostructure and to estimate particle size of the prepared complexes. Transmission electron microscopy (TEM) is used to determine actual particle sizes. The TEM images shows that the particle diameter is 35.2 -32.8 nm with a mean particle size of 34 nm (see Fig. 1). The average crystal size is estimated by considering the few number of crystals shown in the TEM image (Fig. 1). The prepared material shows the existence of nano-particle with spherical shape. It is apparent that the diameter of the smallest particle is equal to the diameter of a spherical particle because the particles have been grown by nucleation growth of smaller particles [37,38].

Fig. 1: TEM image of [Co(L₃)(phen)Cl₂].2H₂O nanoparticle.

3.5. Thermal Decomposition Studies

Thermogravimetric studies have been made in the temperature range 43-750 °C. The thermal stability data of all the complexes are listed in (Table 5). Thermal decomposition curves of the complexes showed a similar sequence of three decomposition steps [39-41], given in (Figures.2a, 2b and 3a, 3b). The first decomposition step for all the complexes occurred in the temperature range of 43-299°C. The observed mass losses obtained for Cu(II) complexes were (3.17%), (4.33%), (4.59%) and (2.34%) and Ni(II) (8.83%), (5.25%), (8.69%), (2.14%) and (5.64) for Co(II) complexes (4.20%), (3.56%), (5.24%) and (5.74%) for complexes Cd(II) were (10.87%), (20.23%), (10.74%) and (14.16%) which were attributed to the decomposition of absorbed water molecules (Table 5). Water of hydration is associated with complex formation and is found outside the coordination sphere formed around the central metal ion as in equation(1).

The second decomposition step occurred in the temperature range of 122–526°C corresponding to observed mass losses for Cu(II) complexes were (58.61%), (25.44%), (39.55%) and (18.44%) for complexes were Ni(II) (55.36%),(29.48%),(30.08%),(17.44%)and (31.60%) for Co(II) were (50.99%), (21.61%), (19.52%), and (22.94%). for Cd(II) were (59.23%), (36.24%), (9.59%)

and (13.34%)due to the decomposition of phen and bipy ligand and partial decomposition of triazole ligand or chlorine atom as in equation(2).

The third decomposition step occurred in the temperature range of 265-750 °C corresponds to observed mass losses for complexes (16.44%),Cu(II) were (24.19%), (26.82%) and (28.38%) for Ni(II) complexes were (11.31%),(24.67%),(26.57%),(20.40%)and (42.77%) for Co(II) complexes were (14.14%), (53.03%), (20.01%),and (28.43%). for Cd(II) complexes were (7.65%),(24.52%),(10.10%)and (49.16%). due to the decomposition of phen and bipy ligand and partial decomposition of triazole ligand as in equation(3).

The four decomposition step occurred in the temperature range of 370–751°C corresponds to observed mass losses for Cu(II) complexes were (31.83%) and (20.63%) for Ni(II) complexes were (28.24%) and (20.19%) for Co(II) were (34.64%)and (29.59%)for Cd(II) complex was (36.17%).The final decomposition of traizole ligand from metal chelates to different moieties, partial decomposition of triazole ligand C₇H₇, HCN and 2CN mioeties. The final decomposition corresponds to a metal sulphide residue or metal with part from organic compound incomplete (Table 5) as in equation(4).

$$[Cu(L_{3})(bipy)Cl_{2}].3.5H_{2}O \xrightarrow{I} [Cu(L_{3})(bipy)Cl_{2}].2H_{2}O \xrightarrow{II} - 1.5H_{2}O \qquad [Cu(L_{3})(bipy)Cl_{2}].2H_{2}O \xrightarrow{III} - 2H_{2}O,Cl \xrightarrow{III} - C_{7}H_{7}$$

$$[CuS] \xleftarrow{IV} [Cu(C_{8}H_{6}N_{5}S)Cl] \xleftarrow{III} - bipy \qquad [Cu(C_{8}H_{6}N_{5}S)(bipy)Cl] \xrightarrow{III} - bipy \qquad [Cu(C_{8}H_{6}N_{5}S)(bipy)Cl] \qquad (1)$$

Fig. 2: TG-DTG curves of complex a=[Cu(L₃)(bipy)Cl₂].3.5H₂O, b=[Ni(L₃)(bipy)Cl₂].3H₂O

Fig. 3: TG-DTG curves of complex $a=[Co(L_2) (phen)(H_2O)Cl]Cl.H_2O, b=[Cd(L_3)(phen)Cl_2].4H_2O$

S. A. Ibrahim et al

Table 5: Thermal data for mixed ligand complexes of $\alpha, \dot{\alpha}$ -bipyridyl and 1,10-phenanthroline ligand.

Complexes remp. rc Calcd. rc Found rc Loss motivity Process Calcd. (Found) % Nature % [Cu(L_1)(bipy)Cl_1].LiO 1 50-314 2.99 317 H,O deviparation 2.29(21.63) (Cu(CN,S)) [Cu(L_1)(bipy)Cl_1].SH_O III 156-314 2.93 5.84 5.86.1 bips,CH,Cc,H,N_2 decomposition 14.86(1A.32) [Cu(S)] [Cu(L_1)(bipy)Cl_1].SH_O III 163-26.4 2.50.3 2.54.4 C,H,N,2KO,Cl decomposition 14.86(1A.32) [Cu(S)] [Cu(L_1)(bips)Cl_1].SH_O III 163-26.4 2.50.3 2.52.4 CH,N,2KO,H decomposition 29.75(28.87) [Cu(CH,H,S)] [Cu(L_1)(phen)Cl_1].LSH_O II 122-52.6 2.63 CH,N,CH,H decomposition 29.75(28.87) [Cu(CH,H,S)] [Cu(L_1)(phen)Cl_1].H_O II 122-52.6 2.63 CL,PAH,CH,H decomposition 29.75(28.87) [Cu(C,H,M,S)] [Cu(L_1)(phen)Cl_1].H_O II 128-128 2.85 2.83 3H,O decomposition 29.75(Weight	t loss %			Resi	due
I50-1342.993.17H ₂ Odehydration22.29(21.63)[Cu(CN,S)][Cu(L ₁)(bipy)Cl ₂].J.SH ₂ O1458.4758.1bipy,C,H ₂ ,C,H ₂ Ndecomposition4[Cu(L ₂)(bipy)Cl ₂].J.SH ₂ O147.1624.174.331.5H ₂ Odekomposition44.86(14.32)[Cu(S)][Cu(L ₂)(bipy)Cl ₂].J.SH ₂ O147.524.422.5032.544CH,R,J2(N,C)decomposition45<.55551.5H ₂ Odecomposition555 <th>Complexes</th> <th>steps</th> <th>Temp. Range °C</th> <th>Calcd.</th> <th>Found</th> <th>Loss moiety</th> <th>Process</th> <th>Calcd.(Found) %</th> <th>Nature</th>	Complexes	steps	Temp. Range °C	Calcd.	Found	Loss moiety	Process	Calcd.(Found) %	Nature
[Cu(L _i)(bipy)(Cl _j].J5(H ₂) II iii iiii iiiii iiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		Ι	50-134	2.99	3.17	H ₂ O	dehydration	22.29(21.63)	[Cu(CN ₂ S)]
III 415-738 16.14 HCN,2C1 decomposition I 47-742 4.17 4.33 1.5H,0 defwiration 14.86(14.32) [CuS] [Cu(L_3)(bipy)Cl_2].3.5H ₂ O III 163.264 25.03 25.44 C,H ₂ ,2H ₂ O,G decomposition decomposition decomposition decomposition III 265-368 24.11 24.19 bipy decomposition decomposition decomposition III 522-576 26.61 28.83 39.55 2.0, phen decomposition decomposition III 122-526 39.33 39.55 2.0, phen decomposition decomposition III 122-526 39.33 39.55 2.0, phen decomposition decomposition decomposition III 122-376 28.61 2.8.24 C,H ₄ N,C,H) decomposition decomposition decomposition III 128-317 18.05 19.85 19.63 decomposition decomposition decomposition IN(L ₁)(h	[Cu(L ₁)(bipy)Cl ₂].H ₂ O	II	136-412	58.47	58.61	bipy,C ₇ H ₇ ,C ₆ H ₅ N ₂	decomposition		
[CufL ₃)(bipy)Cl ₂].3.5H ₂ O i 4.71 4.33 1.5H ₂ O debydration 14.8(14.32) [CuS] [III 265-368 24.11 24.19 bipy decomposition i <td></td> <td>III</td> <td>415-738</td> <td>16.11</td> <td>16.44</td> <td>HCN,2Cl</td> <td>decomposition</td> <td></td> <td></td>		III	415-738	16.11	16.44	HCN,2Cl	decomposition		
[Cut(L ₃)(bipy)Cl ₃].3.5IP,O II 163-264 25.03 25.44 C,H ₂ , 2H ₂ O,C decomposition IV 370-751 31.83 24.19 bipy decomposition decomposition IV 370-751 31.83 31.57 Cl,C,H ₄ N,ZCN decomposition 29.75(28.87) [Cu(C ₃ +],N ₅)] [Cut(L ₂)(phen)Cl ₃].1.5IL ₉ O II 56-119 4.25 4.59 1.51+Q decomposition 29.75(28.87) [Cu(C ₃ +],N ₅)] [Cut(L ₃)(phen)Cl ₃].1.5IL ₉ O II 52.875 26.61 26.82 C ₃ + ₄ N,C,H decomposition 30.21(30.01) Cu(C ₃ + ₁ N,S)] [Cut(L ₃)(phen)Cl ₃].1.5IL ₉ O II 128-317 18.05 18.44 C ₃ H ₄ N,CI decomposition 30.21(30.01) Cu(C ₃ + ₁ N,S)] [Ni(L ₃)(phen)Cl ₃].4L ₉ O II 128-317 28.38 phen decomposition 24.28(23.98) [Ni(C ₁ + ₁ N,S)] [Ni(L ₁)(bipy)(Il ₂ O)Cl]CL ₃ II ₄ O I 18.75 25.55 55.36 H ₂ O decomposition 15.41(1.10.10.10.10.10.10.10.10.10.10.10.10.10		Ι	47-162	4.17	4.33	1.5H ₂ O	dehydration	14.86(14.32)	[CuS]
III 265-368 24.11 24.19 bipy decomposition IV 370-751 31.83 31.57 C, C, H,N2CN decomposition [Cu(L_2)(phen)Cl_1,1.5H) I 56.119 4.25 4.59 1.5H,O dehydration 29.75(28.87) [Cu(C,H,M,S)] [Cu(L_2)(phen)Cl_1,1.5H) I 51.256 39.39 39.55 2C.0,Phen decomposition 30.21(30.01) Cu(C,H,M,S)] [Cu(L_2)(phen)Cl_1,1.5H) I 51.256 28.3 18.44 C,H,N,CI decomposition 24.28(23.98) [Ni(C,H,M,S)] [Ni(L_1)(bipy)(H_2O)CI]CL3H20 I 52.55 28.38 3Pho dethydration 24.28(23.98) [Ni(C,H,M,S]] [Ni(L_1)(bipy)(H_2O)CI]CL3H20 I 488.752 52.55 2H ₂ O dehydration 11.54(12.13) [Ni(NS)] [Ni(L_1)(bipy)(H_2O)CI]CL3H20 I 48.478 55.25 2H ₂ O dehydration 11.54(12.13) [Ni(NS)] [Ni(L_2)(bipy)CI_2,1-H20 I 48.178 28.67 2H ₂ O dedhydration 1	$[Cu(L_3)(bipy)Cl_2].3.5H_2O$	II	163-264	25.03	25.44	C ₇ H ₇ , 2H ₂ O, Cl	decomposition		
$ \begin{bmatrix} IV \\ IV$		III	265-368	24.11	24.19	bipy	decomposition		
NHCL NHCL </th <td></td> <td>IV</td> <td>370-751</td> <td>31.83</td> <td>31.57</td> <td>Cl, C₅H₄N,2CN</td> <td>decomposition</td> <td></td> <td></td>		IV	370-751	31.83	31.57	Cl, C₅H₄N,2CN	decomposition		
						N,HCN			
		Ι	56-119	4.25	4.59	1.5H ₂ O	dehydration	29.75(28.87)	$[Cu(C_3H_2N_4S)]$
III528-75026.6126.82C ₃ H ₄ N,C ₇ H ₇ decompositionICu(L ₃)(phen)Cl ₂].H ₂ OI51-1262.872.34H ₂ OdecompositionIII320-49328.7528.38phendecompositionIII320-49328.7528.38phendecompositionIII320-49328.7528.38phendecompositionIII498-74920.1220.63Cl,C,H,decompositionIII52-1858.298.333H,OdecompositionIII498-75011.9855.4555.56H ₂ O,2Cl,C,H,decompositionIII498-75011.9851.31CC_H ₃ N,CH ₃ OdecompositionIII14-92029.4929.48bipy, 2H ₂ OdecompositionIII122-46524.7324.67C,H ₃ N,CHN,N,NdecompositionIII122-46524.7328.64C,H ₃ N,CHN,N,NdecompositionIII127-73228.24C,H ₃ N,CHN,CN,NdecompositionIII51-1748.538.693H,OdecompositionIII130-31717.4517.44C,H ₃ N,CIdecompositionIII130-31717.4517.44C,H ₃ N,CIdecompositionIII130-31717.4517.44C,H ₃ N,CIdecompositionIIII130-31717.4517.44C,H ₃ N,CIdecompositionIIII130-31717.4517.44C,H ₃ N,CIdecomposition	[Cu(L ₂)(phen)Cl ₂].1.5H ₂ O	II	122-526	39.39	39.55	2Cl, phen	decomposition		
$ \begin{bmatrix} Cu(L_3)(phen)Cl_3].H_2O & I & 51:126 & 2.87 & 2.34 & H_2O & dehydration & 30.21(30.01) & Cu(C_3H_3N_4S)] \\ I & 128:317 & 18.05 & 18.44 & C_4H_N C(1 & decomposition & dec$		III	528-750	26.61	26.82	C_5H_4N,C_7H_7	decomposition		
[Cu(L ₃)(phen)Cl ₂).H ₂ OII128.31718.0518.44C ₃ H ₄ N, CldecompositionIV320.49328.7528.38phendecompositionIV498.74920.1220.63Cl, C, H ₇ decomposition[Ni(L ₁)(bipy)(H ₂ O)Cl]CL3H ₂ OII82.7498.833H ₂ Odehydration24.28(23.98)[Ni(C ₂ H ₂ N ₅ S)][Ni(L ₁)(bipy)(H ₂ O)Cl]CL3H ₂ OII88.74955.555.56H ₂ O, 2Cl, C, H ₇ decomposition-III498.75011.9811.31C, H ₄ Ndecomposition[Ni(L ₂)(bipy)Cl ₂].4H ₂ OII32.246524.7324.67C, H ₂ N, 2H ₂ Odecomposition-III149.32029.4929.48Bibpy, 2H ₂ Odecomposition[Ni(L ₂)(bipy)Cl ₂].3H ₂ OII32.246524.7324.67C, H ₂ N, 2H ₂ Odecomposition[Ni(L ₃)(bipy)Cl ₂].3H ₂ OII35.47226.9925.75C, H ₄ N, 2H ₂ O, M ₂ Odecomposition[Ni(L ₄)(phen)Cl ₂].H ₅ OII35.47226.9925.75C, H ₄ N, Cldecomposition[Ni(L ₄)(phen)Cl ₂].H ₅ OII32.49337.8337.522CNN, hphendecomposition[Ni(L ₄)(phen)Cl ₂].H ₅ OII32.49337.837.522CNN, hphendecomposition[Ni(L ₄)(phen)Cl ₂].H ₅ OII32.47334.612H ₄ OC, H		Ι	51-126	2.87	2.34	H ₂ O	dehydration	30.21(30.01)	$Cu(C_3H_2N_4S)]$
	[Cu(L ₃)(phen)Cl ₂].H ₂ O	II	128-317	18.05	18.44	C₅H₄N, Cl	decomposition		
		III	320-493	28.75	28.38	phen	decomposition		
		IV	498-749	20.12	20.63	Cl, C ₇ H ₇	decomposition		
		Ι	52-185	8.29	8.83	3H ₂ O	dehydration	24.28(23.98)	$[Ni(C_2H_2N_3S)]$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Ni(L ₁)(bipy)(H ₂ O)Cl]Cl.3H ₂ O	II	187-495	55.45	55.36	H ₂ O, 2Cl, C ₇ H ₇	decomposition		
						CN, bipy			
$ \begin{bmatrix} Ni(L_2)(bipy)Cl_2].4H_2O & I & 48-148 & 5.52 & 5.25 & 2H_2O & dehydration & 11.54(12.13) & [Ni(NS)] \\ II & 149-320 & 29.49 & 29.48 & bipy, 2H_2O & decomposition & \\ 322-455 & 24.73 & 24.67 & C_5H_2Z(I) & decomposition & \\ IV & 467-739 & 28.72 & 28.24 & C_5H_4N,2HCN,CN,N & decomposition & \\ IV & 467-739 & 28.72 & 28.24 & C_5H_4N,2HCN,CN,N & decomposition & \\ I & 51-174 & 8.53 & 8.69 & 3H_2O & dehydration & 14.24 (14.32) & [NiS] & \\ II & 176-351 & 30.17 & 30.08 & bipy, CI & decomposition & \\ IV & 474-750 & 20.37 & 20.19 & 2HCN,CN,CI ,N & decomposition & \\ IV & 474-750 & 20.37 & 20.19 & 2HCN,CN,CI ,N & decomposition & \\ IV & 474-750 & 20.37 & 20.19 & 2HCN,CN,CI ,N & decomposition & \\ IV & 498-749 & 37.38 & 37.52 & 2CMH, phen & decomposition & \\ IV & 498-749 & 37.38 & 37.52 & 2CMH, phen & decomposition & \\ IV & 498-749 & 37.38 & 37.52 & 2CMH, phen & decomposition & \\ IV & 498-749 & 37.38 & 37.52 & 2CMH, phen & decomposition & \\ IV & 498-749 & 37.38 & 31.60 & phen,CI & decomposition & \\ III & 158-341 & 31.85 & 31.60 & phen,CI & decomposition & \\ III & 158-341 & 31.85 & 31.60 & phen,CI & decomposition & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2CI, bipy & decomposition & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2CI, bipy & decomposition & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2CI, bipy & decomposition & \\ III & 136-427 & 30.10 & 3.56 & H_5O & dehydration & 30.49(30.34) & [Co(C_3H_2N_2S]] & \\ I[Co(L_3)(bipy)Cl_2].1.5H_2O & I & 448-172 & 3.01 & 3.56 & H_5O & dehydration & 21.54 (21.42) & [Co(NS)] & \\ III & 130-424 & 21.07 & 21.61 & C_7H_7 & decomposition & \\ III & 130-424 & 21.07 & 21.61 & C_7H_7 & decomposition & \\ III & 130-424 & 21.07 & 21.61 & C_7H_7 & decomposition & \\ III & 130-424 & 21.07 & 21.61 & C_7H_7 & decomposition & \\ III & 426-742 & 53.84 & 53.03 & HCN, CI, bipy, & decomposition & \\ III & 426-742 & 53.84 & 53.03 & HCN, CI, bipy, & decomposition & \\ III & 426-742 & 53.84 & 53.03 & HCN, CI, bipy, & decomposition & \\ III & 426-742 & 53.84 & 53.03 & HCN, CI, bipy, & decomposition & \\ III & 426-742$		III	498-750	11.98	11.31	C₅H₄N	decomposition		
		Ι	48-148	5.52	552 525 $2H_2O$ debydrat		dehvdration	11.54(12.13)	[Ni(NS)]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Ni(L ₂)(bipy)Cl ₂].4H ₂ O	II	149-320	29.49	29.48	bipy, 2H ₂ O	decomposition	- (-)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		III	322-465	24.73	24.67	C ₇ H ₇ .2Cl	decomposition		
$ \begin{bmatrix} Ni(L_3)(bipy)Cl_2].3H_2O & II & 51-174 & 8.53 & 8.69 & 3H_2O & dehydration & 14.24 (14.32) & [NIS] \\ II & 176-351 & 30.17 & 30.08 & bipy, Cl & decomposition & & & & & & \\ II & 353-472 & 26.69 & 26.57 & C_7H_7,C_5H_4N & decomposition & & & & & & & \\ IV & 474-750 & 20.37 & 20.19 & 2HCN,CN, Cl, N & decomposition & & & & & & & \\ IV & 474-750 & 20.37 & 20.19 & 2HCN,CN, Cl, N & decomposition & & & & & & & \\ II & 130-317 & 17.45 & 17.44 & C_5H_4N,Cl & decomposition & & & & & & & \\ II & 320-493 & 20.12 & 20.40 & C_7H_7,Cl & decomposition & & & & & & \\ IV & 498-749 & 37.38 & 37.52 & 2CNH, phen & decomposition & & & & & & \\ IV & 498-749 & 37.38 & 37.52 & 2CNH, phen & decomposition & & & & & & \\ II & 52-157 & 5.54 & 5.63 & 2H_2O & dehydration & 19.27(19.86) & [Ni(NS)] & \\ III & 158-341 & 31.85 & 31.60 & phen,Cl & decomposition & & & & & & \\ III & 158-341 & 31.85 & 31.60 & phen,Cl & decomposition & & & & & & \\ III & 158-341 & 31.85 & 31.60 & phen,Cl & decomposition & & & & & & & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & & \\ III & 136-460 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & & & \\ III & 136-462 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & & & & \\ III & 136-462 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & & & & & & & & & & & & & & & & & \\ III & 48-127 & 3.01 & 3.56 & H_2O & dehydration & 21.54 (21.42) & [Co(NS)] & & & & & & & & & & & & & & & & & & &$		IV	467-739	28.72	28.24	C₅H₄N,2HCN,CN,N	decomposition		
$ \begin{bmatrix} Ni(L_3)(bipy)Cl_2].3H_2O \\ II \\ II \\ 353.472 \\ V \\ 474.750 \\ Z0.37 \\ Z0.19 \\ Z0.1$		Ι	51-174	8.53	8.69	3H ₂ O	dehvdration	14.24 (14.32)	[NiS]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$[Ni(L_3)(bipy)Cl_2].3H_2O$	II	176-351	30.17	30.08	bipy. Cl	decomposition	()	[]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		III	353-472	26.69	26.57	C-H-2.C⊧H₄N	decomposition		
Image: Instruction of the second system in the se		IV	474-750	20.37	20.19	2HCN.CN. CL.N	decomposition		
$ \begin{bmatrix} Ni(L_1)(phen)Cl_2].H_2O & I & 54.126 & 2.87 & 2.14 & H_2O & dehydration & 21.58 (21.10) & [Ni(CN_2S)] \\ II & 130.317 & 17.45 & 17.44 & C_5H_4N,Cl & decomposition \\ III & 320.493 & 20.12 & 20.40 & C_7H_7,Cl & decomposition \\ IV & 498.749 & 37.38 & 37.52 & 2CNH, phen & decomposition \\ IV & 498.749 & 37.38 & 37.52 & 2CNH, phen & decomposition \\ II & 52.157 & 5.54 & 5.63 & 2H_2O & dehydration & 19.27(19.86) & [Ni(NS)] \\ II & 158.341 & 31.85 & 31.60 & phen,Cl & decomposition \\ III & 342.738 & 43.34 & 42.77 & C_5H_4N, ClC_7H_7, & decomposition \\ III & 342.738 & 43.34 & 42.77 & C_5H_4N, ClC_7H_7, & decomposition \\ III & 342.738 & 43.34 & 42.77 & C_5H_4N, ClC_7H_7, & decomposition \\ III & 136.460 & 50.08 & 50.99 & C_5H_4N, 2Cl, bipy & decomposition \\ III & 462.748 & 14.99 & 14.16 & C_7H_7 & decomposition \\ III & 462.748 & 14.99 & 14.16 & C_7H_7 & decomposition \\ III & 462.748 & 14.99 & 14.16 & C_7H_7 & decomposition \\ III & 48.127 & 3.01 & 3.56 & H_2O & dehydration & 21.54 (21.42) & [Co(NS)] \\ III & 130.424 & 21.07 & 21.61 & C_7H_7, Cl & decomposition \\ III & 426.742 & 53.8 & 53.09 & HCN, Cl, bipy, \\ III & 130.424 & 21.07 & 21.61 & C_7H_7, Cl & decomposition \\ III & 426.742 & 53.8 & 53.09 & HCN, Cl, bipy, \\ III & 130.424 & 21.07 & 21.61 & C_7H_7, Cl & decomposition \\ III & 426.742 & 53.8 & 53.09 & HCN, Cl, bipy, \\ III & 130.424 & 21.07 & 21.61 & C_7H_7, Cl & decomposition \\ III & 130.424 & 21.07 & 21.61 & C_7H_7, Cl & decomposition \\ III & 426.742 & 53.8 & 53.09 & HCN, Cl, bipy, \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68 & 19.52 & CH_2 Cl & decomposition \\ III & 160.311 & 19.68$				20.07	20.20		accomposition		
		Ι	54-126	2.87	2.14	H ₂ O	dehydration	21.58 (21.10)	[Ni(CN ₂ S)]
	[Ni(L ₁)(phen)Cl ₂].H ₂ O	II	130-317	17.45	17.44	C ₅ H ₄ N,Cl	decomposition		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		III	320-493	20.12	20.40	C ₇ H ₇ ,Cl	decomposition		
$ \begin{bmatrix} Ni(L_2)(phen)Cl_2].2H_2O & I & 5.2+157 & 5.54 & 5.63 & 2H_2O & dehydration & 19.27(19.86) & [Ni(NS)] \\ II & 158-341 & 31.85 & 31.60 & phen,Cl & decomposition & CN_2CHN & C$		IV	498-749	37.38	37.52	2CNH, phen	decomposition		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ι	52-157	5.54	5.63	2H ₂ O	dehydration	19.27(19.86)	[Ni(NS)]
III 342-738 43.34 42.77 C5H4N, ClC7H7, CN,2CHN decomposition [Co(L2)(bipy)Cl2].1.5H2O I 51-135 4.44 4.20 1.5H2O dehydration 30.49(30.34) [Co(C3H2N4S)] [Co(L2)(bipy)Cl2].1.5H2O II 136-460 50.08 50.99 C5H4N, 2Cl, bipy decomposition III 136-460 50.08 50.99 C5H4N, 2Cl, bipy decomposition III 462-748 14.99 14.16 C7H7 decomposition [Co(L3)(bipy) Cl2].H2O I 48-127 3.01 3.56 H2O dehydration 21.54 (21.42) [Co(NS)] III 130-424 21.07 21.61 C7H7, Cl decomposition III 130-424 21.07 21.61 C7H7, Cl decomposition III 426-742 53.84 53.03 HCN, Cl, bipy, decomposition	[Ni(L ₂)(phen)Cl ₂].2H ₂ O	II	158-341	31.85	31.60	phen,Cl	decomposition		
$\begin{array}{ c c c c c c } \hline Co(L_2)(bipy)Cl_2].1.5H_2O & I & 51-135 & 4.44 & 4.20 & 1.5H_2O & dehydration & 30.49(30.34) & [Co(C_3H_2N_4S)] \\ \hline II & 136-460 & 50.08 & 50.99 & C_5H_4N,2Cl, bipy & decomposition & III & 462-748 & 14.99 & 14.16 & C_7H_7 & decomposition & III & 462-748 & 14.99 & 14.16 & C_7H_7 & decomposition & III & 130-424 & 21.07 & 21.61 & C_7H_7,Cl & decomposition & III & 130-424 & 21.07 & 21.61 & C_7H_7,Cl & decomposition & III & 130-424 & 21.07 & 21.61 & C_7H_7,Cl & decomposition & III & 426-742 & 53.84 & 53.03 & HCN, Cl, bipy, & decomposition & III & 426-742 & 53.84 & 53.03 & HCN, Cl, bipy, & decomposition & III & 47-167 & 5.62 & 5.24 & 2H_2O & dehydration & 19.71(20.43) & [CoS] & II & 169-311 & 19.68 & 19.52 & C_7H_7 & Cl & decomposition & III & I69-311 & 19.68 & 19.52 & C_7H_7 & Cl & decomposition & III & I69-311 & I9.68 & 19.52 & C_7H_7 & Cl & decomposition & III & I69-311 & I9.68 & 19.52 & C_7H_7 & Cl & decomposition & III & I69-311 & I9.68 & 19.52 & C_7H_7 & Cl & decomposition & IIII & I69-311 & I9.68 & I9.52 & C_7H_7 & Cl & decomposition & IIII & I69-311 & I9.68 & I9.52 & C_7H_7 & Cl & decomposition & III & I69-311 & I9.68 & I9.52 & C_7H_7 & Cl & decomposition & IIII & I69-311 & I9.68 & I9.52 & C_7H_7 & Cl & III & III & I69-311 & I9.68 & I9.52 & C_7H_7 & Cl & III & IIII & IIIII & IIIII & IIIII & IIIII & IIII & IIIII & IIIIII$		III	342-738	43.34	42.77	C_5H_4N , CIC_7H_7 ,	decomposition		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						CN,2CHN			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ι	51-135	4.44	4.20	1.5H ₂ O	dehydration	30.49(30.34)	$[Co(C_3H_2N_4S)]$
III 462-748 14.99 14.16 C7H7 decomposition I 48-127 3.01 3.56 H2O dehydration 21.54 (21.42) [Co(NS)] II 130-424 21.07 21.61 C7H7,Cl decomposition III 130-424 53.03 HCN, Cl, bipy, decomposition III 426-742 53.84 53.03 HCN, Cl, bipy, decomposition III CN,C6H5N2 II 477-167 5.62 5.24 2H2O dehydration 19.71(20.43) [CoS] II 169-311 19.68 19.52 C-H2 Cl decomposition III 10.71(20.43) [CoS]	$[Co(L_2)(bipy)Cl_2].1.5H_2O$	II	136-460	50.08	50.99	C ₅ H ₄ N,2Cl, bipy	decomposition		
$ \begin{bmatrix} Co(L_3)(bipy) Cl_2 \end{bmatrix}.H_2O & I & 48-127 & 3.01 & 3.56 & H_2O & dehydration & 21.54 (21.42) & [Co(NS)] \\ II & 130-424 & 21.07 & 21.61 & C_7H_7,Cl & decomposition \\ III & 426-742 & 53.84 & 53.03 & HCN, Cl, bipy, & decomposition \\ & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$		III	462-748	14.99	14.16	C ₇ H ₇	decomposition		
[Co(L ₃)(bipy) Cl ₂].H ₂ O II 130-424 21.07 21.61 C ₇ H ₇ ,Cl decomposition III 426-742 53.84 53.03 HCN, Cl, bipy, decomposition CN,C ₆ H ₅ N ₂ I 47-167 5.62 5.24 2H ₂ O dehydration 19.71(20.43) [CoS]		Ι	48-127	3.01	3.56	H ₂ O	dehydration	21.54 (21.42)	[Co(NS)]
III 426-742 53.84 53.03 HCN, Cl, bipy, CN, Ceomposition decomposition II 47-167 5.62 5.24 2H2O dehydration 19.71(20.43) [CoS] II 169-311 19.68 19.52 C-H- Cl decomposition	[Co(L ₃)(bipy) Cl ₂].H ₂ O	II	130-424	21.07	21.61	C ₇ H ₇ ,Cl	decomposition		
CN,C ₆ H ₅ N ₂ I 47-167 5.62 5.24 2H ₂ O dehydration 19.71(20.43) [CoS] [Co(L ₂) II 169-311 19.68 19.52 C-H ₂ Cl decomposition		III	426-742	53.84	53.03	HCN, Cl, bipy,	decomposition		
I 47-167 5.62 5.24 2H ₂ O dehydration 19.71(20.43) [CoS]						$CN, C_6H_5N_2$			
[Co(L_2)] II 169-311 19.68 19.52 C-H- Cl decomposition		Ι	47-167	5.62	5.24	2H ₂ O	dehydration	19.71(20.43)	[CoS]
	[Co(L ₂)	II	169-311	19.68	19.52	C ₇ H ₇ , Cl	decomposition		
(phen)(H ₂ O) Cl] Cl.H ₂ O III 313-491 20.46 20.01 C ₅ H ₄ N, Cl, decomposition	(phen)(H ₂ O)Cl]Cl.H ₂ O	III	313-491	20.46	20.01	C₅H₄N, Cl,	decomposition		
IV 465-738 34.53 34.64 2HCN, CN,N decomposition		IV	465-738	34.53	34.64	2HCN, CN,N	decomposition		
phen						phen			

111

			Weight	t loss %			Resi	due
Complexes	steps	steps Range Calcd. Found Loss moiety °C		Process	Calcd.(Found) %	Nature		
	Ι	48-137	5.62	5.74	2H ₂ O	dehydration	14.08(13.67)	[CoS]
[Co(L ₃) (phen)Cl ₂].2H ₂ O	II	138-272	23.28	22.94	2Cl ,C ₅ H ₄ N	decomposition		
	III	274-412	28.12	28.43	phen	decomposition		
	IV	414-737	28.90	29.54	C ₇ H ₇ , N 2HCN, CN	decomposition		
	Ι	54-169	10.18	10.87	4H ₂ O	dehydration	22.65(22.13)	[Cd(NS)]
$[Cd(L_2)(bipy)Cl_2].4H_2O$	II	172-471	59.68	59.23	C_5H_4N , C_7H_7	decomposition		
					HCN, 2Cl, bipy			
	III	473-745	7.49	7.65	HCN, CN	decomposition		
[Cd(L ₃)(bipy)Cl ₂].4H ₂ O	Ι	46-299	20.22	20.23	4H ₂ O,2Cl	Dehy.+decom.	18.97(19.00)	[CdS]
	II	300-520	36.77	36.24	C ₆ H₅N₂,bipy	decomposition		
	III	522-731	24.04	24.52	C ₇ H ₇ ,HCN,2CN	decomposition		
	Ι	43-170	10.94	10.74	4.5H ₂ O	dehydration	32.01(33.12)	$[Cd(C_3H_2N_4S)]$
[Cd(L ₂)(phen)Cl ₂].4.5H ₂ O	II	175-391	9.89	9.59	2Cl	decomposition		
	III	393-510	10.54	10.1	$C_5H_4 N$	decomposition		
	IV	512-745	36.62	36.17	C ₇ H ₇ , phen	decomposition		
	Ι	53-169	14.63	14.16	4H ₂ O, Cl	Dehy.+decom.	21.99 (22.13)	[CdS]
[Cd(L ₃)(phen)Cl ₂].4H ₂ O	II	170-420	13.45	13.34	Cl, C₅H₄N	decomposition		
	III	421-742	49.93	49.16	C ₇ H ₇ , phen	decomposition		
					2HCN,CN,N			

Table 5: Thermal data for mixed ligand complexes of $\alpha, \dot{\alpha}$ -bipyridyl and 1,10-phenanthroline ligand(Continued).

The different kinetic parameters were computed from thermal decomposition data using the Coats-Redfern and Horwitz-Metzger methods [42, 43].The thermodynamic parameters, enthalpy $\Delta H^{\#}$, entropy $\Delta S^{\#}$ and free energy $\Delta G^{\#}$ of activation were calculated using standard equations and the values are given in (Table The kinetic 6). and thermodynamic parameters of the various decomposition stages were determined from TGA thermogram using the Coats-Redfern equation [42] in the following forms:

$$\ln\left[\frac{1-(1-\alpha)^{1-n}}{(1-n)T^2}\right] = \frac{M}{T} + B \quad \text{for } n \neq 1$$
 (1)

$$\ln\left[\frac{-\ln(1-\alpha)}{T^2}\right] = \frac{M}{T} + B \text{ for } n=1$$
(2)

Where α is the fraction of material decomposed, n is the order of the decomposition reaction, $M = E^{\#}/R$ and B = ZR / $\phi E^{\#}$ where $E^{\#}$, R, Z and ϕ are

the activation energy, molar gas constant, pre-exponential factor (collision factor) and heating rate, respectively. Horwitz-Metzger equation [43] in the forms (3), (4). Where $\theta = T - T_s$, T_s is the temperature at the DTG peak. The correlation coefficient, r, was computed using the least square method for different values of the order of the reaction, n, by plotting the left hand side of equations 1, 2 against 1/T and against θ for equations 3 and 4.Linear relationships were obtained for different values of n ranging from 0 to 2. The value of n which gave the best fit $(r\approx l)$ was chosen as the order parameter for the decomposition stage of interest. From the intercept and linear slope of each stage, the Z and E values were determined. The thermodynamic parameters, $\Delta H^{\#}$, $\Delta S^{\#}$ and $\Delta G^{\#}$ were calculated using the relationships (5), (6), (7).

$$\ln\left[\frac{1-(1-\alpha)^{1-n}}{1-n}\right] = \ln\frac{ZRT_s^2}{\phi E^{\#}} - \frac{E^{\#}}{RT_s} + \frac{E^{\#}\theta}{RT_s^2}$$
$$\ln\left[-\ln(1-\alpha)\right] = \frac{E^{\#}\theta}{RT_s^2}$$
$$\Delta S^{\#} = R \left[\ln Zh / kT_s\right]$$
$$\Delta H^{\#} = \Delta E^{\#} - RT_s$$
$$\Delta G^{\#} = \Delta H^{\#} - T_s \Delta S^{\#}$$

Where: h, Planck's constant, k, Boltzman constant, R, gas constant and T_s , temperature at the DTG peak. The $\Delta S^{\#}$ values were found to be negative, which indicates a more ordered activated state that may be possible through the chemisorption of decomposition products [44]. The values of the activation energy for the second stage of decomposition were found to be higher than that for the first stage (Table 6) which indicates that the rate of decomposition of the second stage is lower than that of the first stage, this may be attributed to the structural rigidity of the mixed ligands as compared with H₂O, which requires more energy for its rearrangement before undergoing any compositional change [45]. The values of the entropy for all degradation steps of all the complexes are negative. The significantly negative $\Delta S^{\#}$ supports the assignment of an associative mechanism. However, the activation process in the studied systems seems to be strongly dominated by bond formation [46]. The positive sign of $\Delta H^{\#}$ indicates that the decomposition stages are endothermic processes for both of them. On the other hand, the positive sign of $\Delta G^{\#}$ reveals that all the decomposition steps are non-spontaneous.

for
$$n \neq 1$$
 (3)

for
$$n = 1$$
 (4)

(7)

5. Conclusion

New nano-sized materials based on mercaptotriazoles derivatives. bipyridyl,1,10-phenanthroline and their Co(II), Ni(II) and Cu(II) complexes were synthesized and characterized. Based on the results obtained of the elemental analysis, UV-Vis., IR spectral data, magnetic measurements and conductance measurements it is possible to determine the type of coordination of the ligands in their complexes. Crystallization water molecule and chloride ion are found in all the divalent complexes. On the basis of analytical, magnetic and electronic spectral data mixed ligand complexes octahedral geometries have been proposed for all the complexes(ligand: metal: ligand ratio of 1:1:1). Thermal property measurements show that the complexes have good thermal stability. The stability of complexes was explained and kinetic parameters $(E^{\#}, Z, \Delta H^{\#}, \Delta S^{\#})$ and $\Delta G^{\#}$) of all thermal decomposition stages have been evaluated using the Coats-Redfern and Horwitz-Metzger methods.

Acknowledgment

The authors are grateful for the support and facilities provided by the university of Assiut. One of us (M.S. Al-Salimi) thanks the Yemen government for financial support. 1

2

3

4

5

6

7

8

		Coats	-Redfern	equation	The	ermodyna	mic	Но	rowitz-N	letzger	The	rmodyna	amic
		(Kir	etic para	meters)	n	arameter	'S		equati	on	n	aramete	rs
		(P		-	(Kin	etic para	ameters)	P		-
Stp.	n	R	Ε#	Z	∆S [#]	ΔH [#]	ΔG [#]	r	E [#]	Z	ΔS [#]	ΔH [#]	ΔG [#]
1 st	0.33	1.0000	27.54	12.13×10 ⁴	-148.67	44.72	95.26	0.9975	27.07	8.71	-228.00	24.25	101.7
2 nd	0.00	1.0000	58.00	14.80×10 ²	-188.80	53.66	152.05	1.0000	47.40	108.13	-210.61	43.07	152.8
3 rd	0.00	0.9996	59.90	48.35×10 ⁴	-180.51	54.72	148.78	0.9994	68.42	11.62×10^{4}	-192.36	63.25	183.0
1 st	0.66	0.9988	7.60	64.87×10 ⁵	-115.80	4.7	45.11	0.9997	12.90	24.58×10 ⁻³	-277.02	10.00	106.6
2 nd	1.00	1.0000	41.84	42.51×10 ³	-160.99	37.49	121.88	0.9999	37.72	8.11	-232.19	33.37	155.0
3 rd	2.00	0.9999	37.08	23.77×10 ⁴	-148.92	31.38	133.54	1.0000	56.08	71.27	-216.37	50.38	198.8
4 th	0.00	0.9898	25.67	52.04×10 ⁵	-124.31	19.19	116.03	1.0000	50.72	3.37	-242.79	44.25	233.3
1 st	0.66	0.9998	6.41	17.88×10 ⁶	-106.68	3.75	37.99	0.9999	11.59	17.1×10 ⁻³	-279.35	8.93	98.6
2 nd	1.00	1.0000	33.01	26.64×10 ⁶	-145.93	28.55	106.6	0.9899	44.39	45.73	-218.02	39.93	157.0
3 rd	0.00	0.9970	35.18	71.33×10 ⁶	-139.62	29.68	123.5	0.9973	48.78	6.61	-235.98	43.14	201.9
1 st	0.33	0.9973	9.02	42.43×10 ⁵	-118.59	6.37	44.1	0.9950	12.81	21.01×10 ⁻³	-258.44	10.16	92.6
2 nd	0.50	0.9999	30.97	15.77×10^{5}	-149.70	26.82	101.6	0.9911	37.65	9.10	-230.85	35.50	150.9
3 ^{ra}	0.50	0.9934	38.04	97.09×10 ⁵	154.94	33.22	122.9	0.9967	41.89	9.67	-231.56	37.08	171.1
4 ¹¹	0.66	1.0000	19.01	84.95×10 ⁵	-120.70	12.17	111.5	1.0000	47.08	1.70	-262.04	40.24	251.9
1 st	0.50	0.9997	21.69	13.90×10^{4}	-147.75	18.79	70.35	0.9956	27.11	7.75	-229.17	24.21	104.1
2 nd	0.50	0.9999	37.08	18.88×10^{4}	-150.03	31.83	125.3	1.0000	46.26	14.25	-228.95	40.99	183.6
3''	0.00	0.9987	38.98	15.76×10 ⁵	-134.70	32.13	142.9	0.9934	31.39	43.63×10 ⁻³	-279.39	24.55	254.4
1 st	2.00	0.9993	18.82	72.71×10 ⁵	-114.85	15.92	56.00	0.9997	14.21	47.96×10 ⁻²	-271.46	11.31	106.0
2 nd	2.00	1.0000	60.86	39.02×10 ²	-180.84	56.51	151.2	1.0000	50.44	281.12	-202.72	46.09	152.1
3' ^u	2.00	0.9999	37.08	23.77×10 ⁴	-148.92	31.38	133.5	1.0000	56.08	71.27	-216.37	50.38	198.8
4	0.00	0.9998	28.56	62.04×10 ⁴	-126.31	22.19	119.0	0.9999	45.32	3.89	-237.79	39.14	228.2
⊿ st	0.50	0.0000	10.25	C1 05.10 ³	152.02	16 50	66.1	1 0000	27 54	2.42	226.05	22.50	100.0
2 nd	0.50	0.9999	19.25	61.85×10	-153.82	10.58	104.2	1.0000	27.54	3.13	-236.05	23.58	100.8
∠ 3 rd	2.00	0.9999	120.77	19.45×10	-148.30	71 14	194.2	0.9999	112.7	15.77×10^{2}	-/3.52	108.3	151.2
4 th	0.00 E 00	0.9998	77.02	98.53×10	-153.82	71.14	110 /	0.9999	84.03 E1 20	35.53×10	-184.12	/8./5	209.1
•	5.00	1.0000	20.02	34.05×10	-127.73	20.23	118.4	0.0000	51.39	5.90	-238.02	45.00	228.0
1 st	0.00	1.0000	13.31	31.25×10 ³	-161.15	10.04	73.7	0.9999	16.61	33.13×10 ⁻³	-275.53	13.35	121.6
2 nd	2.00	0.9981	89.38	14.39×10 ⁵	-132.06	84.84	157.08	0.9982	56.46	702.30	-140.37	51.92	128.7
3 rd	2.00	0.9976	47.54	60.81×10 ³	-160.51	41.66	155.30	0.9978	71.35	788.67	-196.64	65.47	204.6
4 th	0.00	1.0000	3.80	24.38×10 ⁶	-112.39	-3.42	94.35	0.9998	21.29	26.68×10 ⁻²	-293.28	14.07	269.2
⊿ st	1.00								10.05				
1°° Ond	1.00	0.9988	10.51	91.26×10 ⁻	-112.70	7.70	45.79	0.9999	16.07	86.19×10 [°]	-266.33	13.26	103.2
∠ 2 rd	0.33	1.0000	43.74	35.30×10 ³	-163.31	38.96	132.86	1.0000	46.24	22.21	-224.60	41.46	170.6
3	1.00	0.9990	73.22	18.68×10 ³	-131.98	67.37	160.29	0.9987	58.24	875.33	-195.72	41.32	179.1
1" 0 nd	0.66	0.9949	32.87	66.64×10 ⁻	-172.74	30.06	88.44	0.9998	38.76	26.42×10 ⁻	-142.14	30.85	89.17
2	2.00	0.9975	34.70	35.26×10 ³	-162.47	30.38	114.86	0.9985	55.72	6.99	-233.35	51.40	172.7

Table 6: Thermogravimetric parameters for the thermal degradation of the process.

	3 rd	2.00	1.0000	185.43	11.88×10 ¹²	-1.15	179.98	180.7	0.9995	196.2	86.69×10 ¹²	15.36	190.7	180.7	
	Table 6: Thermogravimetric parameters for the thermal degradation of the process(Continue).														
			Coats-Redfern equation (Kinetic parameters)			Thermodynamic parameters			Horowitz-Metzger equation (Kinetic parameters)			Thermodynamic parameters			
	Stp.	n	R	E [#]	Z	ΔS [#]	ΔH [#]	ΔG [#]	r	E [#]	Z	ΔS [#]	ΔH [#]	ΔG [#]	
15	1 st	2.00	1.0000	38.22	93.12×10 ³	-165.19	35.59	87.79	0.9929	31.57	125.95	-205.19	28.94	93.78	
	2 nd	0.50	0.9978	49.44	25.18×10 ³	-166.99	43.13	149.8	0.9982	60.49	419.11	-201.04	54.18	182.6	
	3 rd	0.00	0.9993	50.40	20.38×10 ³	-168.45	45.27	149.2	0.9993	58.28	156.72	-208.93	53.16	182.0	
	1 st	0.00	0.9995	38.44	61.91×10 ³	-157.82	34.10	116.4	0.9164	48.52	57.05	-215.93	44.19	156.6	
16	2 nd	1.00	0.9809	63.71	16.26×10 ²	-189.07	59.28	58.83	0.9853	64.16	15.36×10 ²	-189.54	59.28	170.5	
	3 rd	0.50	1.0000	20.92	67.22×10 ⁵	-121.69	14.82	89.32	0.9999	40.13	0.5×10 ⁻³	-254.20	34.03	220.6	
	4 th	0.00	0.9963	6.65	23.18×10 ⁶	-111.83	0.2296	86.67	1.0000	23.24	24.9×10 ⁻³	-283.51	16.83	235.9	
	1 st	2.00	0.9994	32.33	13.07×10^{4}	-151.43	28.09	105.47	0.9996	29.39	1.06	-248.87	25.15	152.32	
17	2 nd	1.00	0.9996	19.96	64.14×10 ⁵	-120.08	15.17	84.45	0.9996	26.17	18.69×10 ⁻²	-264.34	31.38	173.9	
	3 rd	0.33	0.9998	10.46	21.20×10 ⁷	-112.18	4.16	86.95	0.9989	26.04	42.26×10 ⁻²	-278.75	19.91	224.9	

6. References

1. A. D. Vizcaya-Ruiz, A. Rivero-Muller, L. Ruiz-Ramirez, Toxicol. in Vitro.,14 (2000) 1. 2.X.Shi, D.Ruan, Y.Wang, L. Ma, M. Li, J. Chin. Mater. Med. 35 (2) (2010) 215. 3.M. Geraghty, M. McCann, M.

Devereux, J. F. Cronin, M. Curran, V.

McKee, Met.-Based Drugs 6(1999) 41.

4. J. Reedijk, G. Wilkinson, R. D. Gillard, J. A. McCleverty, (eds) Comprehensive Coordination Chemistry, Pergamon, Oxford, UK, 1987, Vol. 2.

5. R. Ziessel, A. Harriman, J. Suffert, M. Youinou, A. Cian, J. Fischer, Angew. Chem. Int. Ed. Engl., 36(1997) 2509.

6. C. O. Dietrich-Buchecker, J. P. Sauvage, Angew. Chem. Int. Ed. Engl., 28(1989) 189.

7. F. Sallas, A. Marsura, V. Petot, L. Pinter, J. Kovacs , L. Jicisinszky, Helv. Chim. Acta, 81 (1998) 632.

8. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. ZelwskyVon, Coord. Chem. Rev., 84 (1988) 85.

9. D.S. Sigman, A. Mazumder, D. M. Perrin, Chem. Rev. 93,(1993)

10. O. Zelenko, J. Gallagher, Y. Xu, D.

S. Sigman, Inorg. Chem. 37 (1998) 2198.

11. B. S. Furniss, A. J. Hannaford, P. W.

Smith, A. R. Tatchell, Textbook of Practical Organic Chemistry, Vogel's., 695 (2004).

12. K. R. Sharma, K. Shrivastava, D. V. Mangal, S. Panwar, S. Goyal, Inter. J. Pharm. Sci. 2(2) (2010) 502.

13. N. Chidananda, B. Poojary, V. Sumangala, S. N. Kumari, P. Shetty, T. Arulmoli, Eur. J. Med. Chem., 51 (2012) 124.

14.V. Colanceska-Ragenovic, V. Dimova, D. G. Kakurinov, Buzarovska, A. M. Molecules, 6 (2001) 815.

15. D. S. Joshi, M. H. Vagdevi, P. V. Vaidya, S. G. Gadaginamath, Eur. J. Med. Chem., 43 (2008) 1989.

16.S. S., Rajput, Inter. J. Pharmacy and Pharm. Sci. 4 (2012) 167.

17.J. Dan, L. JunRui, X. Chunwei, M. Jiangbei, L. Jianfa, B. P. Chunyong, Bioorganic & Med. Chem. Lett., 23 (2013) 1997.

18.L. Zhizhang, G. Zheng, K. Yin, R. Zhang, Q. Deng, X. Jiannan, Eur. J. Med. Chem., 44 (2009) 4716.

19. A. M. Hammam, M. A. EL-Gahami, Z. A. Khafagi, M. S. AL-Salimi, S. A. Ibrahim J. Mater. Environ. Sci. 6 (6) (2015) 1596.

20.W. J. Geary, Coord. Chem. Rev, 7

(1971) 81.

21. S.Sen, S. Mitra, P. Kundu, K.M.Saha, C. Krager, J. Bruckmann,Polyhedron, 16 (1997) 2475.

22. C. Su, N. Tang, M.Tan, K. Yu, Polyhedron, 15, 233 (1996).

23. Y. N. Mudasir, H. Inoue, Trans. Met. Chem., 24 (1999) 210.

24. N. S. Gill, R. H. Nuttall, D. E. Scaife,D. W. Sharp, J. Inorg. Nucl. Chem., 18 (1961) 79.

25. A. Seminara, S. Giuffrida, A. Musumei, I. Fragala, Inorg. Chim. Acta, 95 (1984) 201.

26. B. K. Gupta, D. S. Gupta, S. K. Dikshit, V. Agarwala, Ind. J. Chem. 15A (1977) 624.

27. M. S. Subramanian, A. Viswanatha, J.Inorg. Nucl. Chem., 31 (1969) 2575.

28. G. Singh, P. A. Singh, K. Singh, D.P. Singh, R. N. Handa, S. N. Dubey,Proc. Nat. Acad. Sci. Ind.72A (2002) 87.

29. P. R. Shukla, V. K. Singh, A. M. Jaiswal, J. Narain, J. Ind. Chem. Soc. 60 (1983) 321.

30. B. Macias, M.V. Villa, R. R. Gallego, Trans. Met. Chem., 20 (1995) 347.

31. A. B. P. Lever, "Inorganic Electronic Spectroscopy" Elsevier Amsterdam, 4th, Ed, 1984.

32. N. Manav, K. A. Mishra, K. N.

Kaushik, Spectrochim. Acta., 65 (2006) 32.

33. K. Nakamoto, J. Fujita, A. R. Condrote, Y. Morimoto, J. Chem. Phys.,

39 (1963) 423.

34. D. Dasharatham, Intrer. J. Advances Pharm. Bio. Chem., 2 (2013) 554.

35. A. Earnshow, "Introduction to Magnetochemistry", Academic Press, London, 1968.

36. B. Kaushik, S. N. Dubey, Ind. J. Chem., 28A (1989) 425.

37. I. K.Mutasim, M. A.Maha, M. A.Aisha, P. L.Joselito, Arab. J. Chem. 7(2014) 1178.

38. P.B. Taunk, R. Das, D.P. Bisen, R. K. Tamrakar J. Radi. Research and Appl. Sci.8 (2015) 433.

39. Q. Wu, M.N. Esteghamatian, X. Hu, Z.D. Popovic, G. S. Enright, R. Breeze, Chem. Mater., 2079 (2001).

40. S. Tokito, H. Tanaka, K. Noda, A. Okada, Y. Taga, Appl. Phys. Lett.70 (1997) 1929.

41. G. Lei, H.Ge, W. Sheng, Adv. Mater. Res. 496 (2012) 38.

42. A.W. Coats, J. P. Redfern, Nature, 20 (1964) 68.

43. H. H. Horwitz, G. Metzger, Anal. Chem., 35 (1963) 1464.

44. P. M. Madhusudanan, K. M. Yusuff, C. G. Nair, J. Therm. Anal.8 (1975) 31.

45. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Wiley Interscience, New York, (1988).

46. J. Rosic, B. Petrovic, M. I. Djuran, Z.

D., Bugarcic, Monatsh. Chem138 (2007) 1.