Journal of Plant Production

Journal homepage & Available online at: www.jpp.journals.ekb.eg

Behaviours of some Rice Cultivars Treated with Cycocel under Water Stress Condition

Abdelmegeed, T. M. * and E. A. Z. ElShamey

Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Egypt

ABSTRACT

To investigate the effect of different intervals of water stress and cycocel (CCC) levels on yield and yield components of some rice cultivars (Giza179 and Sakha108), at the farm of Agricultural Research Station, Sakha, Kafrelsheikh, Egypt, during 2018 and 2019 successive rice seasons, a strip-split plot design with four replicates was used. The treatments included three irrigation intervals (I₁:4, I₂:8, and I₃:12 days intervals and four foliar application levels of cycocel hormone (T₁:control; T₂:250; T₃:500; and T₄:750 ppm) on two rice cultivars (Giza179 and Sakha108). It was observed that during the foliar application of chlormequat chloride cycocel (CCC), leaf area index (LAI) and dry matter significantly increased by increasing cycocel levels up to 500 ppm while application of cycocel up to (C4) led to increasing chlorophyll content. Number of panicles m⁻², number of filled grain panicle⁻¹, 1000-grain weight and grain yield significantly increased up to 500 ppm as compared to control and 750 ppm (C4) treatments. At all different water intervals and cycocel interaction, data show that foliar application of cycocel up to 500 ppm may improve growth and yield characters under different irrigation intervals up to irrigation every 12-days. While there was no significant difference between rice cultivars under this study on grain yield, on the other hand, Giza 179 mark superiority at all growth and yield characters than Sakha108 which recorded positive results with cycocel as foliar application. It was concluded that cycocel maybe a good tool for improving rice yield under drought stress.

Keywords: Cycocel, Grain yield, Rice (Oryza Sativa L.,), Water Stress, Yield component.

INTRODUCTION

Rice (Oryza sativa L.) is an important cereal crops, nearly more than half of the world's population depends on rice as staple food, especially in developing countries Rice requires a relatively higher amount of water for its normal growth in comparison with other crops (Pandey and Shukla, 2015). Therefore, water stress is a major factor limiting rice production that causes a great threat to rice production (Fellahi et al., 2013). Hence, due to diminishing quantities of water supplies worldwide, screening of rice genotypes for drought tolerance is a useful approach for food security (Serraj et al., 2009). Drought is one of the major abiotic stress that affects the rice yield worldwide in the rainfed and upland ecosystems. This is not limited to the arid and semiarid regions, but the irregular distribution of rain may result in yield loss significantly. Stress during the tillering stage negatively affects the effective tiller quantity, flag leaf area and length. However, some cultivars can regain normal growth after stress, (Lanceras et al., 2004). The main trait that is selected for drought tolerance is the grain yield under stress. Drought effect seed yield depends on the duration of watering from flowering until physiological maturity (Sakran et al., 2020).

Climate change has reduced the amount of water from rainfall and rivers and increased evaporation (Smakhtin, 2004; De Wit and Stankiewicz, 2006). Moreover, (Singh *et al.*, 2018) estimated that about 10% of land used for irrigated rice production will have to face water scarcity by 2025. Therefore, it is important to reduce water dependency without affecting grain yield. Irrigation of Giza179 after every 8 days can save water by 23% without affecting yield (9.77 t/ha) (El-Habet, 2014).

Cycocel is a growth regulator, affects the physiological properties of plants under stress conditions and modulates the concentration of plant hormones including gibberellins, cytokinins, abscisic acid and ethylene (Rademacher, 2000). Generally, growth retardants reduce the transpiration rate by retarding leaf growth (Luoranen et al., 2002). Application of cycocel in plants may increase the concentration of chlorophyll and carotenoids, accelerate the process of photophosphorylation, elevate the number of chloroplasts, stimulate the photosynthetic rate and photo-assimilates partitioning in plants (Wang et al., 2017). Previously it was showed that chlorophyll derivatives act as antioxidants to exclude oxidative DNA degradation and lipid peroxidation both by scavenging free radicals and chelating reactive ions (Hsu et al., 2013). Therefore, the cycocel might be a promising candidate for plant yield improvement under stress. However, the detailed biochemical and physiological mechanism behind this phenomenon is not known. Yield in soybean (Singh et al., 1987), grams and pigeon pea (Vikhi et al., 1983) can be increased by preventing the flower abscission and modified crop canopy with the help of cycocel (2-Chloroethyl, trimethyl ammonium chloride) treatment. It improves the photosynthetic translocation that may be the reason for increased seed protein content (Grewal et al., 1993). Therefore, this study was designed to investigate the effect of cycocel (CCC) on two rice cultivars at different growth stages under different water stress.

^{*} Corresponding author. E-mail address: dr_tmk2002@yahoo.com DOI: 10.21608/jpp.2022.116790.1082

MATERIAL AND METHODS

To study the ability of Cycocel for improving rice productivity. Two field experiments were carried out at at the farm of Agricultural Research Station, Sakha, Kafrelsheikh, Egypt, during 2018 and 2019 successive rice seasons, to study the effect of different concentration of cycocel (T1: control; T2: 250; T3: 500; and T4: 750 ppm) as a foliar application of two rice cultivars (Giza179 and Sakha108) under different water irrigation intervals (I1: 4, I2: 8 and I3: 12 days interval) respectively. The field experiment was carried out in four replicates following the a stripsplit design. The irrigation treatment was applied in the vertical plots, rice cultivar in the horizontal and the different cycocel levels in the -sub-plots.

Soil samples were collected from the experimental sites at 0-30 cm depth and its physio-chemical analysis was carried out as shown in table (1) (Bhattarai, 2017). On 10th May of 2018 and 2019, 120 kg/ha pregerminated seeds of rice cultivar were broadcasted in the nursery. About 46% urea (165.0 Kg N/ha), 15% phosphorus single super phosphate (36.89 kg P2O5/ha), and zinc (23.8 kg ZnSO4/ha) were applied to the soil before tillage, according to Rice Research and Training Center recommendations. The germinating seedlings were manually transplanted at age 25 days to the permanent field in 20x20 cm between rows and hills. The sub- plots was 12 m2 with about 2-3 seedlings/hill.

Table 1. Physiochemical properties of the soil at experimental sites in 2018 and 2019

Characters	2018	2019
Texture	Clay	Clay
Percentage Organic matter	1.65	1.68
Total N (ppm)	556	460
Available P (ppm)	16	14
pH	7.9	8.1
Soluble Cations, meq.L-1		
Ca++	5.10	5.30
MG++	2.10	2.00
K+	0.40	0.50
Na+	12.20	14.80
Soluble anion, meq.L-1		
Co3		
HCo3-	3.50	3.80
Cl-	14.80	15.00
So4	1.30	1.20
Some available micro-nutrients (ppm)		
Fe++	6.05	6.10
Zn++	0.88	1.13
Mn++	3.22	3.35

Herbicide saturn 50% (4.8. litter/ha) mixed with sand was applied on 7th day of transplantation. The agronomic practices recommended by Rice Research and Training Center (RRTC) were followed throughout the experiment. Growth parameters like chlorophyll content of flag leaf using (SPAD), leaf area index, number of tillers m-2, number of panicles m-2, number of filled grains panicle-1, dry matter (g.m-2), 1000-grain weight (g), and grain yields (t/ha) were estimated, Growth parameters were estimated at growth stage for first two traits and the rest before harvesting directly. All data were statistically analyzed according Duncan's multiple range test for analysis of variance (ANOVA) at confidence levels of 95% (Gomez and Gomez, 1984) by CoStat.

RESULTS AND DISCUSSION

Results

Leaf area index, cholophyll content and dry matter production:

Leaf area index, Chlorophyll content in flag leaf and dry matter production showed significant differences in different irrigation intervals in both studied seasons table (2). I1 resulted in highest value of leaf area index, chlorophyll content in flag leaf and dry matter production whereas, lowest value of All traits studied was observed under I3 in both studied seasons. The data showed that the chlorophyll content of flag leaf was significantly different between genotypes during both seasons. Moreover, Data revealed that Giza179 cultivar showed increased LAI and dry matter production compared to Sakha108 in both seasons. While, Sakha108 showed the highest chlorophyll content in flag leaf as compared to Giza179 in both studied seasons. Data showed that cycocel treatment at critical growth stages improved all traits studied (LAI, cholophyll content, dry matter production) of rice plants. Foliar spray of cycocel T3 resulted in significantly increased LAI and dry matter production compared to other cycocel concentrations while maximum chlorophyll content in flag leaf was observed in T4 followed byT3. In contrast, T1 produced the least (table 2). **Interaction effect**

Results suggested in table (3) that irrigation intervals significantly interact with genotypes. Giza179 showed maximum LAI and dry matter production (DM) while the highest value of cholophyll content was recorded with Sakha 108 in both seasons of study under irrigated treatment I1 followed by I2. Whereas, Sakha108 under I3 lowest LAI, cholophyll content and dry matter production in both seasons of study.

Data arranged in table (4) suggested that LAI and DM significantly improved by the cycocel treatment. The maximum effect was observed by T3 under I1 and I2 during both studied seasons without any significant difference between them, while the lowest LAI and DM was observed by T1 under I3. Data in the same table showed that cholophyll content responsed to cycocel application and recorded the highest value when treated by T4 under different irrigated treatments under this study.

Data presented in Table (5) showed a significant difference in LAI and DM due to cycocel treatment on both genotypes in the year 2018 and 2019. The LAI and DM of both genotypes differed significantly treated with different concentrations of cycocel, where the highest value of LAI and DM was observed under cycocel treatment (T3), while the lowest value of LAI was observed under T1 in both seasons of study. Data indicated that Sakha108 had maximum chlorophyll content in flag leaf when treated with T4 followed by cycocel treatments T3 with the same genotype, while the lowest value of chlorophyll content was noticed in Giza179 when treated without cycocel treatments (T1) in both seasons of study.

J. of Plant Production, Mansoura Univ., Vol 13 (1), January, 2022

Table 2. Leaf area index (LAI), chlorophyll content, and dry matter of genotypes in response to different	irrigation
intervals and Cycocel application in 2018 and 2019	

Tuesday such	L	AI	Chloroph	yll content	Dry mat	tter
1 reatments	2018	2019	2018	2019	2018	2019
Irrigation treatments (A)						
Every 4days (I1)	4.478a	4.724a	45.56a	46.25a	1666 28- 1522 26b	1669.16a
Every 8days (I2)	4.269b	4.515b	44.06b	44.74b	1000.388 1532.300	1535.14b
Every 12days (I3)	4.098c	4.344c	42.28c	42.97c	1455.250	1438.01c
FTest	**	**	**	**	**	**
Genotypes (B)						
Giza179(V1)	4.594a	4.839a	42.93b	43.62b	1507.95 1401.471	1600.62a
Sakha108(V2)	3.970b	4.216b	45.00a	45.69a	1597.85a 1491.47b	1494.25b
FTest	*	*	**	**	**	**
Cycocel treatments(C)						
Tİ	3.777d	4.023d	42.19d	42.88d		1441.08d
T2	4.133c	4.379c	43.33c	44.02c	1438.30d 1508.24c	1511.01c
T3	4.743a	4.988a	44.91b	45.60b	1636.83a 1595.26b	1639.61a
T4	4.475b	4.721b	45.44a	46.12a		1598.04b
F Test	**	**	**	**	**	**
Interaction:						
A*B	*	*	*	*	*	*
A*C	*	*	*	*	*	*
B*C	**	**	**	**	**	**
A*B*C	NS	NS	NS	NS	NS	NS

Means followed by a common letter are not significantly different at the 5% level by DMRT.

Where: 11: Irrigation every 4-days; 12: Irrigation every 8-days; 13: Irrigation every 12-days; V1:Giza179; V2: Sakha108; T1: Control (Tap water only); T2: 250 ppm of Cycocel; T3: 500 ppm of Cycocel; T4: 750 ppm of cycocel.

Table 3. The effect of irrigation intervals and genotypes V1 and V2 on leaf area index (LAI), Chlorophyll content and dry matter Production (g/m2) (DM) in 2018 and 2019 seasons

	_		2018				2019	
	_	LAI	Chlorophyll content	DM	L	AI	Chlorophyll content	DM
	V1	4.864a	44.23c	1702.58a	5 1100	4 2274	44.91c	1705.36a
11	V2	4.091d	46.89a	1630.19b	3.110a	4.5570	47.58a	1632.96b
12	V1	4.551b	42.78d	1571.17c	4 707h	1 2240	43.46d	1573.95c
12	V2	3.988e	45.34b	1493.56e	4./9/0	4.7970 4.2540	46.02b	1496.34e
13	V1	4.366c	41.80e	1519.79d	4.612c 4.077f		42.48e	1522.57d
15	V2	3.831f	42.77d	1350.67f			43.46d	1353.45f

Means followed by a common letter are not significantly different at the 5% level by DMRT.

Where: 11: Irrigation interval of 4-days; I2: Irrigation interval of 8-days; I3: Irrigation interval of 12-days; V1: Giza179; V2: Sakha108.

Table 4. The effect of irrigation intervals and Cycocel treatments on leaf area index, chlorophyll content and dry matter production (g m-2) (DM) during 2018 and 2019 seasons

Treatments			2018			2019			
		LAI	Chlorophyll content	DM	LAI	Chlorophyll content	DM		
	T1	4.001f	43.47f	1606.58f	4.247f	44.16f	1609.36f		
I1	T2	4.275d	44.84e	1657.83c	4.521d	45.52e	1660.61c		
	T3	4.903a	46.34b	1719.33a	5.148a	47.02b	1722.11a		
	T4	4.733b	47.60a	1681.79b	4.979b	48.29a	1684.57b		
	T1	3.700g	42.30i	1376.17j	3.946g	42.99h	1378.94j		
12	T2	4.120e	43.32g	1506.75ĥ	4.365e	44.01g	1509.53h		
12	T3	4.853a	45.17d	1630.88d	5.099a	45.85d	1633.65d		
	T4	4.405c	45.43c	1615.67e	4.651c	46.12c	1618.44e		
	T1	3.629g	40.79k	1332.171	3.875g	41.48j	1334.941		
I3	T2	4.004f	41.83j	1360.13k	4.250f	42.52i	1362.90k		
	T3	4.472c	43.23h	1560.30g	4.718c	43.92g	1563.07g		
	T4	4.287d	43.28gh	1488.33i	4.533d	43.96g	1491.11i		

Means followed by a common letter are not significantly different at the 5% level by DMRT.

Where: 11: Irrigation interval of 4-days; 12: Irrigation interval of 8-days; 13: Irrigation interval of 12-days; T1: Control (Tap water only); T2: 250 ppm of Cycocel; T3: 500 ppm of Cycocel; T4: 750 ppm of cycocel.

Table 5. Leaf area index (LAI), chlorophyll	content and dry matter	 production as a result 	lt of interaction	between
genotypes and Cycocel treatments i	n 2018 and 2019			

Treatments			2018		2019				
		LAI	Chlorophyll content	DM	LAI	Chlorophyll content	DM		
V1	T1 T2 T3 T4	3.919f 4.541c 5.169a 4.745b	41.37h 41.63g 44.11e	1451.58e 1641.11b 1654.97a 1643.72b	4.165f 4.787c 5.415a 4.991b	42.06h 42.32g 44.80e 45.30d	1454.36e 1643.89b 1657.75a 1646.50b		
V2	T1 T2 T3 T4	3.635h 3.725g 4.316d 4.205e	43.00f 45.02c 45.71b 46.26a	1425.03f 1375.36g 1618.69c 1546.80d	3.881h 3.971g 4.562d 4.451e	43.69f 45.71c 46.40b 46.95a	1427.81f 1378.14g 1621.47c 1549.58d		

Where:V1:Giza179; V2: Sakha108; T1: Control (Tap water only); T2: 250 ppm of Cycocel; T3: 500 ppm of Cycocel; T4: 750 ppm of cycocel.

Abdelmegeed, T. M. and E. A. Z. ElShamey

Number of panicles m-2, No. of filled grain panicle-1 and 1000-grain weight g-1:

Data in table (6) revealed statistical differences between the irrigation intervals on number of panicles m-2, number of filled grain panicle-1 and 1000-grain weight g-1 at harvest in both studied seasons. Irrigation interval I1 showed a marked superiority in all studied traits under this study and produce the highest values and I3 resulted in lowest number of panicles m-2, number of filled grain panicle-1 and 1000-grain weight g-1 at harvest in both seasons of study. This might be due to the highest number of tillers under irrigation every 4-days.

Data in table (6) revealed significant differences between Genotypes in terms of panicles/m2, filled grain panicle-1 and 1000-grain weight g-1 at harvest in both studied seasons. Among Genotypes, Giza179 showed superiority in number of panicles/m2 and filled grain panicle-1 in both studied seasons compared to Sakha108 which gave highest value of 1000-grain weight g-1 in both studied seasons. This result could be due to the superiority of Giza179 in tillering ability comparing with Sakha108 rice cultivar.

Cycocel treatments at different growth stages significantly increased number of panicles m-2, filled grain panicle-1 and 1000-grain weight g-1 in both studied seasons whereas, differences among different concentrations of cycocel treatment were observed (table 6). Results demonstrated that the application of cycocel T3 produced maximum number of panicles m-2 and filled grain panicle-1 followed by T4. Also, in this table results affirmed that 1000grain weight recorded nearly the same value between T3 and T4 without any statistical significant in this table under this study. While the lowest number of panicles m-2, filled grain panicle-1 and 1000-grain weight g-1 were recorded under control (T1). The results remain consistent during the two studied seasons. Therefore, cycocel may be a good candidate for improving plant yield under stress conditions.

Fable 6. Number of panicles m-2, Number of filled grain panicle-1, 1000-grain weight g-1 and grain yield at harv	est
of some genotypes in response to irrigation intervals and Cycocel foliar application in 2018 and 2019 seaso	ons

of some genotypes in response to irrigation intervals and Cycocel foliar application in 2018 and 2019 seasons									
Treatments	No. of par	nicles m-2	No. of filled gra	ain panicle-1	1000-grai	n weight/g	Grain yie	ld T ha-1	
Treatments	2018	2019	2018	2019	2018	2019	2018	2019	
Irrigation intervals (A)									
Every 4 days (I1)	455.56a	458.02a	145.54a	147.87a	27.99a	28.11a	10.63a	10.88a	
Every 8 days (I2)	427.81b	430.27b	143.69b	146.02b	27.60ab	27.72b	10.27a	10.52a	
Every 12days (I3)	405.84c	408.30c	142.16c	144.49c	27.32b	27.45c	9.49b	9.73b	
F Test	**	**	*	*	*	*	*	*	
Genotypes (B)									
Giza179	442.52a	444.98a	145.88a	148.21a	27.03b	27.15b	10.07a	10.31a	
Sakha108	416.95b	419.41b	141.72b	144.05b	28.24a	28.36a	10.19a	10.44a	
F Test	*	*	*	*	*	**	NS	NS	
Cycocel Treatments (C)									
TÌ	374.88d	377.34d	140.77d	143.10d	26.70c	26.82c	8.82d	9.06d	
T2	411.17c	413.63c	142.60c	144.93c	27.30b	27.42b	9.37c	9.62c	
T3	477.21a	479.67a	146.55a	148.88a	28.17a	28.29a	11.41a	11.65a	
T4	455.70b	458.16b	145.27b	147.60b	28.38a	28.50a	10.93b	11.17b	
FTest	**	**	**	**	*	*	**	**	
Interaction:									
A*B	*	*	*	*	*	*	*	*	
A*C	*	*	*	*	*	*	*	*	
B*C	*	*	*	*	*	*	*	*	
A*B*C	NS	NS	NS	NS	NS	NS	NS	NS	

Means followed by a common letter are not significantly different at the 5% level by DMRT.

Where: I1: Irrigation every 4-days; I2: Irrigation every 8-days; I3: Irrigation every 12-days; V1:Giza179; V2: Sakha108; T1: Control (Tap water only); T2: 250 ppm of Cycocel; T3: 500 ppm of Cycocel; T4: 750 ppm of cycocel.

Interaction effect

Data in table 7 revealed that interaction between irrigation intervals and Genotypes significantly affect number of panicles m-2, filled grain panicle-1 and 1000-grain weight g-1 in both seasons. The best combination resulted highest panicles m-2 and filled grain panicle-1 were Giza179 under I1 followed Sakha 108 under I1 in the both studied seasons. The combination resulted in lowest panicles m-2 was Sakha108 under I3. On the other hand, Sakha108 rice variety gave the highest value of 1000-grain weight under irrigation interval I1 followed by I2 whereas, Giza 179 showed minimum 1000-grain weight under I3 in both seasons.

 Table 7. Number of panicles m-2, Number of filled grain panicle-1, 1000-grain weight/g and grain yield (t ha-1) at harvest in response to interaction between irrigation intervals and genotypes in 2018 and 2019 seasons

					8					
Treatments		No. of panicles m-2		No. filled	No. filled grain panicle-1		1000-grain weight/g		Grain yield (t ha-1)	
		2018	2019	2018	2019	2018	2019	2018	2019	
T1	V1	470.50a	472.96a	146.75a	149.08a	27.31cd	27.43d	10.52a	10.76a	
11	V2	440.63b	443.09b	144.33c	146.66d	28.68a	28.80a	10.75a	10.99a	
I2	V1	438.31c	440.77b	145.98b	148.31b	27.03d	27.15e	10.15ab	10.40ab	
	V2	417.30e	419.76c	141.40d	143.73e	28.18ab	28.30b	10.40a	10.64a	
I3	V1	418.75d	421.21c	144.90c	147.23c 141.76f	26.78d	26.89f	9.55b	9.80bc	
	V2	392.94f	395.40d	139.43e		27.87bc	27.99c	9.43b	9.68c	

Means followed by a common letter are not significantly different at the 5% level by DMRT.

Where: 11: Irrigation every 4-days; 12: Irrigation every 8-days; 13: Irrigation every 12-days; V1: Giza179; V2: Sakha108

J. of Plant Production, Mansoura Univ., Vol 13 (1), January, 2022

Results affirmed highly significant interaction differences between irrigation intervals and different levels of cycocel treatments in terms of number of panicles m-2 , number of filled grain panicle-1 and 1000-grain weight/g in the two studied seasons (table 8). Data indicated that cycocel treatment T3 resulted in highest number of panicles m-2 at different irrigation intervals followed by T4. While the lowest number of panicles m-2 was observed under I3 with control treatment T1. The association of filled grains panicle-1 with irrigation intervals and cycocel application is present in table (8). Data demonstrated that cycocel application T3 under I1 produced maximum number of filled grains panicle-1 (first rank) followed by cycocel application T4 under I1. Whereas, the lowest number of filled grain panicle-1 was found in cycocel treatment T1 under I3. It showed that cycocel application can improve filled grains panicle-1, due to increased photosynthetic rate.

Data indicated that cycocel application T3 and T4 resulted in nearly the same 1000-grain weight under all tested treatment of irrigation intervals without any significant differences among each other, while the irrigation interval I3 gave less 1000-grain weight under control treatment T1 (tap water only) in both seasons of study.

Table 8. Number of panicles m-2, Number of filled grain panicle-1, 1000-grain weight/g and grain yield (t ha-1) at harvest as affected by the interaction between irrigation intervals and cycocel treatments in 2018 and 2019 seasons

	scasul	15							
True	-	No. of pa	nicles m-2	No. filled grain	panicle-1	1000-grai	n weight/g	Grain yie	ld (t ha-1)
1 re	atments –	2018	2019	2018	2019	2018	2019	2018	2019
	T1	398.75i	401.21h	142.70g	145.03h	27.10cd	27.22cd	9.24de	9.48de
T1	T2	433.50f	435.96f	144.00ef	146.33f	27.85а-с	27.97а-с	10.04cd	10.28cd
11	Т3	505.00a	507.46a	148.60a	150.93a	28.50a	28.62a	11.92a	12.16a
	T4	485.00b	487.46b	146.85b	149.18b	28.52a	28.64a	11.33ab	11.57ab
	T1	375.00k	377.46j	140 40: 142 50~	142.73j	26.50d	26.62d	9.05ef	9.29e
10	T2	415.00h	417.46g	140.401 142.50g	144.83h	27.26b-d	27.38b-d	9.85cde	10.09cde
12	T3	471.63c	474.09c	140.250C	148.58c	28.15ab	28.27ab	11.24ab	11.48ab
	T4	449.60e	452.06e	145.0000	147.93d	28.50a	28.62a	10.95b	11.19b
	T1	350.881	353.34k	120.00: 141.201	141.53k	26.50d	26.62d	8.17g	8.42f
12	T2	385.00j	387.46i	139.20J 141.30h	143.63i	26.80d	26.92d	8.23fg	8.48f
15	T3	455.00d	457.46d	144.80de	147.13e	27.87а-с	27.99a-c	11.06ab	11.29ab
	T4	432.50g	434.96f	145.551g	145.68g	28.13ab	28.25ab	10.50bc	10.74bc
		-							

Means followed by a common letter are not significantly different at the 5% level by DMRT. Where: 11: Irrigation every 4-days; 12: Irrigation every 8-days; 13: Irrigation every 12-days; V1:Giza179; V2: Sakha108; T1: Control (Tap water

only); T2: 250 ppm of Cycocel; T3: 500 ppm of Cycocel; T4: 750 ppm of cycocel.

Interaction between Genotypes and different levels of cycocel treatments affects number of panicles/m2, number of filled grain panicle-1 and 1000-grain weight/g in both studied seasons (Table 9). Giza179 rice cultivar showed highest number of panicles m-2, and number of filled grain panicle-1 in both studied of seasons with cycocel treatment T3 followed by Sakha108 at the same level of cycocel treatments. Whereas, Sakha108 showed lowest number of panicles m-2 under cycocel treatments (T1) in the two studied seasons. Data displayed in Table (9) indicated that cycocel application T2, T3 and T4 showed the highest 1000-grain weight with Sakha108 rice cultivar without any significant differences among each other, while Giza179 gave less 1000-grain weight under control treatment T1 (tap water only) in both seasons of study.

Table 9. Number of panicles m-2 at harvest as affected by the interaction between genotypes and Cycocel treatments in 2018 and 2019 seasons

Treatments		No. of panicles m-2		No. filled gra	No. filled grain panicle-1		1000-grain weight/g		vield (t ha-1)
		2018	2019	2018	2019	2018	2019	2018	2019
V1	T1	398.33g	400.79f	143.03d	145.36d	26.20d	26.32d	8.79c	9.04d
	T2	419.00e	421.46d	144.77c	147.10c	26.40d	26.52d	8.92c	9.17d
	T3	486.08a	488.54a	148.47a	150.79a	27.67bc	27.79bc	11.52a	11.76a
	T4	466.67c	469.13b	147.23b	149.56b	27.87bc	27.99bc	11.05a	11.29ab
	T1	351.42h	353.88g	138.50f	140.80f	27.20c	27.32c	8.85c	9.09d
vo	T2	403.33f	405.79e	140.43e	142.76e	28.20ab	28.33ab	9.83b	10.07c
V2	T3	468.33b	470.79b	144.63c	146.96c	28.68a	28.80a	11.29a	11.53ab
	T4	444.73d	447.19c	143.30d	145.63d	28.89a	29.01a	10.80a	11.05b

Grain yield t ha-1

Data in table (6) indicated that irrigation interval had a significant effect on rice grain yield in both seasons of study. Irrigation interval I1 and I2 gave the highest grain yield without significant difference between them in the two seasons of study while I3 gave lowest grain yield in both seasons of study.

Data listed in table (6) indicated highly significant differences among different concentrations of cycocel treat-

ments in grain yield in both seasons of study. cycocel treatment T3 markedly surpassed the other cycocel treatments under study in grain yield. On the other hand, the lowest grain yield was observed when plants treated without cycocel application T1.

Interaction effect

Data in Table (7) asserted that there were significant differences in grain yield was observed in response to irrigation intervals and two genotypes. Under I1 and I2 genotypes produced more grain yield without any significance

Abdelmegeed, T. M. and E. A. Z. ElShamey

between them. Whereas, I3 had the lowest grain yield in both seasons of study.

Data indicated that cycocel application T3 under any irrigation intervals gave maximum grain yield without significant difference among them in the two studied seasons followed by cycocel treatments T4 under irrigation interval I1 (table 8). On the other hand, the lowest grain yield was observed when rice plants treated with tap water only (T1) under irrigated interval I3 (table 8).

Data in Table (9) and asserted that there was a highly significant difference in the interaction between the different genotypes and cycocel treatments regarding grain yield recorded in both seasons. No significant differences in grain yield of Giza179 and Sakha108 were observed when treated with cycocel with 500 ppm (T3) and 750 ppm (T4). Both genotypes under T1 treatment gave nearly a similar grain weight and recorded the lowest grain yield under this study.

Exchanges (%) of grain yield as influenced by different water intervals and various cycocel levels were present in Fig (1). Spraying cycocel with 500 ppm (T3) produced the peak value of exchange (%) in grain yield under all irrigation intervals treatments. Also, with increasing the period between water intervals, the effect of cycocel increasing and exchange (%) in grain yield increasing. We have shown that during drought stress, the increasing concentration of cycocel increases the biomass. However, cycocel concentration 500 ppm may reduce grain yield, possibly due to cycocel mediated stomal closure to prevent wilting.

Fig 1. Exchange (%) in grain yield as influenced by different doses of cycocel under different water intervals in the two seasons.

Discussion

It is clear from data introduced in this investigation that foliar application levels of cycocel hormone had huge impact on vegetative and yield component characters as; leaf area index (LAI), dry matter, chlorophyll content, number of panicles m-2, number of filled grain panicle-1, 1000grain weight, and grain yield. It was observed that during the foliar application of chlormequat chloride (CC), The increasing in the leaf area index might be due to the vigorous growth of Giza179 especially under I1 and I2 which increase the number of tillers and consequently increase its canopy resulted in an increased leaf area index. leaf area index (LAI) and dry matter significantly increased by increasing cycocel levels up to 500 ppm, these results are in agreement with that obtained by (Kumari, 2017) (Kumar et al., 2018) and (Seyed Sharifi and Khalilzadeh, 2018). It means that application of cycocel as foliar spray under water stress increases the number of tillers and leave area and resulted increased in LAI (photosynthetic area). These results are in compatibility with that obtained by (El-Refaee et al., 2012) and (Heidari and Golpayegani, 2012). For chlorophyll content, data suggests that the application of cycocel treatments is beneficial for improving the viability and chlorophyll content of flag leaf hence accelerate the process of photo-phosphorylation, stimulate the photosynthetic rate and photo-assimilates partitioning in plants (Wang and Xiao, 2009), (Wu et al., 2018) and (Zheng et al., 2020). The increased chlorophyll index in the cycocel treated plants might also be due to the influence of cycocel on improving the synthesis of enzymes and soluble proteins, chlorophyll synthesis by higher enzyme activity, retardation of leaf senescence and avoiding chlorophyll degradation (Osman, 2014). These results are in coincidence with that reported by (Heidari and Golpayegani, 2012); (El-Habet, 2014) and (Zheng et al., 2020). For dry matter content, the increase in dry matter content under I1 might be due to the increased tillers, number and area of leaves that results in increased photosynthesis and dry matter accumulation. These data indicated that the superiority of Giza179 in dry matter accumulation than Sakha108 may be due to vigorous vegetative growth, high vegetative growth rate, and high leaf area index result in high photosynthesis in both pre/and post-following.

For number of panicles m-2 remain consistent during the two studied seasons. Therefore, cycocel hormone may be a good candidate for improving plant yield under stress conditions. This might be due to the highest number of tillers under irrigation every 4-days. These results are in confirmed by (Escasinas and Zamora, 2011) and (El-Refaee *et al.*, 2012) and were in good coincidence with that reported by (Kumari, 2017), (Abdel-Megeed *et al.*, 2017)and (Bhattarai, 2017).

Number of Filled grains panicle-1, data indicated that Giza179 showed filled grains panicle-1 than Sakha108 in the two seasons of study. It might be due to the highest LAI as a photosynthesis area and dry matter content in rice cultivar. It could be due to the increase in photosynthesis under I1 than I2 because of the optimum light penetration through the rice canopy which produced more photosynthesis growth stages resulted in higher dry matter accumulation before flowering and high photosynthesis metabolites during filling period resulted in higher filling grains rice. These are the findings as reported by (Hashem et al., 2016) and (Abdel-Megeed et al., 2017). It means that the application of cycocel may aid in achieving optimum photosynthesis, increased number of filled grains, improved sink size and capacity during both growth stages. The same is reported by (Latifkar and Mojaddam, 2014); (Bhattarai, 2017) and (Kumar et al., 2018). Crop water uptake ability before anthesis can have major impact on crop growth because grain number and grain weight are set during this phase. Furthermore, final grain weight is related to grain filling and their interactions (Sadras and Egli, 2008). The increased photosynthesis rate streams the translocated metabolites from source to sink which increases filling processes. Environmental factors effects grain filling duration more than grain filling rate (Santiveri et al., 2002). These results are concurrent with those reported by (Attia, 2004); (Latifkar et al., 2014) and (Bhattarai, 2017). Sink size was increased before and after the flowering and its positive feedback effect on photosynthetic rate and sap production rate made possible to fill the additional grains (Waddington and Cartwright, 1988). Similar

observation is reported for wheat cultivars that a combination of 80 kg ha-1 nitrogen and cycocel may increase radiation use efficiency (Khalilzadeh *et al.*, 2016). Cycocel is also known to increase the number of grains per plant (Bhattarai, 2017). Cycocel application is responsible for increased photosynthetic rate, viability of flag leaf, and streaming of metabolites directly from the source to sink which results in heavy grain weight. The weight of 1000 grains depends on plant genotype and initial carbohydrate reserves, these data are in coincidence with that recorded by (Latifkar *et al.*, 2014) and (Bhattarai, 2017).

It is suggested that for grain yield t ha-1, if there is a restricted water supply during grain filling stage, wheat plant depends more on stem reserves than the current photosynthesis (Ehdaie et al., 2008). This is because the stress limits photosynthesis and promotes leaf senescence (Martinez et al., 2003), these findings are in good compatibility with that recorded by (Abdel-Megeed et al., 2017). In this study, we found that chlormequat chloride is beneficial for increasing grain yield but plant height was negatively affected. The yield may have increased due to more successful tillers and greater number of grains in ears. It seems that plants have readjusted the sap distribution for height to grains. However, the decrease plant height is linked with many beneficial traits like resistance against lodging (Mohaghegh and Imam, 2007). Meanwhile, nitrogen manure is needed for dry matter production for increasing the grain yield. When photosynthetic activity is depressed by drought or salinity after anthesis, grain filling becomes more dependent on mobilized stem reserves, which may then represent 22 to 80% of dry matter accumulation in the grain (Zheng et al., 2020).

We can conclude that the cycocel is responsible for increased photosynthesis, growth, the viability of flag leaf and streaming of sap from source to sink directly to increase grain weight. The effective tillers and increased number of grain per ear may also have role in increasing the yield. These results are in concert with those obtained by (Kumar et al., 2018) and (Khalilzadeh et al., 2016). Cycocel meditated increased grain yield was resulted from increased effective tillers and leaf surface and ultimately enhanced the photosynthesis, assimilation, translocation and stream of the sap towards grains (Sharif et al., 2007). It was reported that the combination of chlormequat chloride with cycocel decreases the plant height by 23% along with significant increase in grain yield (Singh et al., 2018), whereas cycocel alone can increase Ghods wheat grain yield by 12% (Emam and Niknejad, 2011). These results are in coincidence with those reports by (PirastehAnosheh et al., 2016); (Kumar et al., 2018) and (Seved Sharifi et al., 2018). However, at the same time, closed stomata reduce the carbon dioxide penetration, necessary for photosynthesis hence decreases the dry mass. Another pathway for reduced biomass results from cycocel mediated inhibition of Gibberellic Acid (GA3) biosynthesis (Hamad et al., 2015). Cycocel inhibits the growth of the shoots and shunts the growing activity toward the roots. So, the grain yield increase may be the result of osmotic regulation and increased soluble potassium. Cycocel dramatically changes root morphology, by increasing root diameter and decreasing the length (Skene and Mullins, 1967). So, a thicker and shorter root of Giza 179 may provide tolerance against drought (Sakran et al., 2020).

CONCLUSION

The importance of cycocel application was evident from the data under environmental stress conditions. The highest impact of cycocel was found with irrigation every 12 days at the concentration of 500 ppm for rice cultivar Giza 179. More research needs to be focused on cycocel induced stress tolerance under the environmental condition of Kaferelsheikh Governorate, Egypt.

REFERENCES

- Abdel-Megeed, T., El-habet, H.B., Hashem, I. and Badawy, S.A.J.J.o.P.P., 2017. Impact of Some Plant Growth Regulating Substances on the Yield and its Components of Giza179 and Giza177 Rice Cultivars under Different Irrigation Interval Treatments. 8(3): 369-379.
- Attia, A., 2004. Physiological studies on some ornamental bulbs, Ph. D. Thesis, Derpartment of Horticulture, Kafr El-Sheik, Tanta University.
- Bhattarai, P., 2017. Effects of plant growth regulators on growth and yield of pre-basic seed potato production under glasshouse condition. SAARC Journal of Agriculture, 15(1): 149-160.
- De Wit, M. and Stankiewicz, J., 2006. Changes in surface water supply across Africa with predicted climate change. Science, 311(5769): 1917-1921.
- Ehdaie, B., Alloush, G. and Waines, J., 2008. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research, 106(1): 34-43.
- El-Habet, H.B., 2014. Irrigation regime and potassium levels effects on yield of some rice genotypes, water use efficiency (WUE) and economic returns. Journal of Plant Production, 5(3): 383-399.
- El-Refaee, I., Gorgy, R. and Metwally, T., 2012. Response of some rice cultivars to plant spacing for improving grain yield and water productivity under different irrigation intervals. Alex. J. Agric. Res, 57(1): 1-15.
- Emam, Y. and Niknejad, M., 2011. An introduction to the physiology of crop yield. Translated): 591.
- Escasinas, R.O. and Zamora, O.B., 2011. Agronomic response of lowland rice PSB Rc 18 (Oryza sativa L.) to different water, spacing and nutrient management. Philipp. J. Crop Sci, 36(1): 37-46.
- Fellahi, Z., Hannachi, A., Bouzerzour, H. and Boutekrabt, A., 2013. Correlation between traits and path analysis coefficient for grain yield and other quantitative traits in bread wheat under semi arid conditions. Journal of Agriculture and Sustainability, 3(1).
- Gomez, K.A. and Gomez, A.A., 1984. Statistical procedures for agricultural research. John Wiley & Sons.
- Grewal, H., Kolar, J., Cheema, S. and Singh, G., 1993. Studies on the use of growth regulators in relation to nitrogen for enhancing sink capacity and yield of gobhi sarson (Brassica napus). Indian Journal of plant physiology.
- Hamad, H.S., Gaballah, M., El Sayed, M. and El Shamey, E., 2015. Effect of GA3 doses and row ratio on cytoplasmic male sterile line ir69625a seed production in hybrid rice. Egypt. J. Plant Breed, 19(3): 155-167.
- Heidari, M. and Golpayegani, A., 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11(1): 57-61.

Abdelmegeed, T. M. and E. A. Z. ElShamey

- Hsu, C.-Y., Chao, P.-Y., Hu, S.-P. and Yang, C.-M., 2013. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins.
- Khalilzadeh, R., Seyed Sharifi, R. and Jalilian, J., 2016. Antioxidant status and physiological responses of wheat (Triticum aestivum L.) to cycocel application and bio fertilizers under water limitation condition. Journal of Plant Interactions, 11(1): 130-137.
- Kumar, P., Haldankar, P. and Haldavanekar, P., 2018. Study on effect of plant growth regulators on flowering, yield and quality aspects of summer okra (Abelmoschus esculentus L. Moench) Var. Varsha Uphar.
- Kumari, S., 2017. Effect of Kinetin (6-FAP) and Cycocel (CCC) on Growth, Metabolism and Cellular Organelles in Pearl Millet (Pennisetum glaucum) Under Water Stress. Int. J. Curr. Microbiol. App. Sci, 6(8): 2711-2719.
- Lanceras, J.C., Pantuwan, G., Jongdee, B. and Toojinda, T., 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant physiology, 135(1): 384-399.
- Latifkar, M. and Mojaddam, M., 2014. The effect of application time of cycocel hormone and plant density on growth indices and grain yield of wheat (Chamraan cultivar) in Ahvaz weather conditions. Indian Journal of Fundamental and Applied Life Sciences, 4(4): 274-283.
- Luoranen, J., Rikala, R. and Aphalo, P.J., 2002. Effect of CCC and daminozide on growth of silver birch container seedlings during three years after spraying. New Forests, 23(1): 71-80.
- Martinez, D.E., Luquez, V.M., Bartoli, C.G. and Guiamet, J.J., 2003. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum). Physiologia Plantarum, 119(4): 519-525.
- Mohaghegh, R. and Imam, Y., 2007. Study on the effect of cycocell hormone on two cultivars of fall rapeseed, Thesis for MS in Shiraz University.
- Osman, A.R., 2014. Improving some quantitative and qualitative characteristics of Solidago canadensis" Tara" using cycocel and planting density under drip irrigation and lighting systems. Life Science Journal, 11(6): 110-118.
- Pandey, V. and Shukla, A., 2015. Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4): 147-161.
- Rademacher, W., 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annual review of plant biology, 51(1): 501-531.
- Sadras, V.O. and Egli, D., 2008. Seed size variation in grain crops: allometric relationships between rate and duration of seed growth. Crop Science, 48(2): 408-416.

- Sakran, R., El Shamey, E. and Anis, G., 2020. Diallel Analysis of Different Rice Genotypes under Water Deficiency Conditions and Assessing Genetic Diversity Using SSR Markers. Journal of Plant Production, 11(12): 1319-1332.
- Santiveri, F., Royo, C. and Romagosa, I., 2002. Patterns of grain filling of spring and winter hexaploid triticales. European Journal of Agronomy, 16(3): 219-230.
- Serraj, R. *et al.*, 2009. Improvement of drought resistance in rice. Advances in agronomy, 103: 41-99.
- Seyed Sharifi, R. and Khalilzadeh, R., 2018. Effects of cycocel on growth, some physiological traits and yield of wheat (Triticum aestivum L.) under salt stress. Journal of Plant Physiology and Breeding, 8(1): 11-23.
- Sharif, S., Saffari, M. and Emam, Y., 2007. The effect of drought stress and cycocel on barley yield (cv. Valfajr). Journal of Science and Technology of Agriculture and Natural Resources.
- Singh, S. *et al.*, 2018. Effect of drought stress on yield and yield components of rice (Oryza sativa L.) genotypes. Int. J. Curr. Microbiol. Appl. Sci, 7: 2752-2759.
- Singh, S., Rachie, K.O. and Dashiell, K., 1987. Soybeans for the tropics: research, production and utilization.
- Skene, K. and Mullins, M., 1967. Effect of CCC on the growth of roots of Vitis vinifera L. Planta, 77(2): 157-163.
- Smakhtin, V., 2004. Taking into account environmental water requirements in global-scale water resources assessments, 2. Iwmi.
- Vikhi, S., Bangal, D. and Patil, V., 1983. Effect of growth regulators and urea on pod number of pigeonpea cv. 148. International Pigeonpea Newsletter, 2: 39-40.
- Waddington, S. and Cartwright, P., 1988. Pre-maturity gradients in shoot size and in number and size of florets for spring barley treated with mepiquat chloride. The Journal of Agricultural Science, 110(3): 633-639.
- Wang, H. and Xiao, L., 2009. Effects of chlorocholine chloride on phytohormones and photosynthetic characteristics in potato (Solanum tuberosum L.). Journal of Plant Growth Regulation, 28(1): 21-27.
- Wang, L., Wang, S., Chen, W., Li, H. and Deng, X., 2017. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization. PLoS One, 12(6): e0180205.
- Wu, X., Wang, W., Xie, X., Yin, C. and Xie, K., 2018. Photosynthetic and yield responses of rice (Oryza sativa L.) to different water management strategies in subtropical China. Photosynthetica, 56(4): 1031-1038.
- Zheng, C. *et al.*, 2020. Agronomic growth performance of super rice under water-saving irrigation methods with different water-controlled thresholds in different growth stages. Agronomy, 10(2): 239.

تقييم أداء بعض أصناف الأرز المعامل بهرمون السيكوسيل تحت ظروف الأجهاد المائى طاهر محمد كامل عبدالمجيد و عصام عادل ذكي الشامي . ق. ميشالا : معند مد شال عاد الما يقل م من السيشان المق

قسم بحوث الارز - معهد بحوث المحاصيل الحقليه- مركز البّحوث الزراعية

لدراسة تأثير الفترات المختلفة من الأجهاد المائى ومستويات هرمون السيكوسيل على المحصول ومكوناته لبعض التراكيب الوراثية من الأصناف المنزرعة من نباتات الأرز أصناف جيزة 179 و سخا 108، تم أجراء التجربة البحثية بنظام القطع المنشقة فى نظام قطاعات كاملة العشوائية بأربعة مكررات. أشتملت المعاملات على ثلاث فترات رى (4) 8، 12 بوما) وأربعة مستويات من الرش الورقى لهرمون السيكوسيل (كنترول ، 200 ، 500 جزء فى المليون) على الصنفين المنزر عين جيزة 179 و سخا 108. لوحظ أنة خلال الأستخدام الورقى لكلوريد الكلورميكوات (CC) ، زاد دليل ورقة العام (LAI) والمادة الجافة بشكل كبير عن طريق زيادة مستويات هرمون السيكوسيل حتى 500 جزء فى المليون بينما أدى الرش السيكوسيل حتى (CC) ، زاد دليل ورقة العام (LAI) والمادة الجافة بشكل كبير عن طريق زيادة مستويات هرمون السيكوسيل حتى 500 جزء فى المليون بينما أدى الرش السيكوسيل حتى (CC) ، زاد دليل ورقة العام (LAI) والمادة الجافة بشكل كبير عن طريق زيادة مستويات هرمون السيكوسيل حتى 500 جزء فى المليون بينما أدى الرش السيكوسيل حتى (CC) إلى زيادة محتوى الكلوروفيل. بينما زادت عدد السابل لكل متر مربع و عدد الحبوب الممتلئة ووزن ال 1000 حبة زيادة معنوية عند مستوى أضافة 500 جزء فى المليون مقارنة بالمعاملة الكنترول والمعاملة 750 جزء فى المليون. 20 مور عمي عمي فتر المنالة ليونيان الميتانة ووزن ال 1000 حبة زيادة معنوي بين التطبيق الورقى للسيكوسيل حتى 600 جزء فى المليون قد يحسن النمو وخصائص المحصول تحت فترات رى مختلفة حتفا لسيكوسيل، أظهرت البيات أن أصناف الأرز فى هذة الماليون مقارنة بالمعاملة الكنترول والمعاملة 750 جزء فى المليون. 20 فى جميع فتر ات المياة المختلفة وتفاعل السيكوسيل، أظهرت البيات أن أستفسان الرز فى هذة الدراسة على محصول الحبوب، من ناحية أخرى سجل الصنف جيزة 179 توقا ملحوظا فى جميع صفات النمو والمحصول مقار الذي المعاد أصناف الأرز فى هذة الدراسة على محصول الحبوب، من ناحية ألى رش نباتات الأرز بمر كب السيكوسيل مقارنة بالصنف سخا 100 الذي سجل نتائج إيجابيتخدام السيكوسيل كنطبيق ورقى، وأوصت التجربة البحثية الى أن رش نباتات الأرز بركس السيكوسيل ربما يكون وسيلة جيدة لتحسين محصول الأرز تحت مسلف الأرز فى هذة الدراسة على محصول الحبوب، وأوصت التجربة البحثية الى أن رش نبتات الأرز بمركس السيكوسيل ربماي وسيلة جسين محسين محسو