Vol(45)
 No(1)
 2016
 Full Paper

Some reactions of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydro-quinoline-2(1 H)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-b]quinolines

Elham A. Al-Taifi, ${ }^{1}$ Shaban A. Abdel-Raheem ${ }^{2}$ and Etify A. Bakhite ${ }^{3}$
${ }^{1)}$ Chemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen
${ }^{2)}$ Soil, Water and environment Res. Institute, Agriculture Res. Center, Cairo, Egypt
${ }^{3)}$ Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
Email: elham95@yahoo.com

Article history : Received: 9/3/2016; Revised : 15/3/2016; Accepted : 21/3/2016;
Available Online : 23/5/2016;

Abstract

In this paper, 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-thione (2) was prepared and reacted with methyl iodide to give the corresponding 2-methylthio derivative 3. Fusion of compound $\mathbf{2}$ or $\mathbf{3}$ with hydrazine hydrate produced the aminopyrazolotetrahydroquinoline-5-hydrazone 4. Reaction of both compounds 2 and $\mathbf{3}$ with phenylhydrazine or thiosemicarbazide led to the formation of condensation products $\mathbf{6 a , b}$ and $\mathbf{9 a}, \mathbf{b}$ respectively. Reaction of cyanoquinolinethione 2 with some α-halocarbonyl compounds namely; ethyl chloroacetate, chloroacetamide, chloro- N - $(p$-tolyl)acetamide and phenacyl bromide gave the corresponding alkylated products 10a-d. On treatment of the latter compounds with sodium ethoxide in boiling ethanol, they underwent intramolecular ThorpeZeigler cyclization affording the corresponding tetrahydrothieno[2,3-b] quinolines 11a-d. The elemental analyses and spectroscopic data of all compounds are in agreement with their proposed structures.

Keywords: hydrazono compounds, thiosemicarbazones, tetrahydroquinolines, tetrahydrothienoquinolines

1. Introduction

The chemistry of 4-aryl-3-cyano-5,6,7,8-tetrahydroquinoline-2 $(1 \mathrm{H})$-thiones has been developed intensely during the last three decades [1], which could be attributed, in particular, to the discovery of compounds with antimicrobial activity in this series $[2,3]$. The basic methods
of their synthesis are: cyclocondensation of 2-arylidenecyclohexanones with cyanothioacetamide [2, 4], reaction of cyclohexanone [5] or its enamine [6] with arylidenecyanothioacetamides and recyclization of enamino nitrile of the 1,3-dithia-4-cyclohexene series [7]. On the other hand, the literature survey
revealed that only few 3-cyano-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-
thiones have been prepared by using 1,3cyclohexanedione or dimedone [8]. Encouraged by the above finding, we reported herein the synthesis of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline- $2(1 \mathrm{H})$-thione and its reactions with different reagents to obtain other tetrahydroquinolines as well as tetrahydro-thieno[2,3-b]quinolines with anticipated biological and medicinal importance.

2. Results and discussion

The starting compound $\mathbf{2}$, was prepared by refluxing of p-methoxbenzylidene-
cyanothioacetamide 1 [9] with cyclohexane-1,3-dione in ethanol containing catalytic amount of piperidine (Scheme 1). Reaction of compound 2 with methyl iodide, in the presence of sodium acetate produced the corresponding 2-methylthiotetrahydroquinoline (3). Heating both compounds 2 and 3 with hydrazine hydrate under neat conditions resulted in the formation of 3-aminopyrazolotetrahydroquinolinehydrazone 4. The interaction of $\mathbf{3}$ with two molar amount of phenyl isothiocyanate in hot pyridine gave the dithiouredo derivative 5 (Scheme 2).

Scheme 1

Scheme 2

Treatment of compound 2 with phenyl hydrazine or thiosemicarbazide in the presence of glacial acetic acid furnished the corresponding phenylhydrazone 6 a or thiosemicarbazone $\mathbf{6 b}$. The former compound (6a) was reacted with ethyl chloroacetate, by refluxing in ethanol containing equimolar amount of sodium acetate to give the open ester 7. Refluxing of compound 7 with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in ethanol led to the formation of tetrahydrothieno[2,3-b]quinoline derivative 8 (Scheme 3). In a similar manner, compound 3 was also reacted with phenyl hydrazine or thiosemicarbazide to afford the corresponding condensation products $9 \mathbf{9}$ and 9b (Scheme 3). 3-Cyanoquinoline$2(1 \mathrm{H})$-thione 2 underwent S-alkylation
reactions upon treatment with some α-halocarbonyl compounds namely: ethyl chloroacetate, chloroacetamide, chloro-N(p-tolyl)acetamide and phenacyl bromide, by refluxing in ethanol containing equimolar amount of sodium acetate, to give the corresponding thioethers 10a-d in high yields (Scheme 4). Upon heating of compounds 10a-d with sodium ethoxide in ethanol, they underwent intramolecular Thorpe-Zeigler cyclization affording the corresponding 3 -amino-tetrahydrothieno[2,3-b]quinolines 11a-d (Scheme 4). The mechanism of ThorpeZiegler cyclization can be represented by Scheme 5 [10]. The elemental analyses and spectroscopic data of all compounds are in agreement with their proposed structures (See: experimental part).

Scheme 3

Scheme 4

11a-d

Scheme 5

3. Experimental

Melting points were measured with Gallan-Kamp melting-point apparatus and are uncorrected. IR Spectra were obtained on a Pye-Unicam SP3-100 spectrophotometer using KBr disc technique. NMR Spectra were recorded on a Bruker 400 MHz Ultrashield TM FT-NMR spectrometer (Universiti Sains Malaysia). Mass spectra were recorded on a Jeol JMS-600 mass spectrometer; Elemental analyses (C, H, N, and S) were conducted using a Vario EL C, H, N, S Analyzer (Assiut University).

3.1. 3-cyano-4-(p-methoxyphenyl)-5- oro-5,6 7, 8-tetrahydroquinoline-2(1H)-oxo-5,6,7,8-tetrahydroquinoline-2(1H)thione (2).

To a mixture of compound $\mathbf{1}(2.18 \mathrm{~g}, 10$ mmol), cyclohexane-1,3-dione (1.12 g , $10 \mathrm{mmol})$ in ethanol $(25 \mathrm{ml})$, few drops of piperidine were added. The reaction mixture was heated under reflux for 4 h and left to stand overnight at room temperature. The resulting precipitate was collected and recrystallized from ethanol as orange plates. Yield: (45%); m.p.: 305-307 ${ }^{\circ} \mathrm{C}$. IR: 3414 (NH), 3091 (C-H aromatic), 2838 (C-H aliphatic), 2233 $(\mathrm{C} \equiv \mathrm{N}), 1678(\mathrm{C}=\mathrm{O}) 1605(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=14.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 7.16-7.18 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), $7.95-7.97$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.82$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.01-3.03 ($\mathrm{t}, J=4.0 \mathrm{~Hz}$,
$2 \mathrm{H}, \mathrm{CH}_{2}$ at C-6), $2.39-2.41(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\left.\mathrm{C}-8\right), 1.99-2.03(\mathrm{p}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-7$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ $=193.25,180.36,162.03,160.42,156.97$, $129.64,118.58,117.43,114.17$ (2CH), $129.40(2 \mathrm{CH}), 28.63\left(\mathrm{CH}_{2}\right), 20.41\left(\mathrm{CH}_{2}\right)$, $55.98\left(\mathrm{OCH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C, 65.79; H, 4.55; N, 9.03; S, 10.33. Found (\%): C, 65.78; H, 4.41; N, 9.18; S, 10.30.

3.2. 4-(p-Methoxyphenyl)-2-(methyl-thio)-5-oxo-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3).

A mixture of compound $2(3.1 \mathrm{~g}, 10$ $\mathrm{mmol})$, methyl iodide ($0.62 \mathrm{ml}, 10 \mathrm{mmol}$) and sodium acetate trihydrate $(2 \mathrm{~g}, 15$ mmol) in ethanol (25 ml) was heated under reflux for 2 h . The precipitate product was collected by filtration and washed several times with ethanol followed by distilled water. It was recrystallized from methanol to give $\mathbf{3}$ in the form of yellow needles. Yield: 79%; m.p.: $194-195^{\circ} \mathrm{C}$. IR: 2962 (C-H aliphatic), $2218(\mathrm{C}=\mathrm{N}), 1685$ ($\mathrm{C}=\mathrm{O}$), $1610(\mathrm{C}=\mathrm{N}) \mathrm{cm} .{ }^{-1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $=7.20-7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H})$, $6.99-7.01$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.16-3.18 ($\mathrm{t}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right)$, $2.56-2.58\left(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at C-6), $2.08-2.12\left(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\left.\mathrm{C}-7\right)$. ${ }^{13}$ C NMR (DMSO- d_{6}): $\delta=195.57$,
167.43, 165.30, 159.48, 154.50, 129.28, 122.60, 106.99, 113.41 (2CH), 128.38 (2CH), $33.53\left(\mathrm{CH}_{2}\right), 20.35\left(\mathrm{CH}_{2}\right), 55.11$ $\left(\mathrm{OCH}_{3}\right), \quad 12.98 \quad\left(\mathrm{SCH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C, 66.65; H, 4.97; N, 8.64; S, 9.88. Found (\%): C, 66.61; H, 4.92; N, 8.52; S, 9.69.

3.3. 5-Hydrazono-4-(p-methoxyphenyl)-5,6,7,8-tetrahydro-1H-pyrazolo[3,4-b] quinoline-3-amine (4).

A suspension of compound 2 or 3 (10 $\mathrm{mmol})$ in hydrazine hydrate $99 \%(12 \mathrm{ml})$ was gently heated under reflux for 4 h and then allowed to cool. The reaction mixture was triturated with ethanol (15 ml) whereby a canary yellow precipitate formed. It was collected by filtration, washed several times with distilled water, air-dried and recrystallized from dioxane. Yield: 77-82 \%, m.p.: 293-295 ${ }^{\circ}$ C. IR: 3437, 3389, 3293, $3193\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 2937$ (C-H aliphatic), 1607, $1595(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$ ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=11.95(\mathrm{~s}, 1 \mathrm{H}$, NH), 7.16-7.18 (d, J=8.0 Hz, 2H, Ar-H), a doublet at $\delta 6.96-7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.83 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ of hydrazone residue), 4.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ attached to pyrazole ring), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.762.78 (t, 2H, CH ${ }_{2}$ at C-8), 2.38-2.40 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at C-6), 1.86-1.90 (p, 2H, CH CH_{2} at C-7). ${ }^{13}$ C NMR (DMSO- d_{6}): $\delta=150.19$, 147.84, 160.56, 158.09, 141.89, 141.71, $130.14,120.44,104.45,113.44$ (2CH), $129.78(2 \mathrm{CH}), 25.08\left(\mathrm{CH}_{2}\right), 20.84\left(\mathrm{CH}_{2}\right)$, $54.96\left(\mathrm{OCH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}=320.96\left(\mathrm{M}^{+}\right.$, $100 \%) ; 304.58\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 34.9 \%\right)$. Elemental analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}$ (\%): C, 63.34; H, 5.63; N, 26.07. Found (\%): C, 63.16; H, 5.68; N, 25.91.

3.4. 4-\{4-(p-Methoxyphenyl)-3-(3-phenylthioureido)-7,8-dihydro-1H-pyrazolo[3,4-b]quinolin-5(6H)-ylidene\}-N-phenylhydrazinecarbothioamide (5).

A mixture of compound 4 ($3.22 \mathrm{~g}, 10$ mmol) and phenyl iso-thiocyanate (2.66 $\mathrm{ml}, 20 \mathrm{mmol}$) in pyridine (20 ml) was heated on a water bath for 5 h . The
product that formed after cooling was collected and recrystallized from ethanol to give compound 5 in the form of yellow needles. Yield: 81%, m.p.: $259-261{ }^{\circ} \mathrm{C}$. IR: $3468,3415,3383,3300(\mathrm{NH}), 3034$ (C-H aromatic), 2942 (C-H aliphatic), 1638, $1608(\mathrm{C}=\mathrm{N}) \quad \mathrm{cm} .^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right): \delta=13.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.43$ (s, 1H, NH), 10.30 (br. s, 1H, NH), 8.35 (br. s 1H, NH), 7.94 (s, 1H, NH), 7.147.38 (m, 12H, Ar-H), 6.75-6.77 (d, 2H, $\mathrm{Ar}-\mathrm{H}$), 3.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.91-2.93 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 2.84-2.86 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-6$), 1.95-1.99 ($\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-7$). Elemental analysis calculated for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{OS}_{2}$ (\%): C, 62.82; H, 4.76; N , 18.90; S, 10.82. Found (\%): C, 62.84; H, 4.88; N, 18.91; S, 10.86.

3.5. Condensation of ketones 2 or 3 with amino compounds; Formation of compounds 6a,b and 9a,b; General procedure.

To a mixture of compound 2 or 3 (5 mmol) and phenyl hydrazine or thiosemicarbazide (5 mmol) in ethanol $(20 \mathrm{ml})$, few drops of acetic acid were added. The resulting mixture was heated under reflux for 2 h and left to cool. The precipitated product was collected and recrystallized from the proper solvent to give compounds 6a,b and $\mathbf{9 a , b}$ respectively.

3.5.1. 3-Cyano-4-(p-methoxyphenyl)-5-(2-phenylhydrazono)-5,6,7,8-tetrahydro-quinoline-2(1H)-thione (6a).

It was obtained by using compound 2 and phenyl hydrazine. Yield: 83 \%; m.p.: $300-302{ }^{\circ} \mathrm{C}$ (AcOH). IR: 3481, 3414 (NH), 2941 (C-H aliphatic), 2231 ($\mathrm{C} \equiv \mathrm{N}$), 1637, $1603(\mathrm{C}=\mathrm{N}) ~ \mathrm{~cm} .{ }^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right): \delta=14.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ of pyridine ring), 8.97 (s, 1H, NH of phenyl hydrazone), 7.24-7.26 (d, 2H, Ar-H), 7.01-7.03 (d, 2H, Ar-H), 6.92-6.95 (t, 2H, Ar-H), 6.63-6.66 (t, 1H, Ar-H), 6.29-6.31 (d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.86-$ 2.88 (t, 2H, CH ${ }_{2}$ at C-8), 2.54-2.56 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\left.\mathrm{C}-6\right), 1.91-1.95\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at

C-7). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.78$, 154.87, 155.31, 145.08, 136.26, 138.33, $130.68,124.01,112.64(2 \mathrm{CH}), 113.78$ $(2 \mathrm{CH}), 128.10(2 \mathrm{CH}), 128.92(2 \mathrm{CH})$, $118.84(\mathrm{CH}), 27.58\left(\mathrm{CH}_{2}\right), 25.21\left(\mathrm{CH}_{2}\right)$, $18.76\left(\mathrm{CH}_{2}\right), 55.13\left(\mathrm{OCH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}=$ 400.14 (100%), $308.10\left(\mathrm{M}^{+}-\mathrm{PhNH}, 36 \%\right)$, $92.02(\mathrm{PhNH}, 10 \%), 93.02\left(\mathrm{PhNH}_{2}, 10\right.$ $\%$). Elemental analysis calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$ (\%): C, 68.98; H, 5.03; N, 13.99; S, 8.01. Found (\%): C, 68.91; H, 4.90; N, 13.96; S, 7.81.

3.5.2. 2-[3-Cyano-4-(p-methoxyphenyl)-2-thioxo-1,2,7,8-tetrahydroquinolin-5(6H)-ylidene]hydrazinecarbothioamide (6b).

It was obtained by using compound $\mathbf{2}$ and thiosemicarbazide. Yield: 77 \%; m.p.: $308-310{ }^{\circ} \mathrm{C}$ (AcOH). IR: 3389, 3236, 3141 (NH), 3036 (C-H aromatic), 2935 (C-H aliphatic), $2223(\mathrm{C} \equiv \mathrm{N}), 1604(\mathrm{C}=\mathrm{N})$ $\mathrm{cm} .{ }^{-11} \mathrm{H}$ NMR (DMSO- d_{6}) : $\delta=14.27(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$ of quinoline ring), $10.04(\mathrm{~s}, 1 \mathrm{H}$, NH), 8.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.23-7.25 (d, 2H, Ar-H), 6.99-7.01 (d, 2H, Ar-H), 5.34 (s, $1 \mathrm{H}, \mathrm{NH}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.85-2.87 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 2.59-2.61 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at C-6), 1.84-1.89 $\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\left.\mathrm{C}-7\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=154.74,178.22$, 176.36, 159.46, 156.70, 143.15, 130.33, $117.29,116.68,113.99(2 \mathrm{CH}), 128.40$ $(2 \mathrm{CH}), 27.40\left(\mathrm{CH}_{2}\right), 25.61\left(\mathrm{CH}_{2}\right), 18.58$ $\left(\mathrm{CH}_{2}\right), 55.17\left(\mathrm{OCH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}=383.32$ $(4 \%), \quad 307.72 \quad\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{NCSNH}\right)$. Elemental analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}_{2}$ (\%): C, $56.38 ; \mathrm{H}, 4.47$; N , 18.26; S, 16.72. Found (\%): C, 56.31; H, 4.49; N, 18.12; S, 16.58.

3.5.3. 4-(p-Methoxyphenyl)-2-methyl-thio-5-(2-phenylhydrazono)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (9a). It was obtained by using compound $\mathbf{3}$ and

 phenyl hydrazine. Yield: 72 \%, m.p.: $255-256^{\circ} \mathrm{C}$ (EtOH). IR: 3476 (NH), 2953 (C-H aliphatic), $2220(\mathrm{C} \equiv \mathrm{N}), 1637,1602$ $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=9.10$ ($\mathrm{s}, 1 \mathrm{H}$, NH), 7.24-7.27 (d, 2H, Ar-H), 6.99-7.02 (d, 2H, Ar-H), 6.91-6.96 (t, 2H, Ar-H), 6.63-6.66 (t, 1H, Ar-H), 6.32-6.34 (d, 2H, $\mathrm{Ar}-\mathrm{H}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.64-2.66 (t , $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\left.\mathrm{C}-6\right), 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right)$, 2.49-2.51 ($2 \mathrm{H}, \mathrm{CH}_{2}$ at C-8), 1.91-1.95 (p, $2 \mathrm{H}, \mathrm{CH}_{2}$ at C-7). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ $=165.67,163.94,160.22,159.68,151.70$, 145.90, 137.87, 131.71, 107.72, 114.30 $(2 \mathrm{CH}), 114.80(2 \mathrm{CH}), 129.00(2 \mathrm{CH})$, $130.19(2 \mathrm{CH}), 119.91(\mathrm{CH}), 34.82\left(\mathrm{CH}_{2}\right)$, $26.77\left(\mathrm{CH}_{2}\right), 20.66\left(\mathrm{CH}_{2}\right), 56.01\left(\mathrm{OCH}_{3}\right)$, $13.67\left(\mathrm{SCH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}=413.64(100 \%)$, 321.19 ($\mathrm{M}^{+}-\mathrm{PhNH}, 48$ \%), 107.87 $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OMe}, 26 \%\right), 91.92$ ($\mathrm{PhNH}, 95 \%$), $92.92\left(\mathrm{PhNH}_{2}, 25 \%\right)$. Elemental analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}$ (\%): C, 69.54; H, 5.35; N, 13.52; S, 7.73. Found (\%): C, 69.28; H, 5.36; N, 13.20; S, 7.69.

3.5.4. 2-[3-Cyano-4-(p-methoxyphenyl)-2-methylthio-7,8-dihydroquinolin-5(6H)-ylidene]hydrazinecarbothioamide (9b).

It was obtained by using compound $\mathbf{3}$ and thiosemicarbazide. Yield: 71 \%, m.p.: $264-265{ }^{\circ} \mathrm{C}$ (EtOH). IR: 3472, 3398, 3255 (NH), 2952 (C-H aliphatic), 2222 $(\mathrm{C} \equiv \mathrm{N}), 1637,1611(\mathrm{C}=\mathrm{N}) \mathrm{cm} \cdot{ }^{-1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=10.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.08$ (s, 1H, NH), 7.23-7.25 (d, 2H, Ar-H), 6.98-7.00 (d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.43$ (s, 1 H , NH), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.92-2.96(\mathrm{t}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-6$), 2.66-2.700 (t, 2H, CH_{2} at C-8), 2.6 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH}_{3}$), 1.87-1.92 (p, $2 \mathrm{H}, \mathrm{CH}_{2}$ at C-7). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ $=179.96,171.35,164.11,159.60,155.67$, $153.59,122.99,131.88,105.44,114.35$ $(2 \mathrm{CH}), 128.60(2 \mathrm{CH}), 28.52\left(\mathrm{CH}_{2}\right), 25.97$ $\left(\mathrm{CH}_{2}\right), 19.21\left(\mathrm{CH}_{2}\right), 56.03\left(\mathrm{OCH}_{3}\right), 14.11$ $\left(\mathrm{SCH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}=397.40\left(\mathrm{M}^{+}, 5.4 \%\right)$, $323 \quad\left[\mathrm{M}^{+}-\left(\mathrm{NHCSNH}_{2}\right)\right]$. Elemental analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}_{2}$ (\%): C, $57.41 ; \mathrm{H}, 4.82 ; \mathrm{N}, 17.62 ; \mathrm{S}, 16.13$. Found (\%): C, 57.37 ; H, 4.60; N, 17.35; S, 16.00.

3.6. Reaction of thiones 6a or 2 with some halo compounds; Formation of thioethers 7 or 10a-d; General procedure.

To a suspension of compound 6a or 2 (10 mmol) and sodium acetate trihydrate ($1.63 \mathrm{~g}, 12 \mathrm{mmol}$) in ethanol (30 ml), the appropriate halo compound (10 mmol) was added. The resulting mixture was heated under reflux for 3 h and then allowed to cool. The formed solid was filtered off, washed with water, dried in air and recrystallized from ethanol to give compounds $\mathbf{7}$ or 10a-d respectively.
3.6.1. Ethyl [3-cyano-4-(p-methoxy-phenyl)-5-(2-phenylhydrazono)-5,6,7,8tetra hydroquinolin-2-ylthioJacetate (7). It was prepared by using compound $\mathbf{6 a}$ and ethyl chloroacetate. Yield: 66 \%; m.p.: $239-241^{\circ} \mathrm{C}$. IR: 3332 (NH), 2216 $(\mathrm{C} \equiv \mathrm{N}), 1742$ ($\mathrm{C}=\mathrm{O}$, ester), 1631 ($\mathrm{C}=\mathrm{N}$) $\mathrm{cm} .{ }^{-1} \quad{ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}\right): \delta=6.80-$ $7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and NH), $4.27(\mathrm{~s}, 2 \mathrm{H}$, SCH_{2}), 3.90-4.20 (q, 2H, OCH_{2}), $3.86(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.94-2.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at C 8), 2.58-2.61 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at C-6), 2.06$2.10\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\left.\mathrm{C}-7\right), 1.33(\mathrm{t}, 3 \mathrm{H}$, CH_{3} of ester). Elemental analysis calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 66.65; H, 5.39; N, 11.51; S, 6.59. Found (\%): C, 66.47; H, 5.36; N, 11.54; S, 6.64.

3.6.2. Ethyl (3-cyano-4-(p-methoxy-phenyl)-5-oxo-5,6,7,8-tetrahydroquino-lin-2-ylthio)acetate (10a).

It was prepared by using compound $\mathbf{2}$ and ethyl chloroacetate. Yield: 68 \%; m.p.: 119-121 ${ }^{\circ} \mathrm{C}$. IR: 2969 (C-H aliphatic), 2221 ($\mathrm{C} \equiv \mathrm{N}$), 1745 ($\mathrm{C}=\mathrm{O}$, ester), 1693 ($\mathrm{C}=\mathrm{O}$, ketone), 1637, $1608(\mathrm{C}=\mathrm{N}) \mathrm{cm} .{ }^{-1}$ ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=7.21-7.24$ (d, J $=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.98-7.01 (d, $J=$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.15-4.19 (m, 4H, SCH_{2} and $\left.\mathrm{OCH}_{2}\right), \delta 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.05-3.07 (t, 2H, CH ${ }_{2}$ at C-6), 2.50-2.52
(t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 2.09-2.13 (p, 2H, CH_{2} at C-7), 1.21-1.24 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of ester). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=196.35$, 169.07, 168.15, 164.43, 160.46, 155.61, $130.19,123.93,107.59,114.35(2 \mathrm{CH})$, $129.08(2 \mathrm{CH}), 84.15\left(\mathrm{CH}_{2}\right), 62.09\left(\mathrm{CH}_{2}\right)$, $34.16\left(\mathrm{CH}_{2}\right), 33.46\left(\mathrm{CH}_{2}\right), 21.16\left(\mathrm{CH}_{2}\right)$, $56.01\left(\mathrm{OCH}_{3}\right), 14.99\left(\mathrm{CH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (\%): C, 63.62; H, 5.08; N, 7.07; S, 8.09. Found (\%): C, 63.45; H, 5.29; N, 7.00; S, 8.16.

3.6.3. [3-Cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinolin-2-ylthio] acetamide (10b).

It was prepared by using compound 2 and chloroacetamide. Yield: 65 \%; m.p.: 190$192^{\circ} \mathrm{C}$. IR: 3485, $3367\left(\mathrm{NH}_{2}\right), 2220$ $(\mathrm{C} \equiv \mathrm{N}), 1682$ ($\mathrm{C}=\mathrm{O}$, ketone), 1652 ($\mathrm{C}=\mathrm{O}$, amide) $\mathrm{cm} \cdot{ }^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.15-$ 7.17 (d, 2H, Ar-H), 7.00-7.02 (d, 2H, ArH), 6.55 (br. s, 1H, NH), 5.45 (br. s, 1H, NH), 4.01 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{SCH}_{2}$), 3.89 (s, 3 H , OCH_{3}), 3.21-3.23 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 2.64-2.66 (t, 2H, CH ${ }_{2}$ at C-6), 2.19-2.23 (p, 2H, CH_{2} at $\mathrm{C}-7$). Elemental analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 62.11; H, 4.66; N, 11.44; S, 8.73. Found (\%): C, 62.16; H, 4.68; N, 11.19; S, 8.50.
3.6.4. 3-Cyano-4-(p-methoxyphenyl)-5-oxo-2-[N -(p-tolyl)carbamoylmethylthio]-5,6,7,8-tetrahydroquinoline (10c).
It was prepared by using compound $\mathbf{2}$ and chloro N-(p-tolyl)acetamide. Yield: 77%; m.p.: $182-183{ }^{\circ} \mathrm{C}$. IR: 3323 (NH), 2222 $(\mathrm{C} \equiv \mathrm{N}), 1686(\mathrm{C}=\mathrm{O}$, ketone), $1660(\mathrm{C}=\mathrm{O}$, anilide) $\mathrm{cm} \cdot{ }^{-1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) : $\delta=$ 11.31 (br. s, 1H, NH), 7.63-7.65 (d, 2H, Ar-H), 7.32-7.34 (d, 2H, Ar-H), 7.21-7.23 (d, 2H, Ar-H), 7.11-7.13 (d, 2H, Ar-H), 4.45 (s, 2H, SCH_{2}), 3.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.20-3.22 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 2.61-2.63 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-6$), 2.18-2.22 (p, 2H, CH_{2} at C-7), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 68.25; H, 5.07; N, 9.18; S, 7.01. Found (\%): C, 68.11; H, 5.08; N, 9.00; S, 6.78.
3.6.5. 4-(p-Methoxyphenyl)-5-oxo-2-(phenacylthio)-5,6,7,8-tetrahydroquin-oline-3-carbonitrile (10d).
It was prepared by using compound 2 and phenacyl bromide. Yield: 74%; m.p.: 220-221 ${ }^{\circ} \mathrm{C}$. IR: $2219(\mathrm{C} \equiv \mathrm{N}), 1693(\mathrm{C}=\mathrm{O}$, cyclic ketone), $1672(\mathrm{C}=\mathrm{O}$, phenacyl residue) $\mathrm{cm} .{ }^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 8.00-8.02 (d, $J=8.0 \mathrm{~Hz}$, , $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.56-7.60 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45-$ 7.49 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.03-7.05$ (d, $J=8.0 \mathrm{~Hz}$, , 2H, Ar-H), 6.88-6.90 (d, J $=8.0 \mathrm{~Hz},, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.76-2.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at C-6), 2.45-2.48 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 1.94-1.98 (p, , 2H, CH_{2} at C-7). Elemental analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 70.07; H, 4.70; N, 6.54; S, 7.48. Found (\%): C, 70.01; H, 4.72; N, 6.68; S, 7.80.

3.7. Ethyl 3-amino-4-(p-methoxy-

 phenyl)-5-(2-phenylhydrazono)-5,6,7,8-tetrahydro-thieno[2,3-b]quinoline-2carboxylate (8).To a suspension of compound $7(1.0 \mathrm{~g})$ in ethanol, 0.5 g of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added. The reaction mixture was heated under reflux for 3 h and filtered while hot to remove $\mathrm{K}_{2} \mathrm{CO}_{3}$. The product that forming on cooling of the filtrate was collected by filtration, washed with water and recrystallized from ethanol to give yellow needles of compound $\mathbf{8}$. Yield: 71 $\%$; m.p.: $267-268^{\circ} \mathrm{C}$. IR: 3482, 3351 $\left(\mathrm{NH}_{2}\right), 2954$ (C-H aliphatic), 1690 (C=O, cyclohexanone residue) $1661 \quad(\mathrm{C}=\mathrm{O}$, ester) $\mathrm{cm} .{ }^{-1}{ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}\right): \delta=6.85-$ $7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and NH$), 5.30(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), 3.93-4.21 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), $3.86(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.96-2.98 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-$ 8), 2.60-2.63 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-6$), 2.10$2.14\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at C-7), 1.10-1.40 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ of ester). Elemental analysis calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 66.65; H, 5.39; N, 11.51; S, 6.59. Found (\%): C, 66.40; H, 5.31; N, 11.63; S, 6.74.

3.8. Cyclization of compounds 10a-d; Formation of thienoquinolines 11a-d; General procedure.

Compound 10a-d (5 mmol) was suspended in sodium ethoxide solution (0.05 g sodium in 30 ml absolute ethanol) and heated under reflux for 5 mins . The solid that formed after cooling was collected and recrystallized from ethanol as canary yellow needles of 11a-d.

3.8.1. Ethyl 3-amino-4-(p-methoxy-phenyl)-5-oxo-5,6,7,8tetrahydrothieno [2,3-b]quinoline-2-carboxylate (11a).

It was obtained by cyclization of compound 10a. Yield: 64 \%, m.p.: 200$202{ }^{\circ} \mathrm{C}$. IR: 3482, $3351\left(\mathrm{NH}_{2}\right), 2954$ (C-H aliphatic), 1681 (C=O, ketone) 1661 $\left(\mathrm{C}=\mathrm{O}\right.$, ester) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 7.28-7.30 ($2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.00-7.02 (d, 2 H , Ar-H), 5.3 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.32 (q, 2 H , OCH_{2}), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.26-3.28(\mathrm{t}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ at $\left.\mathrm{C}-6\right), 2.66-2.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\mathrm{C}-8$), 2.20-2.24 ($\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at C-7), 1.29$1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester group). Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (\%): C, 63.62; H, 5.08; N , 7.07; S, 8.09. Found (\%): C, 63.91; H, 5.05; N, 6.90; S, 8.41.

3.8.2. 3-Amino-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b] quinoline-2-carboxamide (11b).

It was obtained by cyclization of compound 10b. Yield: 61%; m.p.: 292$293{ }^{\circ} \mathrm{C}$. IR: 3469, $3373\left(\mathrm{NH}_{2}\right), 2946(\mathrm{C}-\mathrm{H}$ aliphatic), 1686 ($\mathrm{C}=\mathrm{O}$, ketone), $1646 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$, amide), 1637, $1608(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=7.19-7.21$ (d, $4 \mathrm{H}, \mathrm{CONH}_{2}$ and $\mathrm{Ar}-\mathrm{H}$), 7.04-7.06 (d, 2H, Ar-H), 5.68 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$ attached to thiophene ring), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.19-3.21 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at C-6), 2.55-2.57 $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\left.\mathrm{C}-8\right), 2.07-2.11(\mathrm{p}, 2 \mathrm{H}$, CH_{2} at C-7). ${ }^{13} \mathrm{C}$ NMR: $\delta=146.70$, 196.94, 163.64, 166.68, 161.18, 158.93, 147.80, 127.85, 123.16, 122.52, 96.84, $113.69(2 \mathrm{CH}), \quad 128.51(2 \mathrm{CH}), 33.35$ $\left(\mathrm{CH}_{2}\right), 20.74\left(\mathrm{CH}_{2}\right), 18.53\left(\mathrm{CH}_{2}\right), 55.14$
$\left(\mathrm{OCH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 62.11; H, 4.66; N, 11.44; S, 8.73. Found (\%): C, 62.18; H, 4.68; N, 11.61; S, 8.69.
3.8.3. 3-Amino-4-(p-methoxyphenyl)-5-oxo-2-[N-(p-tolyl)carbamoyl]-5,6,7,8-tetra- hydrothieno[2,3-b]quinoline (11c). It was obtained by cyclization of compound 10c. Yield: 75%. m.p.: 211$213{ }^{\circ} \mathrm{C}$. IR: 3464, $3335\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$, 2925 (C-H aliphatic), 1693 ($\mathrm{C}=\mathrm{O}$, cyclohexanone residue), 1650 ($\mathrm{C}=\mathrm{O}$, acetanilide residue) $\mathrm{cm} .{ }^{-1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta=10.22$ (br. s, 1 H , CONH), 7.61-7.63 (d, 2H, Ar-H), 7.587.60 (d, 2H, Ar-H), 7.18-7.20 (d, 2H, Ar$\mathrm{H}), 7.12-7.14$ (d, 2H, Ar-H), 5.66 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.63-2.65 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$ at $\mathrm{C}-8$), 2.36-2.38 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$ at C-6), 2.16-2.20 (p, 2H, CH CH_{2} at C-7), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}=457.43$ $\left(\mathrm{M}^{+}, 42.7\right.$ \%). Elemental analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 68.25; H, 5.07; N, 9.18; S, 7.01. Found (\%): C, 68.49; H, 5.02; N, 9.17; S, 7.24.

3.8.4. 3-Amino-2-benzoyl-4-(p-methoxy-phenyl)-5-oxo-5,6,7,8-tetrahydrothieno

 [2,3-b]quinoline (11d).It was obtained by cyclization of compound 10d. Yield: 71 \%; m.p.: 216$218^{\circ} \mathrm{C}$. IR: $3460,3272\left(\mathrm{NH}_{2}\right), 2926 \mathrm{~cm}^{-1}$ (C-H aliphatic), $1688 \quad(\mathrm{C}=\mathrm{O}$, cyclohexanone residue), 1640 ($\mathrm{C}=\mathrm{O}$, benzoyl residue) $\mathrm{cm} .{ }^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=7.81-7.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52-7.54(\mathrm{t}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.50-7.52 (t, 2H, Ar-H), 7.277.29 (d, 2H, Ar-H), 7.10-7.13 (d, 2H, Ar$\mathrm{H}), \delta 5.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ attached to thiophene ring), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.36-3.38 (t, 2H, CH_{2} at C-6), 2.66-2.68 $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ at $\left.\mathrm{C}-8\right), 2.21-2.25(\mathrm{p}, 2 \mathrm{H}$, CH_{2} at $\left.\mathrm{C}-7\right) \mathrm{ppm}$. Elemental analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (\%): C, 70.07; H, 4.70; N, 6.54; S, 7.48. Found (\%): C, 70.09; H, 4.44; N, 6.40; S, 7.52.

4. Conclusion

The starting compound, 3-cyano-4-(p -methoxyphenyl)-5-oxo-5,6,7,8-
tetrahydro-quinoline-2(1H)-thione
was prepared and converted it into the corresponding 2-methylthio derivative 3 . The synthetic utility of both $\mathbf{2}$ and $\mathbf{3}$ for preparation of new tetrahydroquinolines, tetrahydropyrazoloquinolines and tetrahydrothienoquinolines was evaluated.

Refefernces

[1] V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov and A. Senning, Sulfur Reports, 13 (1991) 1.
[2] M. A. I. Awad, A. E. Abdel-Rahman and E. A. Bakhite, Phosphorus Sulfur and Silicon 57 (1991) 293.
[3] M. A. I. Awad, A. E. Abdel-Rahman and E. A. Bakhite, Collect. Czechosl. Chem. Commun. 56 (1991) 1749.
[4] H. Vieweg, S. Leistner and G. Wagner, Pharmazie 43 (1988) 358.
[5] G. E. H. Elgemeie, H. A. Regaila and N. Shehata, Sulfur Lett. 9 (1989) 253.
[6] Yu. A. Sharanin, L. A. Rodinovskaya, V. P. Litvinov, V. K. Promonenkov, V. Yu. Mortikov and A. M. Shestopalov, Zh. Org. Khim. 21(1985) 683.
[7] A. M. Shestopalov , A. S. Demerkov, Yu. A. Sharanin and V. P. Litvinov. Chem. Heterocycl. Compd. 27(1991) 867.
[8] V. V. Dotsenko, G. Krivokolysko, A. N. Chernega and V. P. Litvinov. Russ. Chem. Bull. 51 (2002) 1556.
[9] J. S. A Brunskill, A. De and D. F. Ewing, J. Chem. Soc. Perkin Trans. 1(1978) 629.
[10] V. P. Litvinov, V. V. Dotsenko and S. G. Krivokolysko, Russ. Chem. Bull. 54 (2005) 864.

