Assiut University Journal of Chemistry (AUJC) 45(2016) 24-32

Journal homepage: <u>www.aujc.org</u>

(ISSN 1678-4919) (Print)

(ISSN 2357-0415) (Online)

Vol(45) No(1) 2016

Full Paper

Some reactions of 3-cyano-4-(*p*-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1*H*)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-*b*]quinolines

Elham A. Al-Taifi,¹ Shaban A. Abdel-Raheem² and Etify A. Bakhite³

¹⁾ Chemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen

²⁾ Soil, Water and environment Res. Institute, Agriculture Res. Center, Cairo, Egypt

³⁾ Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt **Email:** <u>elham95@yahoo.com</u>

Article history : Received: 9/3/2016; Revised : 15/3/2016; Accepted : 21/3/2016; Available Online : 23/5/2016;

Abstract

In this paper, 3-cyano-4-(*p*-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1*H*)-thione (2) was prepared and reacted with methyl iodide to give the corresponding 2-methylthio derivative **3**. Fusion of compound **2** or **3** with hydrazine hydrate produced the aminopyrazolotetrahydroquinoline-5-hydrazone **4**. Reaction of both compounds **2** and **3** with phenylhydrazine or thiosemicarbazide led to the formation of condensation products **6a,b** and **9a,b** respectively. Reaction of cyanoquinolinethione **2** with some α -halocarbonyl compounds namely; ethyl chloroacetate, chloroacetamide, chloro-*N*-(*p*-tolyl)acetamide and phenacyl bromide gave the corresponding alkylated products **10a-d**. On treatment of the latter compounds with sodium ethoxide in boiling ethanol, they underwent intramolecular *Thorpe-Zeigler* cyclization affording the corresponding tetrahydrothieno[2,3-*b*] quinolines **11a-d**. The elemental analyses and spectroscopic data of all compounds are in agreement with their proposed structures.

Keywords: hydrazono compounds, thiosemicarbazones, tetrahydroquinolines, tetrahydrothienoquinolines

1. Introduction

The chemistry of 4-aryl-3-cyano-5,6,7,8tetrahydroquinoline-2(1H)-thiones has been developed intensely during the last three decades [1], which could be attributed, in particular, to the discovery of compounds with antimicrobial activity in this series [2, 3]. The basic methods of their synthesis are: cyclocondensation of 2-arylidenecyclohexanones with cyanothioacetamide [2, 4], reaction of cyclohexanone [5] or its enamine [6] with arylidenecyanothioacetamides and recyclization of enamino nitrile of the 1,3-dithia-4-cyclohexene series [7]. On the other hand, the literature survey revealed that only few 3-cyano-5-oxo-5,6,7,8-tetrahydroquinoline-2(1*H*)-

thiones have been prepared by using 1,3cyclohexanedione or dimedone [8]. Encouraged by the above finding, we reported herein the synthesis of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-

tetrahydroquinoline-2(1H)-thione and its reactions with different reagents to obtain other tetrahydroquinolines as well as tetrahydro-thieno[2,3-*b*]quinolines with anticipated biological and medicinal importance.

2. Results and discussion

The starting compound 2, was prepared by refluxing of p-methoxbenzylidene-

[9] cyanothioacetamide 1 with cyclohexane-1,3-dione in ethanol containing catalytic amount of piperidine (Scheme 1). Reaction of compound 2 with methyl iodide, in the presence of sodium acetate produced the corresponding 2-methylthiotetrahydroquinoline (3). Heating both compounds 2 and 3 with hydrazine hydrate under neat conditions resulted in the formation of 3aminopyrazolotetrahydroquinolinehydrazone 4. The interaction of 3 with two molar amount of phenyl isothiocyanate in hot pyridine gave the dithiouredo derivative 5 (Scheme 2).

Scheme 1

Scheme 2

Treatment of compound 2 with phenyl hydrazine or thiosemicarbazide in the presence of glacial acetic acid furnished the corresponding phenylhydrazone 6a or thiosemicarbazone **6b**. The former compound (6a) was reacted with ethyl chloroacetate, by refluxing in ethanol containing equimolar amount of sodium acetate to give the open ester 7. Refluxing of compound 7 with anhydrous K_2CO_3 in led to the formation ethanol of tetrahydrothieno[2,3-b]quinoline derivative 8 (Scheme 3). In a similar manner, compound 3 was also reacted phenyl hydrazine with or thiosemicarbazide afford the to corresponding condensation products 9a and 9b (Scheme 3). 3-Cyanoquinoline-2(1*H*)-thione **2** underwent *S*-alkylation

reactions upon treatment with some α -halocarbonyl compounds namely: ethyl chloroacetate, chloroacetamide, chloro-N-(*p*-tolyl)acetamide and phenacyl bromide, by refluxing in ethanol containing equimolar amount of sodium acetate, to give the corresponding thioethers 10a-d in high yields (Scheme 4). Upon heating of compounds **10a-d** with sodium ethoxide in ethanol, they underwent intramolecular Thorpe-Zeigler cyclization affording the corresponding 3-aminotetrahydrothieno[2,3-b]quinolines **11a-d** (Scheme 4). The mechanism of Thorpe-*Ziegler* cyclization can be represented by Scheme 5 [10]. The elemental analyses and spectroscopic data of all compounds are in agreement with their proposed structures (See: experimental part).

3. Experimental

Melting points were measured with Gallan-Kamp melting-point apparatus and are uncorrected. IR Spectra were obtained on a Pye-Unicam SP3-100 spectrophotometer using KBr disc technique. NMR Spectra were recorded on a Bruker 400 MHz Ultrashield TM FT-NMR spectrometer (Universiti Sains Malaysia). Mass spectra were recorded on a Jeol JMS-600 mass spectrometer; Elemental analyses (C, H, N, and S) were conducted using a Vario EL C, H, N, S Analyzer (Assiut University).

3.1. 3-cyano-4-(p-methoxyphenyl)-5oxo-5,6,7,8-tetrahydroquinoline-2(1H)thione (2).

To a mixture of compound 1 (2.18 g, 10 mmol), cyclohexane-1,3-dione (1.12 g, 10 mmol) in ethanol (25 ml), few drops of piperidine were added. The reaction mixture was heated under reflux for 4 h and left to stand overnight at room temperature. The resulting precipitate was collected and recrystallized from ethanol as orange plates. Yield: (45 %); m.p.: 305-307 °C. IR: 3414 (NH), 3091 (C-H aromatic), 2838 (C-H aliphatic), 2233 (C=N), 1678 (C=O) 1605 (C=N) cm⁻¹. ¹H NMR (DMSO- d_6): $\delta = 14.30$ (s, 1H, NH), 7.16-7.18 (d, J = 8.0 Hz, 2H, Ar-H), 7.95-7.97 (d, J = 8.0 Hz, 2H, Ar-H), 3.82 $(s, 3H, OCH_3), 3.01-3.03 (t, J = 4.0 Hz,$

2H, CH₂ at C-6), 2.39-2.41(t, J = 4.0 Hz, 2H, CH₂ at C-8), 1.99-2.03 (p, J = 4.0 Hz, 2H, CH₂ at C-7). ¹³C NMR (DMSO- d_6): δ =193.25, 180.36, 162.03, 160.42, 156.97, 129.64, 118.58, 117.43, 114.17 (2CH), 129.40 (2CH), 28.63 (CH₂), 20.41 (CH₂), 55.98 (OCH₃). Elemental analysis calculated for C₁₇H₁₄N₂O₂S (%): C, 65.79; H, 4.55; N, 9.03; S, 10.33. Found (%): C, 65.78; H, 4.41; N, 9.18; S, 10.30.

3.2. 4-(p-Methoxyphenyl)-2-(methylthio)-5-oxo-5,6,7,8-tetrahydroquinoline-3-carbonitrile (3).

A mixture of compound 2 (3.1 g, 10 mmol), methyl iodide (0.62 ml, 10 mmol) and sodium acetate trihydrate (2 g, 15 mmol) in ethanol (25 ml) was heated under reflux for 2 h. The precipitate product was collected by filtration and washed several times with ethanol followed by distilled water. It was recrystallized from methanol to give 3 in the form of yellow needles. Yield: 79 %; m.p.: 194-195°C. IR: 2962 (C-H aliphatic), 2218 (C=N), 1685 (C=O), 1610 (C=N) cm.⁻¹¹H NMR (DMSO- d_6): δ = 7.20-7.22 (d, J = 8.0 Hz, 2H, Ar-H), 6.99-7.01 (d, J = 8.0 Hz, 2H, Ar-H), 3.83 (s, 3H, OCH₃), 3.16-3.18 (t, J = 4.0 Hz, 2H, CH₂ at C-8), 2.69 (s, 3H, SCH₃), 2.56-2.58 (t, J = 4.0 Hz, 2H, CH₂ at C-6), 2.08-2.12 (t, J = 4.0 Hz, 2H, CH₂ at C-7). ¹³C NMR (DMSO- d_6): $\delta = 195.57$,

167.43, 165.30, 159.48, 154.50, 129.28, 122.60, 106.99, 113.41 (2CH), 128.38 (2CH), 33.53 (CH₂), 20.35 (CH₂), 55.11 (OCH₃), 12.98 (SCH₃). Elemental analysis calculated for $C_{18}H_{16}N_2O_2S$ (%): C, 66.65; H, 4.97; N, 8.64; S, 9.88. Found (%): C, 66.61; H, 4.92; N, 8.52; S, 9.69.

3.3. 5-Hydrazono-4-(p-methoxyphenyl)-5,6,7,8-tetrahydro-1H-pyrazolo[3,4-b] quinoline-3-amine (4).

A suspension of compound 2 or 3 (10) mmol) in hydrazine hydrate 99 % (12 ml) was gently heated under reflux for 4 h and then allowed to cool. The reaction mixture was triturated with ethanol (15 ml) whereby a canary yellow precipitate formed. It was collected by filtration, washed several times with distilled water, air-dried and recrystallized from dioxane. Yield: 77-82 %, m.p.: 293-295° C. IR: 3437, 3389, 3293, 3193 (NH, NH₂), 2937 (C-H aliphatic), 1607, 1595 (C=N) cm.⁻¹ ¹H NMR (DMSO- d_6): $\delta = 11.95$ (s, 1H, NH), 7.16-7.18 (d, *J* = 8.0 Hz, 2H, Ar-H), a doublet at δ 6.96-7.98 (d, J = 8.0 Hz, 2H, Ar-H), 5.83 (s, 2H, NH_2 of hydrazone residue), 4.09 (s, 2H, NH₂ attached to pyrazole ring), 3.81 (s, 3H, OCH₃), 2.76-2.78 (t, 2H, CH₂ at C-8), 2.38-2.40 (t, 2H, CH₂ at C-6), 1.86-1.90 (p, 2H, CH₂ at C-7). ¹³C NMR (DMSO- d_6): $\delta = 150.19$, 147.84, 160.56, 158.09, 141.89, 141.71, 130.14, 120.44, 104.45, 113.44 (2CH), 129.78 (2CH), 25.08 (CH₂), 20.84 (CH₂), 54.96 (OCH₃). MS: m/z = 320.96 (M⁺, 100 %); 304.58 (M⁺-NH₂, 34.9 %). Elemental analysis calculated for C₁₇H₁₈N₆O (%): C, 63.34; H, 5.63; N, 26.07. Found (%): C, 63.16; H, 5.68; N, 25.91.

3.4. 4-{4-(p-Methoxyphenyl)-3-(3phenylthioureido)-7,8-dihydro-1Hpyrazolo[3,4-b]quinolin-5(6H)-ylidene}-N-phenylhydrazinecarbothioamide (5).

A mixture of compound **4** (3.22 g, 10 mmol) and phenyl *iso*-thiocyanate (2.66 ml, 20 mmol) in pyridine (20 ml) was heated on a water bath for 5 h. The

product that formed after cooling was collected and recrystallized from ethanol to give compound **5** in the form of yellow needles. Yield: 81 %, m.p.: 259-261 °C. IR: 3468, 3415, 3383, 3300 (NH), 3034 (C-H aromatic), 2942 (C-H aliphatic), 1638, 1608 (C=N) cm.⁻¹ ⁻¹H NMR (DMSO- d_6): $\delta = 13.55$ (s, 1H, NH), 10.43 (s, 1H, NH), 10.30 (br. s, 1H, NH), 8.35 (br. s 1H, NH), 7.94 (s, 1H, NH), 7.14-7.38 (m, 12H, Ar-H), 6.75-6.77 (d, 2H, Ar-H), 3.27 (s, 3H, OCH₃), 2.91-2.93 (t, 2H, CH₂ at C-8), 2.84-2.86 (t, 2H, CH₂ at C-6), 1.95-1.99 (p, 2H, CH₂ at C-7). Elemental analysis calculated for C₃₁H₂₈N₈OS₂ (%): C, 62.82; H, 4.76; N, 18.90; S, 10.82. Found (%): C, 62.84; H, 4.88; N, 18.91; S, 10.86.

3.5. Condensation of ketones 2 or 3 with amino compounds; Formation of compounds 6a,b and 9a,b; General procedure.

To a mixture of compound 2 or 3 (5) mmol) phenyl hydrazine and or thiosemicarbazide (5 mmol) in ethanol (20 ml), few drops of acetic acid were added. The resulting mixture was heated under reflux for 2 h and left to cool. The precipitated product was collected and recrystallized from the proper solvent to give compounds 6a,b and 9a,b respectively.

3.5.1. 3-Cyano-4-(p-methoxyphenyl)-5-(2-phenylhydrazono)-5,6,7,8-tetrahydroquinoline-2(1H)-thione (6a).

It was obtained by using compound **2** and phenyl hydrazine. Yield: 83 %; m.p.: 300-302 °C (AcOH). IR: 3481, 3414 (NH), 2941 (C-H aliphatic), 2231 (C=N), 1637, 1603 (C=N) cm.⁻¹ ¹H NMR (DMSO- d_6): $\delta = 14.20$ (s, 1H, NH of pyridine ring), 8.97 (s, 1H, NH of phenyl hydrazone), 7.24-7.26 (d, 2H, Ar-H), 7.01-7.03 (d, 2H, Ar-H), 6.92-6.95 (t, 2H, Ar-H), 6.63-6.66 (t, 1H, Ar-H), 6.29-6.31 (d, 2H, Ar-H), 3.80 (s, 3H, OCH₃), 2.86-2.88 (t, 2H, CH₂ at C-8), 2.54-2.56 (t, 2H, CH₂ at C-6), 1.91-1.95 (p, 2H, CH₂ at C-7). ¹³C NMR (DMSO- d_6): $\delta =159.78$, 154.87, 155.31, 145.08, 136.26, 138.33, 130.68, 124.01, 112.64 (2CH), 113.78 (2CH), 128.10 (2CH), 128.92 (2CH), 118.84 (CH), 27.58 (CH₂), 25.21 (CH₂), 18.76 (CH₂), 55.13 (OCH₃). MS: m/z = 400.14 (100%), 308.10 (M⁺-PhNH, 36%), 92.02 (PhNH, 10%), 93.02 (PhNH₂, 10%). Elemental analysis calculated for C₂₃H₂₀N₄OS (%): C, 68.98; H, 5.03; N, 13.99; S, 8.01. Found (%): C, 68.91; H, 4.90; N, 13.96; S, 7.81.

3.5.2. 2-[3-Cyano-4-(p-methoxyphenyl)-2-thioxo-1,2,7,8-tetrahydroquinolin-5(6H)-ylidene]hydrazinecarbothioamide (6b).

It was obtained by using compound 2 and thiosemicarbazide. Yield: 77 %; m.p.: 308-310 °C (AcOH). IR: 3389, 3236, 3141 (NH), 3036 (C-H aromatic), 2935 (C-H aliphatic), 2223 (C≡N), 1604 (C=N) cm.⁻¹ ¹H NMR (DMSO- d_6) : $\delta = 14.27$ (s, 1H, NH of quinoline ring), 10.04 (s, 1H, NH), 8.05 (s, 1H, NH), 7.23-7.25 (d, 2H, Ar-H), 6.99-7.01 (d, 2H, Ar-H), 5.34 (s, 1H, NH), 3.84 (s, 3H, OCH₃), 2.85-2.87 (t, 2H, CH₂ at C-8), 2.59-2.61 (t, 2H, CH₂ at C-6), 1.84-1.89 (p, 2H, CH₂ at C-7).¹³C NMR (DMSO- d_6): $\delta = 154.74, 178.22,$ 176.36, 159.46, 156.70, 143.15, 130.33, 117.29, 116.68, 113.99 (2CH), 128.40 (2CH), 27.40 (CH₂), 25.61 (CH₂), 18.58 (CH_2) , 55.17 (OCH₃). MS: m/z = 383.32 (4%),307.72 $(M^+-H_2NCSNH).$ Elemental analysis calculated for C₁₈H₁₇N₅OS₂ (%): C, 56.38; H, 4.47; N, 18.26; S, 16.72. Found (%): C, 56.31; H, 4.49; N, 18.12; S, 16.58.

3.5.3. 4-(p-Methoxyphenyl)-2-methylthio-5-(2-phenylhydrazono)-5,6,7,8tetrahydroquinoline-3-carbonitrile (9a).

It was obtained by using compound **3** and phenyl hydrazine. Yield: 72 %, m.p.: 255-256 °C (EtOH). IR: 3476 (NH), 2953 (C-H aliphatic), 2220 (C \equiv N), 1637, 1602 (C=N) cm.⁻¹

¹H NMR (DMSO- d_6): $\delta = 9.10$ (s, 1H, NH), 7.24-7.27 (d, 2H, Ar-H), 6.99-7.02 (d, 2H, Ar-H), 6.91-6.96 (t, 2H, Ar-H), 6.63-6.66 (t, 1H, Ar-H), 6.32-6.34 (d, 2H, Ar-H), 3.79 (s, 3H, OCH₃), 2.64-2.66 (t, 2H, CH₂ at C-6), 2.59 (s, 3H, SCH₃), 2.49-2.51 (2H, CH₂ at C-8), 1.91-1.95 (p, 2H, CH₂ at C-7).¹³C NMR (DMSO- d_6): δ = 165.67, 163.94, 160.22, 159.68, 151.70, 145.90, 137.87, 131.71, 107.72, 114.30 (2CH), 114.80 (2CH), 129.00 (2CH), 130.19 (2CH), 119.91 (CH), 34.82 (CH₂), 26.77 (CH₂), 20.66 (CH₂), 56.01 (OCH₃), 13.67 (SCH₃). MS: m/z = 413.64 (100%), 321.19 (M⁺-PhNH, 48 %), 107.87 (C₆H₅OMe, 26 %), 91.92 (PhNH, 95 %), 92.92 (PhNH₂, 25 %). Elemental analysis calculated for C₂₄H₂₂N₄OS (%): C, 69.54; H, 5.35; N, 13.52; S, 7.73. Found (%): C, 69.28; H, 5.36; N, 13.20; S, 7.69.

3.5.4. 2-[3-Cyano-4-(p-methoxyphenyl)-2-methylthio-7,8-dihydroquinolin-5(6H)-ylidene]hydrazinecarbothioamide (9b).

It was obtained by using compound 3 and thiosemicarbazide. Yield: 71 %, m.p.: 264-265 °C (EtOH). IR: 3472, 3398, 3255 (NH), 2952 (C-H aliphatic), 2222 (C=N), 1637, 1611 (C=N) cm.⁻¹ ¹H NMR (DMSO- d_6): $\delta = 10.18$ (s, 1H, NH), 8.08 (s, 1H, NH), 7.23-7.25 (d, 2H, Ar-H), 6.98-7.00 (d, 2H, Ar-H), 5.43 (s, 1H, NH), 3.83 (s, 3H, OCH₃), 2.92-2.96 (t, 2H, CH₂ at C-6), 2.66-2.700 (t, 2H, CH₂ at C-8), 2.6 (s, 3H, SCH₃), 1.87-1.92 (p, 2H, CH₂ at C-7).¹³C NMR (DMSO- d_6): δ = 179.96, 171.35, 164.11, 159.60, 155.67, 153.59, 122.99, 131.88, 105.44, 114.35 (2CH), 128.60 (2CH), 28.52 (CH₂), 25.97 (CH₂), 19.21 (CH₂), 56.03 (OCH₃), 14.11 (SCH_3) . MS: m/z = 397.40 (M⁺, 5.4 %), $[M^+-(NHCSNH_2)].$ 323 Elemental analysis calculated for $C_{19}H_{19}N_5OS_2$ (%): C, 57.41; H, 4.82; N, 17.62; S, 16.13. Found (%): C, 57.37; H, 4.60; N, 17.35; S, 16.00.

3.6. Reaction of thiones 6a or 2 with some halo compounds; Formation of thioethers 7 or 10a-d; General procedure.

To a suspension of compound **6a** or **2** (10 mmol) and sodium acetate trihydrate (1.63 g, 12 mmol) in ethanol (30 ml), the appropriate halo compound (10 mmol) was added. The resulting mixture was heated under reflux for 3 h and then allowed to cool. The formed solid was filtered off, washed with water, dried in air and recrystallized from ethanol to give compounds **7** or **10a-d** respectively.

3.6.1. Ethyl [3-cyano-4-(p-methoxyphenyl)-5-(2-phenylhydrazono)-5,6,7,8tetra hydroquinolin-2-ylthio]acetate (7).

It was prepared by using compound 6a and ethyl chloroacetate. Yield: 66 %; m.p.: 239-241°C. IR: 3332 (NH), 2216 (C≡N), 1742 (C=O, ester), 1631 (C=N) cm.⁻¹ ¹H NMR: (CDCl₃): $\delta = 6.80$ -7.28 (m, 10H, Ar-H and NH), 4.27 (s, 2H, SCH₂), 3.90-4.20 (q, 2H, OCH₂), 3.86 (s, 3H, OCH₃), 2.94-2.96 (t, 2H, CH₂ at C-8), 2.58-2.61 (t, 2H, CH₂ at C-6), 2.06-2.10 (p, 2H, CH₂ at C-7), 1.33 (t, 3H, Elemental CH_3 of ester). analysis calculated for C₂₇H₂₆N₄O₃S (%): C, 66.65; H, 5.39; N, 11.51; S, 6.59. Found (%): C, 66.47; H, 5.36; N, 11.54; S, 6.64.

3.6.2. Ethyl (3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinolin-2-ylthio)acetate (10a).

It was prepared by using compound **2** and ethyl chloroacetate. Yield: 68 %; m.p.: 119-121 °C. IR: 2969 (C-H aliphatic), 2221 (C=N), 1745 (C=O, ester), 1693 (C=O, ketone), 1637, 1608 (C=N) cm.⁻¹ ¹H NMR (DMSO- d_6): δ = 7.21-7.24 (d, J = 12.0 Hz, 2H, Ar-H), 6.98-7.01 (d, J = 12.0 Hz, 2H, Ar-H), 4.15-4.19 (m, 4H, SCH₂ and OCH₂), δ 3.83 (s, 3H, OCH₃), 3.05-3.07 (t, 2H, CH₂ at C-6), 2.50-2.52 (t, 2H, CH₂ at C-8), 2.09-2.13 (p, 2H, CH₂ at C-7), 1.21-1.24 (t, 3H, CH₃ of ester).¹³C NMR (DMSO- d_6): δ = 196.35, 169.07, 168.15, 164.43, 160.46, 155.61, 130.19, 123.93, 107.59, 114.35 (2CH), 129.08 (2CH), 84.15 (CH₂), 62.09 (CH₂), 34.16 (CH₂), 33.46 (CH₂), 21.16 (CH₂), 56.01 (OCH₃), 14.99 (CH₃). Elemental analysis calculated for C₂₁H₂₀N₂O₄S (%): C, 63.62; H, 5.08; N, 7.07; S, 8.09. Found (%): C, 63.45; H, 5.29; N, 7.00; S, 8.16.

3.6.3. [3-Cyano-4-(p-methoxyphenyl)-5oxo-5,6,7,8-tetrahydroquinolin-2-ylthio] acetamide (10b).

It was prepared by using compound **2** and chloroacetamide. Yield: 65 %; m.p.: 190-192°C. IR: 3485, 3367 (NH₂), 2220 (C=N), 1682 (C=O, ketone), 1652 (C=O, amide) cm.⁻¹ ¹H NMR (CDCl₃): δ = 7.15-7.17 (d, 2H, Ar-H), 7.00-7.02 (d, 2H, Ar-H), 6.55 (br. s, 1H, NH), 5.45 (br. s, 1H, NH), 4.01 (s, 2H, SCH₂), 3.89 (s, 3H, OCH₃), 3.21-3.23 (t, 2H, CH₂ at C-8), 2.64-2.66 (t, 2H, CH₂ at C-6), 2.19-2.23 (p, 2H, CH₂ at C-7). Elemental analysis calculated for C₁₉H₁₇N₃O₃S (%): C, 62.11; H, 4.66; N, 11.44; S, 8.73. Found (%): C, 62.16; H, 4.68; N, 11.19; S, 8.50.

3.6.4. 3-Cyano-4-(p-methoxyphenyl)-5oxo-2-[N-(p-tolyl)carbamoylmethylthio]-5,6,7,8-tetrahydroquinoline (10c).

It was prepared by using compound **2** and chloro *N*-(*p*-tolyl)acetamide. Yield: 77 %; m.p.: 182-183 °C. IR: 3323 (NH), 2222 (C=N), 1686 (C=O, ketone), 1660 (C=O, anilide) cm.⁻¹ ¹H NMR (DMSO-*d*₆) : δ = 11.31 (br. s, 1H, NH), 7.63-7.65 (d, 2H, Ar-H), 7.32-7.34 (d, 2H, Ar-H), 7.21-7.23 (d, 2H, Ar-H), 7.11-7.13 (d, 2H, Ar-H), 4.45 (s, 2H, SCH₂), 3.91 (s, 3H, OCH₃), 3.20-3.22 (t, 2H, CH₂ at C-8), 2.61-2.63 (t, 2H, CH₂ at C-6), 2.18-2.22 (p, 2H, CH₂ at C-7), 2.15 (s, 3H, CH₃). Elemental analysis calculated for C₂₆H₂₃N₃O₃S (%): C, 68.25; H, 5.07; N, 9.18; S, 7.01. Found (%): C, 68.11; H, 5.08; N, 9.00; S, 6.78.

3.6.5. 4-(p-Methoxyphenyl)-5-oxo-2-(phenacylthio)-5,6,7,8-tetrahydroquinoline-3-carbonitrile (10d).

It was prepared by using compound 2 and phenacyl bromide. Yield: 74 % ; m.p.: 220-221 °C. IR: 2219 (C≡N), 1693 (C=O, cyclic ketone), 1672 (C=O, phenacyl residue) cm.⁻¹¹H NMR (CDCl₃): $\delta =$ 8.00-8.02 (d, J = 8.0 Hz, 2H, Ar-H), 7.56-7.60 (t, J = 8.0 Hz, 1H, Ar-H), 7.45-7.49 (t, J = 8.0 Hz, 2H, Ar-H), 7.03-7.05 (d, J = 8.0 Hz, 2H, Ar-H), 6.88-6.90 (d, J)= 8.0 Hz,, 2H, Ar-H), 4.63 (s, 2H, SCH₂), 3.78 (s, 3H, OCH₃), 2.76-2.79 (t, 2H, CH₂) at C-6), 2.45-2.48 (t, 2H, CH₂ at C-8), 1.94-1.98 (p, , 2H, CH_2 at C-7). analysis calculated Elemental for C₂₅H₂₀N₂O₃S (%): C, 70.07; H, 4.70; N, 6.54; S, 7.48. Found (%): C, 70.01; H, 4.72; N, 6.68; S, 7.80.

3.7. Ethyl 3-amino-4-(p-methoxyphenyl)-5-(2-phenylhydrazono)-5,6,7,8tetrahydro-thieno[2,3-b]quinoline-2carboxylate (8).

To a suspension of compound 7 (1.0 g) in ethanol, 0.5 g of anhydrous K₂CO₃ was added. The reaction mixture was heated under reflux for 3 h and filtered while hot to remove K_2CO_3 . The product that forming on cooling of the filtrate was collected by filtration, washed with water and recrystallized from ethanol to give vellow needles of compound 8. Yield: 71 %; m.p.: 267-268°C. IR: 3482, 3351 (NH₂), 2954 (C-H aliphatic), 1690 (C=O, cyclohexanone residue) 1661 (C=O, ester) cm.⁻¹ ¹H NMR: (CDCl₃): $\delta = 6.85$ -7.30 (m, 10H, Ar-H and NH), 5.30 (s, 2H, NH₂), 3.93-4.21 (q, 2H, OCH₂), 3.86 (s, 3H, OCH₃), 2.96-2.98 (t, 2H, CH₂ at C-8), 2.60-2.63 (t, 2H, CH₂ at C-6), 2.10-2.14 (p, 2H, CH₂ at C-7), 1.10-1.40 (t, 3H, CH₃ of ester). Elemental analysis calculated for $C_{27}H_{26}N_4O_3S$ (%): C, 66.65; H, 5.39; N, 11.51; S, 6.59. Found (%): C, 66.40; H, 5.31; N, 11.63; S, 6.74.

3.8. Cyclization of compounds 10a-d; Formation of thienoquinolines 11a-d; General procedure.

Compound **10a-d** (5 mmol) was suspended in sodium ethoxide solution (0.05 g sodium in 30 ml absolute ethanol) and heated under reflux for 5 mins. The solid that formed after cooling was collected and recrystallized from ethanol as canary yellow needles of **11a-d**.

3.8.1. Ethyl 3-amino-4-(p-methoxyphenyl)-5-oxo-5,6,7,8tetrahydrothieno [2,3-b]quinoline-2-carboxylate (11a).

It was obtained by cyclization of compound 10a. Yield: 64 %, m.p.: 200-202 °C. IR: 3482, 3351 (NH₂), 2954 (C-H aliphatic), 1681 (C=O, ketone) 1661 (C=O, ester) cm⁻¹.¹H NMR (CDCl₃): δ = 7.28-7.30 (2H, Ar-H), 7.00-7.02 (d, 2H, Ar-H), 5.3 (br. s, 2H, NH₂), 4.32 (q, 2H, OCH₂), 3.89 (s, 3H, OCH₃), 3.26-3.28 (t, 2H, CH₂ at C-6), 2.66-2.68 (t, 2H, CH₂ at C-8), 2.20-2.24 (p, 2H, CH₂ at C-7), 1.29-1.32 (t, 3H, CH_3 of ester group). Elemental analysis calculated for C₂₁H₂₀N₂O₄S (%): C, 63.62; H, 5.08; N, 7.07; S, 8.09. Found (%): C, 63.91; H, 5.05; N, 6.90; S, 8.41.

3.8.2. 3-Amino-4-(p-methoxyphenyl)-5oxo-5,6,7,8-tetrahydrothieno[2,3-b] quinoline-2-carboxamide (11b).

It was obtained by cyclization of compound 10b. Yield: 61 %; m.p.: 292-293 °C. IR: 3469, 3373 (NH₂), 2946 (C-H aliphatic), 1686 (C=O, ketone), 1646 cm⁻¹ (C=O, amide), 1637, 1608 (C=N) cm⁻¹. ¹H NMR (DMSO- d_6): $\delta = 7.19-7.21$ (d, 4H, CONH₂ and Ar-H), 7.04-7.06 (d, 2H, Ar-H), 5.68 (s, 2H, NH₂ attached to thiophene ring), 3.85 (s, 3H, OCH_3), 3.19-3.21 (t, 2H, CH₂ at C-6), 2.55-2.57 (t, 2H, CH₂ at C-8), 2.07-2.11 (p, 2H, CH₂ at C-7). ¹³C NMR: $\delta = 146.70$, 196.94, 163.64, 166.68, 161.18, 158.93, 147.80, 127.85, 123.16, 122.52, 96.84, 113.69 (2CH), 128.51 (2CH), 33.35 (CH₂), 20.74 (CH₂), 18.53 (CH₂), 55.14

(OCH₃). Elemental analysis calculated for C₁₉H₁₇N₃O₃S (%): C, 62.11; H, 4.66; N, 11.44; S, 8.73. Found (%): C, 62.18; H, 4.68; N, 11.61; S, 8.69.

3.8.3. 3-Amino-4-(p-methoxyphenyl)-5oxo-2-[N-(p-tolyl)carbamoyl]-5,6,7,8-

tetra-hydrothieno[2,3-b]quinoline (11c). It was obtained by cyclization of compound 10c. Yield: 75 %. m.p.: 211-IR: 3464, 3335 (NH, NH₂), 213 °C. 2925 (C-H aliphatic), 1693 (C=O. cyclohexanone residue). 1650 (C=O. acetanilide residue) cm.⁻¹ ¹H NMR $(DMSO-d_6): \delta = 10.22$ (br. s, 1H, CONH), 7.61-7.63 (d, 2H, Ar-H), 7.58-7.60 (d, 2H, Ar-H), 7.18-7.20 (d, 2H, Ar-H), 7.12-7.14 (d, 2H, Ar-H), 5.66 (br. s, 2H, NH₂), 3.72 (s, 3H, OCH₃), 2.63-2.65 (t, 2H, CH₂ at C-8), 2.36-2.38 (t, 2H, CH₂ at C-6), 2.16-2.20 (p, 2H, CH₂ at C-7), 2.23 (s, 3H, CH₃). MS: m/z = 457.43 $(\mathbf{M}^+,$ 42.7 %). Elemental analysis calculated for C₂₆H₂₃N₃O₃S (%): C, 68.25; H, 5.07; N, 9.18; S, 7.01. Found (%): C, 68.49; H, 5.02; N, 9.17; S, 7.24.

3.8.4. 3-Amino-2-benzoyl-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydrothieno [2,3-b]quinoline (11d).

It was obtained by cyclization of compound 10d. Yield: 71 %; m.p.: 216-218 °C. IR: 3460, 3272 (NH₂), 2926 cm⁻¹ (C-H aliphatic), 1688 (C=O, cyclohexanone residue), 1640 (C=O, benzoyl residue) cm.⁻¹¹H NMR (CDCl₃): $\delta = 7.81-7.83$ (d, 2H, Ar-H), 7.52-7.54 (t, 1H, Ar-H), 7.50-7.52 (t, 2H, Ar-H), 7.27-7.29 (d, 2H, Ar-H), 7.10-7.13 (d, 2H, Ar-H), δ 5.72 (s, 2H, NH₂ attached to thiophene ring), 3.94 (s, 3H, OCH₃), 3.36-3.38 (t, 2H, CH₂ at C-6), 2.66-2.68 (t, 2H, CH₂ at C-8), 2.21-2.25 (p, 2H, CH₂ at C-7)ppm. Elemental analysis calculated for $C_{25}H_{20}N_2O_3S$ (%): C, 70.07; H, 4.70; N, 6.54; S, 7.48. Found (%): C, 70.09; H, 4.44; N, 6.40; S, 7.52.

4. Conclusion

The starting compound, 3-cyano-4-(*p*-methoxyphenyl)-5-oxo-5,6,7,8-

tetrahydro-quinoline-2(1*H*)-thione (2) was prepared and converted it into the corresponding 2-methylthio derivative **3**. The synthetic utility of both **2** and **3** for preparation of new tetrahydroquinolines, tetrahydropyrazoloquinolines and tetrahydrothienoquinolines was evaluated.

Refefernces

 V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov and A. Senning, Sulfur Reports, 13 (1991) 1.
M. A. I. Awad, A. E. Abdel-Rahman and E. A. Bakhite, Phosphorus Sulfur and Silicon 57 (1991) 293.

[3] M. A. I. Awad, A. E. Abdel-Rahman and E. A. Bakhite, Collect. Czechosl. Chem. Commun. 56 (1991) 1749.

[4] H. Vieweg, S. Leistner and G. Wagner, Pharmazie 43 (1988) 358.

[5] G. E. H. Elgemeie, H. A. Regaila and N. Shehata, Sulfur Lett. 9 (1989) 253.

[6] Yu. A. Sharanin, L. A. Rodinovskaya,V. P. Litvinov, V. K. Promonenkov, V.Yu. Mortikov and A. M. Shestopalov,Zh. Org. Khim. 21(1985) 683.

[7] A. M. Shestopalov , A. S. Demerkov,Yu. A. Sharanin and V. P. Litvinov.Chem. Heterocycl. Compd. 27(1991)867.

[8] V. V. Dotsenko, G. Krivokolysko, A. N. Chernega and V. P. Litvinov. Russ. Chem. Bull. 51 (2002) 1556.

[9] J. S. A Brunskill, A. De and D. F. Ewing, J. Chem. Soc. Perkin Trans. 1(1978) 629.

[10] V. P. Litvinov, V. V. Dotsenko and S. G. Krivokolysko, *Russ. Chem. Bull.* 54 (2005) 864.