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Abstract: In the present work, a modified higher-order shear deformation theory is developed 

to analyze isotropic and composite plates to obtain the static response as well as dynamic 

characteristics using Ritz solution technique. The displacement-field equations of Lo’s higher 

order shear deformation theory are modified by representing the total rotation of the normal to 

the mid-plane by two components, bending and shear rotations. The model is valid for thin 

and thick plates. The plates are subjected to mechanical loads with different types of 

boundary conditions. A Mathematica code is developed to analyze different plate problems. 

The obtained results are compared to the available studies solved by different theories and 

finite element methods. It is shown that the obtained results are accurate using less number of 

degrees of freedom. 

 

Keywords: Higher-order shear deformation theory, Ritz energy method, composite material 

mechanics, static and dynamic analysis 

 

 

1. Introduction 
A considerable amount of work are published concerning the analysis of isotropic and 

composite plates using different theories based on the classical plate theory (CPT), first order 

shear deformation theory (FSDT), and higher order deformation theories(HSDT). 

Reissner [1], provided a consistent theory which incorporates the effect of shear deformation, 

called first order shear deformation theory (FSDT). Displacement field equations of (FSDT) 

allow a uniform shear stress through the thickness, which violates surface conditions. Mindlin 

[2], introduced a shear correction factor into the shear stress resultants, where the shear stress 

vanishes at the stress-free surfaces. The correction factor was evaluated by comparison with 

an exact three-dimensional elasticity solution, [3]. Giles, [4], presented the kinematic plate 

assumptions of the modified first-order shear deformation theory (MFSDT), [5] to improve 

his prediction. 

Hildebrand et. al [6], briefly examined a second order theory. They concluded that the 

inclusion of the quadratic terms in the in-plane displacements does not provide a significant 

advantage over the lower level theory, for problems of interest.  

Reddy, [7], simplified the cubic displacement field equations for conventional composite 

laminates using stress-free boundary conditions, with no need for the shear correction factor, 

while Lo’s Higher order theory of plate deformation, [8, 9], avoided this restriction. 

Displacement field equations include the effect of transverse normal strain, which makes it 

suitable for thick plates. The advantages of the Lo’s Higher order theory of plate deformation 

are; (i) It is suitable for both thick and thin composite structures. (ii) There is no need for a 

shear correction factor. (iii) Transverse shear effects can be modeled as a parabolic transverse 
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shear strain across the thickness of the structure. (iv) Transverse normal strain is also included 

in the model. (v) Little restriction exists on the type of problem because the displacement field 

is independent of boundary conditions and material properties, [10, 11]. 

Pagano et al. [12], introduced an exact solution for square bidirectional laminates under 

sinusoidal loading using the theory of elasticity. He concluded that a conservative estimate of 

the magnitude of the error reflected in the simplifying assumption of CPT for multilayered 

systems can be achieved by comparison of exact and approximate solutions for laminates 

consisting of only several layers. 

Noor [13] used the three-dimensional theory of elasticity to discuss the validity of two-

dimensional plate theories when applied to the low frequency free vibration analysis of 

simply supported, bidirectional, multilayered plates. He concluded that for composite plates 

the error in the predictions of the CPT is strongly dependent on the number and stacking of 

the layers, in addition to the degree of orthotropy of the individual layers and the thickness 

ratio of the plate. 

Kwon et al. [14], introduced high- order displacement field equations for the analysis of 

layered composite plates. A parabolic distribution of the transverse shear strain was 

considered in the equations, and a mixed finite element model was developed from the 

proposed equations. They found that their model gives reasonable results for thin and thick 

plates compared with three- dimensional elasticity solution of Pagano et al. [12]. 

Yuan et al. [15], introduced a straightforward displacement type rectangular finite element for 

bending of a flat plate with the inclusion of transverse shear effects. The results showed that 

their element was more flexible than most other moderately thick plate finite elements  and 

agree closely with those from a numerical solution of the three dimensional elasticity 

equations. 

Zeng et al. [16], used a new higher order theory to model laminated plates and shells. They 

studied symmetric, anti-symmetric and cross-ply laminated plates, and cylindrical and 

spherical shells. They used higher order displacement field of order 4 in the transverse 

coordinate (z) to present the in-plane displacements (u, v). Their model improved the in-plane 

stress distribution without complicating the problem. 

Ghosh, et al. [17, 18] developed a four-noded rectangular element with seven degrees of 

freedom at each node for the analysis of laminated plates. Their element confirmed its 

applicability for a wide variety of laminated composite plates. They recommended that for 

higher aspect ratios one may use their element but for lower aspect ratios, Phan and Reddy’s 

element [19] has better accuracy. For vibration analysis of laminated composite plate 

structures having a constant thickness of any individual layer, they concluded that for simply 

supported laminated plates, increasing lamination angle θ (up to 45°) increases the 

fundamental frequency, except for the case of two-layer plate. Increasing the number of layers 

without changing the total thickness increases the fundamental frequency. The effect of plate 

aspect ratio on the fundamental frequency is more pronounced in thicker plates than the case 

of thin plates. 

Roy, et al. [20], investigated the effects of variations in the thickness profile on the 

displacements and dynamic bending stresses of a square cantilever plate excited by a point 

harmonic load. A four-noded plate element was used for the analysis. The response was 

determined for the first three modes of vibration. In each case the results obtained for 

different thickness profiles were compared with those of the uniform thickness plate. It was 

observed that considerable reductions in displacement amplitudes and bending stresses can be 

achieved by the proper selection of thickness profile. 

Xiaoping Shu et al. [21], developed an improved simple higher-order shear deformation 

theory for laminated composite plates. The theory contains the same number of dependent 

variables as in the FSDT, and accounts for parabolic distribution of transverse shear strain 

through the thickness of the plate and transverse shear stress continuity across each layer 
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interface. Although their theory contains five dependent variables, it gives more accurate 

results than some higher-order theories. 

Kabir [22], presented an analytical solution to a moderately thick simply supported 

rectangular plate with symmetric angle-ply lamination. The Resissner-Mindlin theory that 

incorporates transverse shear deformation into plate formulation characterizing the 

moderately thick behavior was considered. The plate deformation behavior in bending was 

defined by three highly coupled second-order partial differential equations in three unknowns. 

Theses equations, in conjunction with the admissible boundary conditions, were solved using 

a displacement-based double Fourier series approach. The solution agreed with the published 

finite element results for both moderately thick and thin plates. 

Akhras et al. [23], developed a finite strip method for the analysis of anisotropic laminated 

composite plates based on a HSDT. The used method improved the results compared with 

FSDT while using approximately the same number of degrees of freedom. It also eliminates 

the need for shear correction factors in calculating the transverse shear stiffness. 

Qatu et al. [24], introduced a consistent set of equations for modeling laminated plates and 

shallow shells. Exact solutions which satisfy the equations of equilibrium and boundary 

conditions were obtained for shear diaphragm boundaries and cross-ply laminates. The Ritz 

method is used to obtain the deflections and stresses for generally laminated plates and 

shallow shells with cantilevered and doubly-cantilevered boundaries. Isotropic and laminated 

composites are considered for both plates and cylindrical shell panels. They concluded that it 

was necessary to provide more than 140 degrees of freedom in terms of displacement 

polynomials using Ritz method in order to obtain reasonably accurate results, especially for 

the stress and moment resultants. 

Verijenko et al [25], introduced a finite element formulation for the analysis of laminated 

composite plates based on a higher order theory. Different types of finite elements which take 

into account transverse shear and normal deformation are developed. The proposed finite 

element is highly efficient and accurate, and can be used easily be incorporating them into 

existing finite element codes. 

Kong et al. [26] proposed a displacement based three dimensional finite element scheme for 

the analysis of thick laminated plates. The thick laminated plate was treated as a three-

dimensional inhomogeneous anisotropic elastic body. Layerwise, local shape functions were 

used in the regions where transverse shear stress was of interest, while an ad hoc global-local 

interpolation was used in the region where only the general deformation pattern is concerned. 

For satisfying the displacement compatibility between these two regions, a transition zone 

was introduced. The model incorporates the advantages of the layerwise theory and the 

single-layer theory. 

Li et al. [27], used Reddy’s theory, with the effect of higher order shear deformations, to 

derive the governing equations of bending of orthotropic plates with finite deformations. 

Numerical results showed that the influence of the shear deformation on the static bending of 

orthotropic moderately thick plate is significant. 

Manna [28], used a high order triangular element to investigate free vibration of isotropic 

rectangular plates with different thickness ratios, boundary conditions, and aspect ratios. The 

FSDT is used to include the effect of transverse shear deformation. The element has 51 

degrees of freedom. Rotary inertia has been included in the consistent mass matrix. His results 

showed the accuracy and convergence characteristics of the element. 

The present work presents a Modified Higher Order Shear Deformation Theory, in which the 

displacement-field equations of Lo’s higher order shear deformation theory are modified by 

representing the total rotation of the normal to the mid-plane by two components, bending and 

shear rotations to refine the obtained results. It converges to the exact solution using Ritz 

approximation technique with less number of degrees of freedom, and less computational 

time. The model is suitable for thin and thick laminated composite plates. 
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2. Displacement Field Equations 
The displacement field equations for different theories can be written as 
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     

  

 (1) 

where 
0 ,u

0 ,v
 

and 
0w
 

are displacements at the mid-plane in the x, y, and z directions 

respectively. ,x  and ,y  are the rotations of the normal to the mid-plane about the y-axis, 

and x-axis, respectively. They are defined in MFSDT and MHSDT as the shear rotation 

angles. z  is a first order displacement representing the extension in the plain normal to the 

mid-plane. ,x ,y  and z  are second order displacements or warping functions. ,x and 
y  

are third order displacements or warping functions, where all the previous symbols are 

function of  , ,x y t . h  is the total laminate thickness. 1 2 3 4 5 6, , , , ,C C C C C C  and 7C  are 

constants associated with the used deformation theory. 

Table 1 gives the values of the constants for various theories illustrated in Fig. 1. 

 
Fig. 1. Deformation of a transverse normal according to the classical, first order, and 

higher order and modified higher order shear deformation theories 
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Table 1. The values of the constants for different shear deformation theories 

 

Theory 
1C
 2C

 3C
 4C

 5C
 6C

 7C
 

Kirchoff’s Classical Lamination The``ory (CLT),  -1 0 0 0 0 0 0 

Mindlin’s First Order Shear Deformation Theory 

(FSDT),  
0 1 0 0 0 0 0 

Modified First Order Shear Deformation Theory 

(MFSDT),  
-1 1 0 0 0 0 0 

Second Order Plate Theory (SPT),  0 1 1 0 0 0 0 

Reddy’s (HSDT),  0 1 0 0 -1 0 0 

Lo’s Higher Order Plate Theory (LoHPT),  0 1 1 1 0 1 1 

Modified Higher Order Shear Deformation Theory  

(MHSDT) (Present Model) 
-1 1 1 1 0 1 1 

 

The Modified Higher Order Shear Deformation Theory (MHSDT) displacement field 

equations are represented as follows: 
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 (2) 

 

 

3. Strain-Displacement Relationships 
The strain-displacement relationships can be expressed in a matrix form as follows: 
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4. Stress-Strain Relationships 
The generalized stress-strain relations can be written in contracted notation as follows, 

 [7, 30]: 

 
, 1,2,...6i ij jQ i j    (6) 

The transformed stress-strain relations for an orthotropic lamina oriented by an angle   can 

be written as: 
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 (7) 

The elements of the transformed symmetric stiffness matrix Q   , is listed in Appendix (A), 

[7, 30]. 
 

 

5. Energy Formulation 
The Hamilton’s principle is used to obtain the governing equations of motion, [7] : 

 
 

0
0

T

U V K dt      (8) 

The virtual strain energy, U , is given by, [7]: 

 
    T

V
U dV     (9) 

Thus 
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where  i 1 iz ,  z are the lower and upper z- coordinates of layer number ( i ) measured from 

mid-plane, respectively. k is the total number of layers in the laminate. Substituting for the 

strain from Eq.(3): 
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The virtual strain energy U  can be rewritten as follows 
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(12) 

where A, B, D are the extensional, coupling, and bending stiffness matrices. The matrices E, 

F, H, J are the higher order stiffness matrices, and given as: 
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The virtual work V done by the applied forces can be written as, [5] 

 
      , , ,0, , ,0,z zi i i

A
V p x y w x y t dxdy F w x y t     (14) 

where  ,zp x y  is the transverse distributed load, and Fzi is the concentrated force in the z-

direction at point (i). 

The virtual kinetic energy, K , can be written as, [7] 

 
   
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K U U dV   

    (15) 

where 
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For k layers Eq.(15) is represented as 
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where i  is the density of layer number ( i ). 

Substituting the displacement field Eq.(2), we can write 
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Substituting Eq.(18) into Eq.(17), we can write; 
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T T T TA

T T T T

I U U I U U I U U I U U

I U U I U U I U U I U U
K dx

I U U I U U I U U I U U

I U U I U U I U U I U U

   

   


   

   

   
 
 
    

  
    
 
    
 

 dy  (20) 

where 

 
   

1

2 3 4 5 6

0 1 2 3 4 5 6

1

, , , , , , 1, , , , , ,
i

i

k z

i
z

i

I I I I I I I z z z z z z dz


  (21) 

Substituting Eq.(12), Eq.(14), and Eq.(20) into Eq.(8), the equations of motion can be 

obtained. 

 

 

6. Ritz Solution Technique 
In the Ritz method the unknown displacements 0 0 0, ,u v w , , ,x y z   , , ,x y z   ,x y  of  the 

given problem are approximated by x-y-dependent functions that satisfy the geometric 

boundary conditions as follows 
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       , , , 1,2...11

T

i i ix y t a x y q t i    (22) 

where  , ,i x y t  represents the unknown displacements 
0 0 0, ,u v w , , ,x y z   , , ,x y z   , 

,x y  , while   ,ia x y  are column vectors of the Ritz approximation functions that satisfy 

the boundary conditions of the problem, and   iq t are the column vectors of the Ritz 

coefficients to be determined. 

 

 

7. Equations of Motion 
The equations of motion will be derived using the Ritz approximation technique for the 

eleven deformation fields. Substituting Eq. (22). into Eq.(5), the strain vectors  0
T

 ,  1
T

 , 

 2
T

 , and  3
T

  can be expressed in terms of the generalized coordinates  iq  as follows: 

 
           

           

0 0 1 1

2 2 3 3

, , , ,

, , ,

x y q x y q

x y q x y q

   

   

       

       

 (23) 

where  q  is the generalized column vector of Ritz coefficients; 

                       1 2 3 4 5 6 7 8 9 10 11

T T T T T T T T T T T T
q q q q q q q q q q q q 

 

  (24) 

 0 ,x y   ,  1 ,x y   ,  2 ,x y   , and  3 ,x y    are given in Appendix (B). 

Substituting from Eq.(23) to Eq.(12) , the virtual strain energy can be written as follows 

        
T

U q t K q t   (25) 

where  K  is the stiffness matrix of the laminate. 

 

       

       

       

 

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3

T T T T

T T T T

T T T T

T

A B D E

B D E F
K

D E F H

E

       

       

       

  

                                

                                 


                                 

              1 3 2 3 3

A

T T T

dxdy

F H J    

 
 
 
 
 
 
 
                        

  (26) 

Substituting for the assumed displacement functions from Eq.(22) into Eq. (14), the virtual 

work V done by the applied forces can be written as,  

             3 3 3 3, , ,
T T

z zi i i
A

V p x y q a x y dxdy F q a x y     (27) 

Or 

 
      0

T
V q F F    (28) 

where  F  and  0F  are the distributed and concentrated load vectors, respectively, with the 

following expressions 

 
    

    

3

0 3

0 0 , 0 0 0 0 0 0 0 0

0 0 , 0 0 0 0 0 0 0 0

T T

z
A

TT

zi i i

F p x y a dxdy

F F a x y

 
 

 
 


 (29) 

Substituting for the assumed displacement functions from Eq.(22) into Eq.(19), we get 
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      

      

      

      

0 0

1 1

2 2

3 3

,

,

,

,

U U x y q t

U U x y q t

U U x y q t

U U x y q t

   

   

   

   

 (30) 

where  0 ,U x y   ,  1 ,U x y   ,  2 ,U x y   , and  3 ,U x y    are given in Appendix (B) 

Substituting from Eq.(30) in Eq.(20), the virtual kinetic energy, K , can be written as 

 
       

T

K q t M q t   (31) 

where  M  is the mass matrix of the laminate 

 

0 0 0 1 0 2 0 3

0 1 2 3

1 0 1 1 1 2 1 3

1 2 3 4

2 0 2 1 2 2 2

2 3 4 5

T T T T

T T T T

T T T T

I U U I U U I U U I U U

I U U I U U I U U I U U
M

I U U I U U I U U I U U

   

   

   

                                

                                 


                             
3

3 0 3 1 3 2 3 3

3 4 5 6

A

T T T T

dxdy

I U U I U U I U U I U U   

 
 
 
 
 

   
 
                                   

 (32) 

Finally, the equations of motion of the plate are represented by 

          0M q K q F F    (33) 

where  K  is the stiffness matrix,  M  is the mass matrix,  F , and  0F are the distributed 

and concentrated load vectors given in Eq.(29), and the unknowns  q  are the Ritz 

coefficients to be determined. 
 

 

8. Boundary Conditions 
In Ritz solution technique, the boundary conditions are satisfied by appropriate choice of the 

Ritz functions. Two special cases of plate boundary conditions, simply supported and 

cantilever plates, will be discussed here. 

For simply supported plate, the boundary conditions along (x=0,a) edges are 

0
0 0, , , , , ,y y y

w
v w

y
  




 and 

2

0

2

w

x




 are all equal to zero, and along (y=0,b) edges are 

0
0 0, , , , , ,x x x

w
u w

x
  




and 

2

0

2

w

y




 are all equal to zero. 

An appropriate choice of simple polynomials for Ritz function series can reflect the geometric 

and loading boundary conditions. The minimum order of transverse displacement that 

satisfies the previous boundary conditions is; 

  0 ,w x y CXY  (34) 

where 

4 4
3 3

2 3 2 3

2 2
,

x y
X x x Y y y

a a b b

   
        
   

 (35) 

After making a convergence test to Case (I) given below, by increasing the number of terms 

of 0w , 6 terms were found to be accurate enough. The total number of degrees of freedom 

will be eighteen. 

 2

0 1 3

2 2 2 3 3

2 4 65w w w w w ww C XY X Y C XY X Y C XC C YC Y X      (36) 
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The other displacement functions are chosen such that they satisfy boundary conditions. The 

used column vectors of the approximation functions for simply supported boundary 

conditions   ,ia x y  are given in Appendix (C). 

For cantilever plate, imposing fixed boundary conditions along (x=0) edge, the geometric 

boundary conditions along that edge are 0 0
0 0 0, , , , , , , , , ,x x x y y

w v
u v w

x x
    

 

 
and 

y  are all 

equal to zero. 

An appropriate choice of simple polynomials for Ritz function series can reflect the above 

geometric boundary conditions. After making a convergence test in Case (II), by increasing 

the number of terms of  
0w , a nine-term simple polynomial was found to be accurate enough 

to represent the transverse displacement 
0w . This polynomial is formed by multiplying three 

terms in x by three terms in y to give nine terms of 
0w and the total DOF of the plate will be 

49, as follows 

 

  2 2 3 2 2 3

4 3

0 1 2 3 4 5

4 2

6 7 8 9

2 4

, w w w w w

w w w w

x x y x x y x y

x x y

w x y C C C C C

C C C Cx y x y

   





  
 (37) 

The other displacement functions are chosen such that they satisfy the same boundary 

conditions. The used column vectors of the Ritz approximation functions for a cantilever plate 

  ,ia x y  are given in Appendix (C). 

 

 

9. Numerical Results and Discussion 
To validate the proposed model, the static deflection and fundamental natural frequency 

results are presented and compared with other published models for both isotropic and 

laminated composite plates with simply supported and cantilevered boundary conditions. A 

laminated composite simply supported plate subjected to static double sinusoidal load is 

discussed first. Then, an isotropic cantilever plate subjected to a uniform distributed load is 

presented. The static response and fundamental frequencies are calculated for laminated 

composite cantilever plates. 

 

9.1. Case (I): Simply supported laminated composite plate (static response) 
A three-layer (0°/90°/0°), simply supported square plate of three different side-to-thickness 

ratios  / 10,  20,  100L t   is analyzed. The material properties of the used composite 

lamina are given below in Table 1. 

 

Table 1. Material properties of the composite lamina 
 

E11 E22 = E33 G12 = G13 G23 12 = 13 = 23 

172.4 GPa 6.9 GPa 3.45 GPa 1.38 GPa 0.25 
 

The applied double sinusoidal load function is 
0 sin sin

x y
q q

a b

 
  (a b L  ). 

The convergence of the obtained results to the exact values for deflection (w ) and stress 

( x ) at the plate center are shown in Fig. 1 and Fig. 2, respectively, using various Pascal 

triangle polynomials composed of multiplication of X and Y , the elementary shape functions 

that satisfy the simply supported boundary conditions, Eq.(35). 
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According to this convergence study, six degrees of freedom were used to represent the 

transverse deflection  0 ,w x y , with a total of 18 degrees of freedom for the plate, 

Appendix (C). Results are given in normalized quantities where 

   2

0

1
, , , ,x y xy x y xy

q
     


 , 

4

4

012

Q
w w

tq




 , 

a

t
  , 

 

 
11 22 12

12

12 21

1 2
4

1

E E
Q G



 

 
 


, 

 max / 2, / 2,0w a a  ,  1 / 2, / 2, / 2x a a t   ,  2 / 2, / 2, / 4y a a t   , and 

 0,0, / 2xy t   . 
 

 
Fig. 1. Convergence of mid-point deflection ( max ) 

 

 
Fig. 2. Convergence of mid-point normal stress ( 1 ) 

Table 2. gives values of max , E , 1 , 
1

E
, 2 , 

2
E

,  , and E  calculated by the present 

model in comparison with the available published results. E is the percentage error in max  

from the exact value, 
1

E
is the percentage error in 1 , 

2
E

is the percentage error in 2 , and  

E is the percentage error in  . The comparison shows good agreement with the exact 

solutions. 

It is important now to highlight the advantages of the present Modified Higher Order Shear 

Deformation Theory over other theories listed in Table 1. The same procedure of Ritz 

solution technique was followed using different displacement field theories, Eq.(1).The 

convergences of all theories are shown in Fig. 3 and Fig. 4. It is clear from the figures that the 

present Modified Higher Order Shear Deformation Theory is the most accurate, and the 

fastest theory to converge to the exact solution. Another important notice, is that the results of 

the FSDT and SPT are exactly the same. So, the second order terms 2

xz  , and 2

yz  in the 
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in-plane displacement filed equations, have no effect in this case. The reason for this is that it 

is a symmetric lamination case.  Also, it is notable that FSDT, SPT, and Lo HPT have very 

poor convergence performance. These theories don’t contain the 0w -derivative 

terms,
 0 , ,w x y t

z
x





 and 

 0 , ,w x y t
z

y





,
 
in the in-plane displacement field equations, 

Eq.(1), and Table 1. In conclusion, the MHSDT is the most convenient theory to provide the 

best solutions with minimum computational time. 

 

Table 2. Three layer cross-ply (0°/90°/0°) square plate under double sinusoidal loading 
 

 
Reference 

max  E  
1  

1
E

 
2  

2
E

   E  

L
/t

=
1
0
 

A (exact) 1.709 0 0.559 0 0.403 0 0.0276 0 

B (present) 1.67017 -2.272088941 0.560537 0.274955277 0.391707 -2.802233251 0.0273232 -1.002898551 

C 1.534 -10.23990638 0.484 -13.41681574 0.35 -13.15136476 - - 

D 1.448 -15.27208894 0.532 -4.830053667 0.307 -23.82133995 0.025 -9.420289855 

E 2.034 19.01696899 0.542 -3.041144902 - - 0.0292 5.797101449 

F 1.727 1.053247513 0.493 -11.80679785 0.407 0.992555831 - - 

G 1.714 0.292568754 0.554 -0.894454383 0.397 -1.488833747 0.0273 -1.086956522 

H 1.468 -14.10181393 0.577 3.220035778 0.318 -21.09181141 0.0247 -10.50724638 

I 1 -41.48624927 0.539 -3.577817531 0.269 -33.25062035 0.0213 -22.82608696 

L
/t

=
2
0
 

A (exact) 1.189 0 0.543 0 0.309 0 0.023 0 

B (present) 1.17751 -0.966358284 0.54472 0.316758748 0.305828 -1.026537217 0.0229627 -0.162173913 

C 1.136 -4.457527334 0.511 -5.893186004 0.287 -7.1197411 - - 

D 1.114 -6.307821699 0.557 2.578268877 0.307 -0.647249191 0.0231 0.434782609 

E 1.273 7.064760303 0.546 0.552486188 - - 0.0239 3.913043478 

F 1.191 0.168208579 0.533 -1.841620626 0.312 0.970873786 - - 

G 1.191 0.168208579 0.538 -0.920810313 0.3085 -0.161812298 0.02297 -0.130434783 

H 1.119 -5.887300252 0.556 2.394106814 0.284 -8.090614887 0.0224 -2.608695652 

I 1 -15.89571068 0.539 -0.73664825 0.269 -12.94498382 0.0213 -7.391304348 

L
/t

=
1
0
0
 

A (exact) 1.008 0 0.539 0 0.271 0 0.0214 0 

B (present) 1.00746 -0.053571429 0.540375 0.255102041 0.27159 0.217712177 0.0213583 -0.194859813 

C 1.005 -0.297619048 0.523 -2.968460111 0.263 -2.95202952 - - 

D 1.003 -0.496031746 0.566 5.009276438 0.284 4.79704797 0.0223 4.205607477 

E 1.015 0.694444444 0.551 2.226345083 - - 0.0219 2.336448598 

F 0.999 -0.892857143 0.537 -0.371057514 0.265 -2.21402214 - - 

G 0.997 -1.091269841 0.523 -2.968460111 0.263 -2.95202952 0.02089 -2.38317757 

H 1.004 -0.396825397 0.543 0.742115028 0.267 -1.47601476 0.0215 0.46728972 

I 1 -0.793650794 0.539 0 0.269 -0.73800738 0.0213 -0.46728972 

 

(A) exact solution by Pagano and Hatfield, [12],  (G) a FE solution using a higher order shear 

(B) present Modified higher order plate model,          deformation theory by Phan and Reddy, [19], 

(C) a finite element solution made by Reddy, [31],  (H) Ref. Dey, using a simple finite element [17], 

(D) a finite element solution by Panda and Natarajan, [32],  (I)   the classical plate theory. 

(E) a FE solution by Mawenya and Davies, [33], 

(F) Ref. Moser et al. [34], 
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Fig. 3. Convergence of mid-point deflection ( max ) using different 

theories for simply supported plate (L/t=10) 

 

 
Fig. 4. Convergence of mid-point stress ( 1 ) using different 

 theories for simply supported plate (L/t=10) 

 

9.2. Case (II): Simply Supported laminated composite plate (natural frequency) 
Fundamental frequency of simply supported bidirectional, multilayered square (a=b=L) cross-

ply laminated plates consisting of a large number of symmetric and anti-symmetric layers is 

obtained. The plates side-to-thickness ratio / 5L h  
 
The effect of varying degree of 

orthotropy and number of layers are considered. Fiber orientations of different laminae 

alternate between 0
0
 and 90

0
 w.r.t. x-axis. In symmetrical case, the 0

0
 layers are at the outer 

surfaces of the laminate. Total thickness of the 0
0
 and 90

0
 layers in each laminate are the 

same. 

The degree of orthotropy is varied between 3 and 40; the number of layers used are 2, 3, 4, 5, 

6 ,9, and 10. The material properties of the individual layers are given in Table 3. 
 

Table 3. Material constants of the individual layers 
 

G12 / E22= G13/ E22 G23/ E22 12 = 13 = 23 

0.6 0.5 0.25 
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Results are presented in Table 4. (a) for symmetric case, and (b) for the antisymmetric case. 

  is the non-dimensional natural frequency, 
22

10
h

E


  . Δ% is the percentage error 

relative to the exact solution derived by Noor [13]. Ghosh [18], used a simple finite element 

based on higher order theory to calculate the fundamental frequencies of laminated composite 

plate. A refined analysis of laminated plates by finite element displacement methods was 

made by Owen [35] . In the present model, the shape functions used are the same as in the 

previous case. It is clear from Table 4 that the obtained results are very comparable with other 

available results. 

 

9.3. Case (III): Cantilever isotropic plate (static response) 
An isotropic square plate (a=b=L) with side-to-thickness ratio / 100L h  

 
is analyzed. A 

Poisson’s ratio () of 0.3 is adopted for the plate material. A transverse uniform load (q0) is 

applied. 

In order to find suitable shape functions for the cantilever plate, the unknown displacements 

0 0,u v , , ,x y z   , , ,x y z   , ,x y   are approximated by the x-y-dependent functions, listed in 

Appendix (C). The transverse deflection 0w approximate functions are alternated such that 

the number of terms of 0w  are increased from 1 to 49, and the total degrees of freedom are 

raised from 41 to 89. These approximate functions are the result of multiplication of two 

polynomials in x and y directions that satisfy the geometric boundary conditions mentioned 

before, using Pascal triangle. 
 

The convergence of the normalized maximum deflection (w ) and normalized stress-resultants 

(
xM and 

yM ) are given in Fig. 5. Results are given in normalized quantities as 

   
4

2

0

10
, , , ,x y xy x y xyM M M M M M

q a
  and 

4 3

11
04

0

10 E h
w w

a q
 . 

Using three-term polynomials gives acceptable accuracy, as seen in Fig. 5. Moreover, after 

the three-term polynomials, the stiffness matrix becomes ill conditioned, and the numerical 

solution begins to have a significant error. Thus, three-term polynomials are used in x and y 

directions to represent the transverse deflection  0 ,w x y , which gives 49 total degrees of 

freedom. 

 

Fig. 5. Convergence of the normalized maximum deflection w , and stress resultants,
 

xM ,
yM  at x=0, y=b/2 
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Table 4. Effect of degree of orthotropy of the individual layers on the fundamental 

frequency of simply supported square multi-layered composite plate with h/L=0.2 

 

a. Symmetric Case 
 

Source No. of layers 

E1/E2 

3 10 20 30 40 

  Δ%   Δ%   Δ%   Δ%   Δ% 

Noor [13] 

3  

(0/90/0) 

2.6474 
 

3.2841 
 

3.8241 
 

4.1089 
 

4.3006 
 

Present model 2.62723 -0.762 3.2655 -0.566 3.69709 -3.321 3.9396 -4.1203 4.10269 -4.601 

Ghosh [18] 2.64 -0.28 3.39 3.2246 3.92 2.5078 4.25 3.4340 4.47 3.9389 

Owen [35] 2.6948 1.7904 3.3917 3.2764 3.8979 1.9299 4.1941 2.0735 4.3951 2.1973 

CPT 2.9198 10.289 4.1264 25.648 5.4043 41.322 6.4336 56.577 7.3196 70.199 

Noor [13] 

5  

(0/90/0/90/0) 

2.6587 
 

3.4089 
 

3.9792 
 

4.314 
 

4.5374 
 

Present model 2.64006 -0.701 3.37278 -1.06 3.92601 -1.337 4.25266 -1.421 4.47272 -1.425 

Ghosh [18] 2.64 -0.703 3.45 1.2057 4.06 2.0306 4.42 2.4571 4.67 2.9223 

Owen [35] 2.6988 1.5083 3.4534 1.3054 4.0297 1.2691 4.3704 1.3073 4.5992 1.3620 

CPT 2.9198 9.8206 4.1264 21.048 5.4043 35.814 6.4336 49.133 7.3196 61.317 

Noor [13] 

9  

(0/90/0/90/0/

90/0/90/0) 

2.664 
 

3.4432 
 

4.0547 
 

4.421 
 

4.6679 
 

Present model 2.64446 -0.733 3.41421 -0.842 4.01746 -0.918 4.37998 -0.927 4.62559 -0.906 

Ghosh [18] 2.64 -0.901 3.47 0.7783 4.1 1.1172 4.48 1.3345 4.74 1.544 

Owen [35] 2.6971 1.2425 3.4708 0.8016 4.0746 0.4908 4.436 0.3392 4.6803 0.265 

CPT 2.9198 9.6021 4.1264 19.842 5.4043 33.285 6.4336 45.523 7.3196 56.807 

 

b. Antisymmetric Case 
 

source No. of layers 

E1/E2 

3 10 20 30 40 

  Δ%   Δ%   Δ%   Δ%   Δ% 

Noor [13] 

2  

(0/90) 

2.5031   2.7938   3.0698   3.2705   3.425   

Present model 2.52517 0.881 2.88177 3.148 3.20543 4.418 3.44099 5.212 3.62404 5.811 

Ghosh [18] 2.48 -0.922 2.82 0.937 3.17 3.264 3.45 5.488 3.69 7.737 

Owen [35] 2.5601 2.277 2.8712 2.770 3.1558 2.801 3.361 2.767 3.5185 2.729 

CPT 2.7082 8.193 3.0968 10.84 3.5422 15.38 3.9335 20.27 4.2884 25.20 

Noor [13] 

4  

(0/90/0/90) 

2.6182   3.2578   3.7622   4.066   4.2719   

Present model 2.61391 -0.163 3.28678 0.889 3.82322 1.621 4.1485 2.029 4.36924 2.278 

Ghosh [18] 2.6 -0.695 3.32 1.909 3.9 3.662 4.27 5.017 4.53 6.041 

Owen [35] 2.6691 1.944 3.325 2.062 3.8454 2.211 4.1612 2.341 4.3763 2.443 

CPT 2.8676 9.525 3.8877 19.33 4.9907 32.65 5.89 44.85 6.669 56.11 

Noor [13] 

6  

(0/90/0/90/0/

90) 

2.644   3.3657   3.9359   4.2783   4.5091   

Present model 2.63163 -0.467 3.36602 0.009 3.94926 0.339 4.30125 0.5364 4.53941 0.6721 

Ghosh [18] 2.62 -0.907 3.4 1.019 4.02 2.136 4.4 2.844 4.66 3.346 

Owen [35] 2.6839 1.509 3.4085 1.271 3.9758 1.013 4.3233 1.0518 4.5558 1.035 

CPT 2.8966 9.553 4.0215 19.48 5.2234 32.71 6.1963 44.83 7.0359 56.03 

Noor [13] 

10 

(0/90/0/90/0/

90/0/90/0/90) 

2.6583   3.425   4.0337   4.4011   4.6498   

Present model 2.64106 -0.648 3.40905 -0.465 4.02032 -0.331 4.39032 -0.244 4.64163 -0.175 

Ghosh [18] 2.64 -0.688 3.44 0.437 4.08 1.147 4.46 1.3383 4.72 1.509 

Owen [35] 2.6916 1.252 3.4527 0.808 4.0526 0.468 4.414 0.2931 4.659 0.1978 

CPT 2.9115 9.524 4.0888 19.38 5.3397 32.37 6.3489 44.257 7.2184 55.24 
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Table 5. gives values of normalized deflection w , and stress resultants 
xM , 

yM , 

and
xyM calculated by the present model in comparison with the available published results. 

The difference ( % ) mentioned in Table 5. is the percentage difference in w , and,
 

xM ,
yM relative to the reference values calculated by the finite element method using 2205 

degrees of freedom, [24], listed in Table 5. with code FEM5. The comparison shows good 

agreement with the exact solutions. 

 

Table 5. Normalized maximum deflection w , and stress resultants 
xM

 
, yM  ,and xyM  

of isotropic cantilever plate 

 

Reference Code 
Total 

DOF 

x=0, y=b/2 x=0, y=b x=0, y=b/2 

-w  %  -w  %  xM  %  yM  %  xyM  

Present 

model 
PM 49 13905 1.641084 13704.5 1.668221 5250.4 1.04787 1719.81 -7.96045 0 

Ritz 

Method 

[24] 

RM1 108 14073 0.452713 13870 0.480735 5139 3.14738 1542 3.201507 0 

RM2 147 14085 0.367829 13884 0.380283 5355 -0.92348 1607 -0.87884 0 

PM3 192 14088 0.346608 13887 0.358757 5393 -1.63965 1618 -1.56937 0 

Finite 

Element 

Method 

[24] 

FEM1 245 14164 -0.19099 13941 -0.0287 4438 16.35884 1331 16.44696 0 

FEM2 605 14148 -0.07781 13939 -0.01435 4765 10.196 1429 10.29504 0 

FEM3 2205 14143 -0.04244 13940 -0.02153 5031 5.182812 1509 5.27307 0 

FEM4 845 14116 0.148546 13917 0.143503 5232 1.394648 1578 0.94162 0 

FEM5 2205 14137 0 13937 0 5306 0 1593 0 0 

PM is the present model solution,  

RM(1,2,3) are the Ritz solution using (6,7,8) terms in the x and y directions for 0 0,u v , and 0w , 

FEM(1,2,3,4,5) are the finite element solution using (72 three-noded,  200 three-noded,  800 three-noded,  72 

six-noded,  200 six-noded) elements. 

 

9.4. Case (IV): Laminated Composite Cantilever plate (static response) 
A laminated composite square plate (a=b=L) with side-to-thickness ratio / 100L h  

 
is 

analyzed. The material properties of the individual layers are given in Table 6. The plate has 

symmetric lamination sequence, [0/90/0]. A transverse uniform load (q0) is applied. 

 

Table 6. Material constants of the individual layers 

 

E11/ E22 E33/ E22 G12/ E22= G13/ E22=G23/ E22 12 = 13 = 23 

15.4 1 0.5 0.3 

 

The same procedure of the previous problem is followed to get the convergence of the 

normalized maximum deflection w , and stress resultants,
 xM ,

yM  as shown in Fig. 6. 

 

Table 7. shows good agreement between the results calculated from the present model and 

those calculated using Ritz method and finite element method published in [24]. 
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Fig. 6. Convergence of the normalized maximum deflection w , and stress resultants,

 
xM ,

yM  at x=0, y=b/2 

 

Table 7. Normalized maximum deflection w , and stress resultants 
xM

 
, yM  ,and 

xyM of a laminated composite cantilever plate  

 

Reference Code 
Total 

DOF 

x=0, y=b/2 x=0, y=b x=0, y=b/2 

-w  %  -w  %  xM  %  yM  %  xyM  

Present 

model 
PM 49 15502.8 0.348396 15377.2 0.413186 5058.5 -0.70675 109.732 -8.64554 0 

Ritz 

Method 

[24] 

RM1 108 15501 0.359967 15382 0.3821 4967 1.114872 100 0.990099 0 

RM2 147 15501 0.359967 15384 0.369147 5068 -0.89588 102 -0.9901 0 

RM3 192 15501 0.359967 15384 0.369147 5078 -1.09496 102 -0.9901 0 

Finite 

Element 

Method 

[24] 

FEM1 245 15614 -0.36639 15482 -0.26553 4261 15.17022 86 14.85149 0 

FEM2 605 15582 -0.1607 15459 -0.11657 4552 9.376866 92 8.910891 0 

FEM3 2205 15567 -0.06428 15449 -0.05181 4786 4.718296 97 3.960396 0 

FEM4 845 15556 0.006428 15441 0 5006 0.338443 101 0 0 

FEM5 2205 15557 0 15441 0 5023 0 101 0 0 

 

 

9.5. Case (V): Composite Cantilever plate (Natural Frequency) 
The fundamental frequencies are calculated for antisymmetric, cross-ply, rectangular 

laminated cantilever plates with varying aspect ratio (b/a), and side to thickness ratio (b/h), 

where b is the length of the fixed edge. Material properties of the individual layers are given 

in Table 8. All the layers are assumed to have the same thickness. 

 

Table 8. Material constants of the individual layers 

 

E11/ E22 E33/ E22 G12/ E22= G13/ E22 G23/ E22 12 = 13 = 23 

40 1 0.6 0.5 0.25 
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Using the approximate Ritz functions mentioned in Appendix (C), the fundamental 

frequencies are calculated and listed in Table 9. The normalized natural frequency is given by 
2

22

b

h E

 
  . 

The obtained results are compared with other available published results, as shown in Table 9. 

Reddy [36], used CPT, FSDT, and HSDT to obtain the fundamental natural frequencies using 

finite element analysis. The shear correction factors for FSDT were taken to be 5/6. In the 

finite element analysis, a mesh of 2x2 for quadratic elements was used for the FSDT, and 4x4 

mesh of 4-node elements was used for HSDT and CPT,[36]. The differences %  are 

calculated relative to HSDT solution. The present model has good accuracy, especially for 

low aspect ratio (b/a) and high thickness ratio (b/h). 

 

Table 9. Normalized fundamental frequencies of cantilever laminated plate [0/90] 

 

Model b/h 

b/a 

1 2 3 

  %    %    %  

Present 

model 

10 2.54126 -0.770778 9.41426 -1.92248 19.0827 -3.78071 

100 2.61513 -0.859476 10.4514 -0.826705 23.4808 -0.785059 

CPT [36] 
10 2.625 2.49902 10.4588 8.95945 23.3775 17.8747 

100 2.6285 -0.35256 10.5138 -0.23437 23.6548 -0.04985 

FSDT 

[36] 

10 2.5334 -1.07770 9.3501 -2.59094 18.8491 -4.95852 

100 2.6103 -1.04253 10.4318 -1.01247 23.4354 -0.9769 

HSDT 

[36] 

10 2.561 0 9.5988 0 19.8325 0 

100 2.6378 0 10.5385 0 23.6666 0 

 

 

10. Conclusion and Future Work 
The static response and fundamental natural frequency of thick isotropic and composite plates 

with different boundary conditions were investigated. Lo’s higher order plate theory is 

modified to get more accurate results. The obtained results proved that the Modified Higher 

Order Shear Deformation Theory has superiority over other theories. The obtained results 

showed a great match of the deflections, stresses, and natural frequencies for thin and thick 

plates. It is shown that using less number of degrees of freedom for Ritz solution, the obtained 

results are matched with the published data, which save computational time. It is also clear 

that the present theory is efficient for both thin and thick plates made of either isotropic or 

composite materials. 

The fact that all Ritz approximation functions are simple polynomials leads to some desirable 

properties of formulation and solving techniques. However, it also leads to ill conditioning of 

the stiffness and mass matrices when high order polynomials are used. Extensive trials using 

different polynomials Ritz approximation functions are executed to make the convergence of 

the results before the static solution or eigenvlaue solution becomes ill conditioned. 

In the future, geometric nonlinearity can be added to model large deformation problems and 

aeroelasticity modeling. 
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Appendix (A) 

The elements of the transformed symmetric stiffness matrix Q    used in Eq.(7), are given by, 

[7, 30]: 
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Appendix (B) 

B-1-  0 ,x y   ,  1 ,x y   ,  2 ,x y   , and  3 ,x y    used in Eq.(23): 
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B-2-  0 ,U x y   ,  1 ,U x y   ,  2 ,U x y   , and  3 ,U x y    used in Eq.(30) 
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Appendix (C) 
C-1- The used column vectors of the Ritz approximation functions for simply supported 

boundary conditions are: 
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C-2- The used column vectors of the Ritz approximation functions for a cantilever plate are: 
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