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ITERATION PROCEDURE FOR THE ANALYSIS OF PLATES IN BENDING
BY FINITE STRIP METHOD

BY
DR. ENG. YOUSSEF AGAG =

INTRODUCTION

The finite sirip method as a semi anslytical procedure has been
recently developed and used successfully. for the ahalysis &f
a certain class of two and three dimensional problems. In the
analysis of bending of elastic plates, a solution technique
considera the plate to be an assembly of strips joined at their
longitudenal edges. The displacement function of the satrip is
expressed ae a& product of a polynomial function Acrosa the
width of the strip and a series function in the longitudenal
direction. The most commonly used series are the baslc fune-
tions which are derived from the solution of beam vibration
differential equation. These basic functions have been worked
out explieltly by VLAZOV [4] for the various end conditions.

The earliest formulation of the finite strip method was deve-
loped by CHEUNG {11 who used a trigonometric series as a basic
function in the analysis of elastic plates with two opposite
8imply supported ends. These trigonomitric series and its deri-
‘vatives possess the properties of orthogonality that lead to
the uncoupling of the static equilibrium equations. This means
that there 18 orthogonality condition between the load and
dieplacement harmonice and that each term of the seriea can be
solved individually. Basic functions other than trigonometric
serles, are used by CHEUNG (2] to analyze plates with two
opposite edge conditions other than simply supported. Unfortu-
natly, with these basic functions the uncoupling property desc-
ribed above cannot occur.

The object of +the preasent paper is to develop a finite strip
methed with a simplified iteration solution for the bastc func-
tions other than trigonometric series. The basic idea of the
iteration procedure presented herein ariseéd from the observable
dominant values of the dlagonal submatrices elements in the
sBtiffness matrix of the strip. The iteration procedure takes
only into consideration the diagonal submatrices of the stiff-
nees matrix of +the strip. Accordingly, each term of the basic
function can be solved individually such as that in the case
of trigonometric series. '

The first iteration solution considers the original load vector
and results in good approximate values for the unknown nodal
parameters, which can be utilized with the non diagonal sub-
matrices of the stiffness matrix to obtain a modified load
vector for each strip., The modified load vector carn be used
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in the second iteration solution to give a more improved values
for the unknown nodal parameters. It is concluded that two or
three iterations are sufficient to achieve the accuracy requir-
ed. The iteratlon procedure presented here was applied for the
hasic fupction of the case of clamped - clamped edge condition.
The results arg in very close agreement with those of the same
conditions worked out by TIMOSHENKC (5]

METHOD OF ANALYSIS

In the analysis of elastic plates in bending using the finite
strip method, the plate is devided into long strips Pig.1-a. The
displacement function of each strip is expressed as a product
of & polynomial function fy(x) across the width of the strip
and a series function VYm(y) in the longitudenal direction Fig.
T-b. 1In order to ensure higher order nodal lines compatibility
wnd  to reduce the number of strips required for +the analysis,
2 seventh order polynomial function is assumed to represent the
deflection profile across the width of the strip.
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Pig. 1. Finite strip idealization

The displacemant within each strip is expressed as follows

: r
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The basic function of clamped - clamped edge condition is given.
by,

Yuly) = sin uLy - 8inh Atm§ - Awmlcosaumi - cosh 44,7 1 (3)

BinAm - sinh t¢
COBAtm ~ COBR Al

where SGwm =

(4)

Mwm = 4,73, 7.8532, 10.966, ..... ?giln

‘For the above mentioned basic function, the following integrals
are essential to formulate the stiffness maetrix

a. a & )
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The detailed derivation of the stiffness matrix of the finite
strip is i1llustrated by CHEUNG [1-3]1. The atiffness matrix of
the strip [8I can be partitioned into r x r submatrices [Slmn
corresponding to each term of the basic function used. For each
strip the stiffness matrix takes the form

181, 81 ......... (81,
181, I81 .........182

81 (m=1 to r, n=1 to r) (6)

[gll‘-l [51’_‘ ------ e [é]rr.]

Each one of the submatrices [Slmn has the order of 8 x 8 (twice
the number of nodal line parameters)

-
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The general term of the stiffness matrix (Appendix I) can be
written in the following form

- a b ALY & * » I -
SpmnBof “of 162G ¥, Y, + G G T, ¥, + 201716, G X, ¥, +

m
+7(C, C, ¥, Y, +C, C, Y Y, }idxdy
b ~ hd * i L
=B:OIJIC[CK I1+C(CKIz+2(1'—V)Ce Ck Is+7(C( CK I‘f+ceoxls)3dx (8)

E t3
- Whera B = m

By substitution eqn (5) into eqn (8), we get
for m = n (general term of the diagonal submatrices)'
- b “ e e . . '
SmnBof 110 G, +( 420, GIL 4121906, 6, (G, G, +

+C, G )3 T31dx (9)
for m ¥ n (general term of the non dimgonal submatrices)

Sgemn=Bo] PT42€1-71G, G, = 1(C, G, +C, € }3 T3Tax Qo)

- From the numerical values of integrals Iy wIz and Is for differ-
ent values of m and n (Appendix I}, it can be observed that the
elements of the dlagonel submatrices of the stiffness matrix
have the dominant values.

'Agplied loads must also be resolved into geries similar to the

displacement function, and a load vector {Fp}is then related to
the nodal line parameters. For each strip this relation takes
the form

LS] 1D} = {Fo} (11)

Fgr the purpose of the iteration solution, the stiffness matrix
[51 of the strip is considered as a summation of two matrices
tSd1 and [Snl. Eqn (11) can be rewritten as

tSa1 {D} + I8n) (D} = {Pol

(a1 (D} = {Fol - IBnl D1 = {Po} - (aF} = [Ty (12)

where ' IS4l matrix contains the diagonal submatrices
[SnY" matrix contasines the non diagonal submatrices
{ﬁo} the original locad vector of the strip
iﬁk] the modified load vector of the strip
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- The iteration procedure considers the diagonal submatrices of
the stiffness matrix which leadg to an assumed uncoupling of
the atatic equilibrium equations. Accordingly, each term of the
basic function can be solved individually. Por each term of the
basic function, the following relation for each atrip can be
written as

fgd]mm{fﬁm = iﬁl{}h ' | (13)

The non diagonal submatrices are not considered in the first
fteration golution, i.e, [Snimn = [0 for m # n. Accordingly,
eqn (13) takes the form

(SATmmiD1}w = {Folm €14)

In which {1} m is the vector of the first approximation of the
unknoewn nodal iine parameters and {Fo}pym is the original load
vactor

For each term of the basic function, overal] s8tiffness matrix

of the plate [SdIm of order N x N (where N is four times the
number of nodal lines) is assembled from the stiffness matrices

[Sdlmm of the individual strips. Adding the forces on each nod-
al line from the two adjacent strips, a load vector {Po}can be
obtained. Solution of the equation ™

[Salwm {D1im = {Po}m, (15)

gives an approximate values for the N unknown nodal parameters
i{D13m for each term of the basic function

The non diagonal Bubmatricestgnlmn are taken into condideration
in the second iteration golution. The modified load vector {Fiq}
1s obtained for each 8trip according to eqn (12) as

{F13 = {Fol -{aF} = {Fo} - (5p1 {Dp3 (16)

-

A modified load vector {Fi3m for the assembled strips can be
obtained. In the second iteration solution eqn (15) takes the
form

[SqTm{D2} m = {F13}m (17)

Solution of this equation gives the improved values for the K
unknown nodal line parameters {Doim for each term of the basic
function., The précedure can be repeated for the subsequent ite-
ration solutions, The general form of eqn (17) for +the itera-
tion of order k can be written ag

1Sd1m {Dk3Im = {F(k<1)} m {18)
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HUMERICAL EXAMPLES

In order to check the accuracy of the iteration procedure deve-
loped here, a comnstant thickness isotropic rectangular plates
with two opposite clamped edges under uniformly distributed
load have been analyzed. Only odd terms contribute the results,
because of the symmetry of loading and edge conditions in the
longitudenal direction of the strips. The analysis is carried
out with ¢ devided 1into four strips. In case of symmetrical
edge conditions Pig.(2-a,b), only half of the plate {(devided
into two equal strips) is used in the analysis. Poisson’s ratio
in all examples equals 0,3.

- £ 4
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Tables 1 and 3 give the first iteration solution results obtai-
ned from the analyeis of symmetrical edge conditions square
plates €/a = 1 Fig.(2-a,b). Greater number of terms (5 or 6)
gives good results as & first approximation and emphasizes the
role of the dominant diagonal submatrices of the stiffness

matrix

A study of convergence of the iteration procedure is carried
out for the above mentioned square plates and the results are
presented in Tablea 2 and 4, It should be noted that, the resu-
1ts of +the third and fourth iteration solutions are closely
identical and indicate the rapid convergence of the procedure.
The results of the second iteration solution for the greater
number of terms demonstrate a very close agreement with known
exact solution [5]
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Table 1, ﬁnslyeis of Bquare plate clamped on sides AB and CD, simply
supported on the two other sides subject to uniform load of

intensity q. Pig.2-a (Pirst Iteration only) ¥y = 0.3

HO of Central Central Central My at
Terms . Deflection My My Middle of AB

1 19.4943 2.5939 3.8162 -5.4925

2 19.1494 2.459 3.3319 -6.0857

3 15.1861 2.4925 3.5015 -6.2407

4 19.1783 2.4796 3.4583 -6.3018

5 19.1807 2.4859 3.4796 -6.3319

6 19.1798 2.4824 3. 4676 ~6.3489
Exact {51 19.20 2.44 3.32 -6.97

Multiplier| 10-4.q a4/B 1072.q a2 1072.q a? 1072,q a2

Table 2. Study of convergence. Squar plate clamped on sides AB and cDh,
aimply supported on the two cther sides sBubject to uniferm

lead of intensity q. Fig. 2-a Yy = 0.3
NQ of [Iteration Central Central Central M at
Terms|. Order | Deflection My My Middl{e of AB
18t Tter 19,1861 2.4925 3.5015 ~6.2407
2nd " 19,2212 2.4879 3.3509 -6.8290
3 34 19.4196 2.5071 3.3817 -6.8929
Ath " 19.4229 2.5074 3.3804 -6.8994
18t Iter 19,1783 2.4796 3.4583 -6.3018
2nd ¢ 19,2104 2.4666 3.2753 -6.9391
4 134q v 19.4136 2.4840 3.3075 -7.0015
4t v 19.4179 2.4843 3.3064 -7.0077
18t Iter 19.1807 2.4859 3.4796 -6.3319,
2nd ¢ 19.215% 2.4779 3.3133 -6.9935
5 f5a o 19.4198 2.4981 3.3457 -7.0545
4th " 19.4245 2.4986 3.3446 -7.0602
18t Iter 19.1798 2.4824 3.4676 -6.3489
2nd " 19.2140 2.4714 3.2916 -7.0244
& |54 = 19.4189 2.4890 3.3233 -7.0849
4th v 19.4238 2.4891 3.3221 -7.0905
Exact [5) 19.20 2.44 3.32 -6.97
Multiplier 1074, q a4/ 10-2. 4 a2 10-2.q a2 10-2.q a2
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Table 3. Analysis of square plate clamped on four Bides subject tao uniform load

of intensity q. Pig.2-b (First Iteration only) y = 0.3
B0 of Central Central Central My at My at
Terms Deflection Mx My Middle of AB|Middle of AC
1 12.9919 2.4561 2.7615 ~3.6605 -5,3887
2 12.6534 2.3174 2.3431 -4.2427 -4.9660
3 12.690 2.3504 2.4526 -4.3975% ~5.0747
4 12.6823 2.3375 2.4094 -4.4586 -5.0329
5 12.6847 2.3438 2.4307 -4 .4887 -5.0526
& 12.6838 2.3403 2.4187 -4.5056 -5.0422
Exact [5) 12.60 2.3 2.1 -5.13 -5.13
Multiplier| 10-%.q a4/B 10-2,q a2 10-2,q a2 10-2.q &% 10-2,q a2

Table 4. Study of convergence. Square plate clamped on four sides subject to

unifeorm load of intensity q. Fig. 2-b g = 0.3
X0 Ef Iteration Central Central Central M at Mx at
Terms Order Deflection My My Middle of AB|Middle of AC

18t Iter. 12.6901 2.3504 2.4526 -4,3975 -5.0747

2nd " 12.6803 2.3303 2.3140 -4.9312 -5.0633

3 Ja " 12.7998 2.3532 2.3369 -4,9796 -5.0800
4th 12.8019 2.3536 2.3356 -4.9861 ~5.0832

1t Tter 12.6823 2.3375 2.4094 -4.4586 ~-5.0329

_ 2nd ™ 12.6679 2.3084 2.,2358 -5.0445 ~-5.,0838
4 |34 12.7902 2.3298 2.2574 -5.0960 -5.1097
4sh " 12.7930 2.3301 2.2560 -5.1028 -5,1114

18t Tter 12,6847 2.3438 2.4307 -4 .4887 -5.0526

2nd " 12.6728 2.3198 2.2752 -5.1010 -5.0632

3 |3 -» 12.7961 2.3436 2.2982 ~5.1536 -5.0821
4th ¢ 12.7992 2.3442 2.2970 ~5.1603 -5.0829

15t Iter 12.6838 2.3403 2.4187 -4.5056 -5.0422

2nd " 12.6712 2.3133 2.2526 -5.,1332 -5¢0792

6 134 = 12,7947 2.3349 2.2742 -5.1868 -5.1040
4th " 12.7981 2.73351 2.2728 -5.1934 -5.1053

Exact (5] 12.60 2.3 2. =5.13 -5.13

Multiplier 10-4.q a4/B 10“2fq aZg 10-2.q a< 10-2.q a2 10-2.q 82
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The analysis of rectangular plates with different ratios of
rectangularity £/a is achieved. The results of the second iter-
ation solution using five terms (nine harmonics) are obtained.
The results of symmetrical cases of edge conditions Pig.(2-a,b)
are glven in Tables 5 and 6. Table 7 gives the results for rec-
tangular plates clamped on three sides, simply supported on the
four%h.aida.FigJ(E—cg.

Table 5. Analysia of rectangular glatea clamged on sldes AB and CD,
8imply supported on the two other gides subject to uniform

load of intensity q. Fig.2-a (2nd Iter.,5 Terma) Y = 0.3
!/a Central Central Central My at
Defléection Mx My Middle of AB
2.0 26.1905 1.4248 4.,2280 -8.4008 P.5.1tar.
* 26.00 1.42 4.20 -8.42 Exact [5)
1,5 24.8473 1.8026 4.084 -8,1977 F.5.1ter.
: 24,70 1.79 4.06 -8.22 Exact
1.0 19,2155 2.4779 3.3133 -6.9935 | F.5.Iter,
. 19.20 2.44 3.32 -6.97" Exact
0.5 B4.1469 8.7282 4.5891 =-11.9938 F.5.Iter.
* 84.40 8.69 4.74 -1, 9N Exact
0.3333 116.6761 11.4962 4.1846 -12.003% F.5.1ter.
‘ 116,80 11.44 4.19 -12.46 Exact
Multiplier|1074.q L4/B] 1072.q 12 | 107%.q 12 [1072.q 12

L is the smallest value of ¢ and a.

Table 6. Analyeis of rectangular plates clamped on four sides subject to
uniform load of intensity q. Fig.2-b (2nd Iter.,5 Terms)y = 0.3

c/ Central Centrﬁl Central My at | at
®  IDeflection Mx My Middle of AB|Middle of AC
5.0 25.3979 1.5902 4.1358 -8.2526 -5.7121  |P.§.Iter.
. 25.40 1.58 4.12 _8.29 ~5.71 Exact [51
- 22.0254 2.0487 3.6912 -7.5206 ~5.6820 |P.S.Iter.
. 22,00 2.03 3.68 ~7.57 -5.70 Exact
1.0 12.6728 2.3198 2.2752 -5.1010 -5.0632 |F.S.Iter.
- 12.60 2.7 2.1 -5.13 -5.13 Exact
0.5 25.3700 4.1613 1.5825 ~5.4857 -8.2074 |P.S.Iter.
' 25,40 4.12 1.58 -5.71 -8.29 Exact
Multiplier|10-4.q L4/B| 10-2,q L2 | 10-2.q L2 |[10-2.q 12 10-2,q L2

L 18 the emallest value of ¢ and a
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Table 7. Analysis of rectangulsr plates simply supported on side BD,
¢lamped on the three other sides subject to uniform load of

intensity q. PFig 2-¢ (2nd Iter,,5 Terms) ¥ o= 0.3
/s Centrel M at ' Mx at
Deflection MiddYe of AB Middle of AC
2.0 25.7262 -8.3215% -5.7046 F.5.Iter,
- 25.70 ~8.37 -5.71 Exact (5]
1.3333 21.5867 ~-T.4902 -5.6605 P.5,.1ter.
: 21.50 -7.50 . =-5.7 Exact
1.0 15.6447 -5.9942 -5.3890 F.S5.Iter.
15.70 -6.01 -5.51 Exact
28.4645 ~T.2245% -8.1271 F.3.Iter.
0-75 | 28l60 -7.30 _8.38 Exact
0.5 44.6154 ~T.4717 -11.,1538 F.5.1ter.
44.90 -7.86 -11.48 Lxact
tultiplier 1074.q 148 | 1072.4 12 10-2.q L2

L is the amallest value of £ and a

CONCLUSION

New development of the finite strip method is presented for the
analysis of elastic plates in bending. In order to overcome the
coupling property of the static equilibrium equations in case of
basic functions other than trigonometric series, a simplified
iteration procedure has been developed. The procedure is applied
to the basic function of clamped - clamped end condition. The
results demonstrate rapid convergence and close agreement with
those of the known exact solution. The procedure has the advan-
tage of using only relatively small overall stiffness matrix,
thus requiring emall core storage and short computer time for
execution. Although the present application of the procedure is
carried out for the basic function of clamped - clamped edge
condition, it is also possible to extend the same technique for

the other basic functions.
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APPENDIX I

Numerical values of Integrals I+,I2 and Ix

I, = f°® Y, ¥ dy = a,(of1 Y ¥,d¥) = I .a (m «1,2,3,. n x1,2,3,.)
[1.035936 0 0 0 0 0 0
0 0.998447 0 0 0 ) 0
0 0 1.000067 0 0 0 0
f1 - ) 0 0 0.999997 0 0 0
0 0 0 0 1.000000 0 0
0 0 0 0 0 0.999999 Y
0 0 ) 0 o) 0 1,909009J
I2 = Ora mend}' * a { ‘r1 mendy) E fz/!lj' {m = 1’2'.3'. n - 1’2'3,-)
[518.5343 0 0 0 0 0 o ]
0 2[31.622 0 0 0 0 e
0 0 14620.70 0 0 ) 0
i2 = o ) ) 9943.70 0 ) )
0 o ) 0 89135.41 0 0
0 0 ) ) 0 173881.3 0
| 0 ) o 0 0 0 108202, 4/
;o . 1 ‘. _ -
Iy = % Y, Y dy - a.( f Yp¥ndy) = I./a (m=1,2,3,. n=1,2,3,.)
[12.74442 - 0  _9.904159 0 ~—7.750952 ' 0 =6.216730
¢ ' 45,978 0 ~17.11558 0 ~15.18276 0
9.904159 0 98.91928 0 ~24.35159 0 -22,98607
i3 - 0 -17.11588 0 171.5852 0 «31.27641 )
.7 .750952 0 ~24.35159 0 263.5980 o] ~38.03018
0 ~15.18276 0 ~31.27641 ) 376.150] )
b6 . 216730 0 «22.98607 0 ~-38.03018 o} 508.0413]

oj’ Ymdy=1’7 - (-1)" f-;- (m=1,2,3,...}
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Stiffness Matrix

s‘l
Sy
23
B b 4
[§]mn’ 3 a3|s
k!
512
3
514
where
5, = ( 9172736 X1,
S, = { 4586368 ii,
Sy = ( 873600 Ri1
s, = ¢ 9a280 A,
S5 = { 2808000 A,
S, = { 591232 Xi
6 Al
S, = ( 74880 B3I
Sg = ( 312000 if,
Y
Sq = (43680 A,
Sio = ( 7488 ﬂi1
4 = (~9172736 AL
Syp = ( 4586368 A1,
814 = (-B73600 ii1
S, = (98280 Al
Syg 5 (1778400 ii1
S, = (-282360 ii1
819 = ( 23400 A1,
& -
S;g = {-3120 r,
e
519 = (=T800 AI1
%
820 = {-280R >I.|
=

Original Loard Vector

P a 1
{Pod = qb "y day {5

88 (L™

=qTﬂ1

Ss
5¢ Sg
87 S9 S10 Symmetrical
=512 Sy3 =84 S
S15 -5y 847 -5, 35
S Sig “S19 55 =8¢ 5y
S17. S99 Spo -84 Sq -Sg
+145880 1, +1176000 ii3 )
+27180 I, +(227640+360360v) 315 )
+5480 1, +38640 §§3_)
+766 I, +4200 Ay
+6600 I, +216000 3y
+14T0 ?2 +4 4280 ?13 )
+216 ;2 +6000 T§3 )
+344 52 +11RR0 §{3 )
+52 1, #1776 i}3 )
+8 I2 +288 EEJ )
+34300 ;2 -1176000 A5 )
-11430 1, +227640 A5
+3100 I, -38640 {fg )
-521 ;2 +4200 ??3 )
-3730 I, +11640 X3
+995 ;2 +5640 §§3 )
-165 I, -1800 Ay )
+262 T, +3920 §§3 )
-43 I, -a76 SR
-7 I, -180 50
(dietributed Load q )

3 1 1 1 =23 1

8 47 ©TBO 7 3?28 7z
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NOTATION

W = tranaverse deflection.

I - length of the strip.

o] = width of the strip.

£ = lergth of the plate.

E = modulus of elasticity.

t = thickness of the plate.

Y, = poisaon’s ratio.

B = flexural rigidity.

Ym = basic function.

[C1 = transformation metrix.

[S1 = stiffness matrix of the strip.

54 = matrix contains the diagonal submatrices.
‘8p1 = matrix contains the non diagonal submatrices.
{D3 = nodal line parameters of the strip.

{Fol = original load vector of the strip.

{Fx] = modified load vector of the strip.

[Sa) = overall stiffness matrix |

{D} = nodal line parameters of the assembled strips.
{Fo} = original load vector ¢f the assembled strips,
'{Fkl = modified load vector of the assembled strips.
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