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Abstract: Vibration-based condition monitoring is a well-accepted tool for diagnosing 

rotating machines faults. Measuring vibration on the bearings uses multiple sensors and needs 

skilled personnel for data collection, processing and interpretation. An analytical model for 

the alternate method of On-Shaft Vibration Measurement is presented. The model is validated 

through FE and experimental analysis. The results show that the model efficiently represents 

the measurement process. 
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1. Introduction 
 

1.1 Vibration-Based Condition Monitoring 
Rotating machines form the backbone of almost all mechanical systems. Usually, wherever 

motion is required, a rotating machine would exist running smoothly and efficiently to 

provide the motive force. 
 

For Vibration-based Condition Monitoring (VCM), the vibration sensor is placed on the 

bearing pedestals and the shaft vibration is indirectly measured. In some cases, it is directly 

measured from the shaft itself. Mitchell [1] discussed measurement arrangements for 

commonly monitored machines (centrifugal pumps, axial compressors, fans, gas generators, 

etc.). 
 

These setups lay within On-Bearing Vibration Measurement (OBVM) which is a reliable 

condition monitoring tool, however some limitations are observed: 

a) Highly experienced personnel are required to collect and analyze the data. 

b) On-bearing sensors are generally affected by structural noise propagating through the 

machine hull. 

c) A considerable space is needed for the system components and cabling. 

d) The system capital and maintenance costs are relatively high. 

e) One of the ways to enhance the Faults Diagnosis (FD) is to increase the number of 

sensors [2]. However, this necessitates exhaustive signal processing work. 

f) More research is required to identify robust and unique fault features especially when 

multiple faults coexist. 
 

For these reasons, vibration analysts have been dreaming of a method to capture the shaft 

vibration directly without being affected by bearing and structure imperfections, journal 

bearing damping, structural noise, etc. Also, reduction of the installed sensors merely 

minimizes the system maintenance cost and the signal processing.  
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1.2 On-Shaft Vibration Measurement (OSVM( 
Conceptually, OSVM seeks acquiring the vibration at its source. That is the rotor (for rotor-

related faults) where its amplitude has its maximum value. Accordingly, faults symptoms are 

expected to be much more detectable. A sensor fixed to the shaft rotates by nature; see Figure 

1(a). This means that a single sensor collects data along the two axes forming its plane of 

rotation. Theoretically, a single on-shaft sensor may replace two or four sensors per bearing. 

 

 
Figure 1: Sensor positions in vibration-based condition monitoring: 

(a) OBVM and (b) OSVM. 

 

OSVM started with torsional vibration telemetry measurement systems. One of the early trials 

was introduced by Lees et al. [3]. They apply a strain gauge with a telemetry unit that 

transmits its output to a stationary receiver. The receiver antenna is usually a circular ring 

surrounding the rotor at the transmitter position. These systems are well accepted in industry 

[4, 5] and gave better insight into the shaft vibration. However, the cumbersome setup 

hindered their permanent installation on rotors. More importantly, many faults express 

themselves in the lateral vibration rather than the torsional vibration one. The latter is known 

to be less informative than the former from the faults diagnosis point of view. Nevertheless, 

torsional vibration gives good gear faults diagnosis [6]. 
 

The continuing advancement in sensor and data acquisition hardware technologies enabled 

researchers to attach different types of vibration sensors, including accelerometers, along with 

miniaturized Wireless Sensor Nodes (WSN) on the rotor. The lateral vibration is now 

measurable which promises a wide range of faults to be detected. 
 

A major point to be considered for OSVM is the rotary motion of the sensor. For OBVM, 

both accelerometers are aligned orthogonal to each other and keep their directions with time. 

On the contrary, an accelerometer on the shaft will keep alternating between two orthogonal 

planes. Instead of having two independent lateral vibration channels, we would get two 

largely similar ones each of which contains coupled (horizontal and vertical) vibration 

responses. This leads us to an inevitable question: "To what extent can we use OSVM in rotor 

dynamics analysis and faults diagnosis work?" In order to find an answer for this question 

some researchers investigated OSVM. 
 

Arebi et al. [7] used an on-shaft accelerometer and an encoder to measure the tangential 

acceleration and the instantaneous angular speed respectively. They monitored the changes in 

the harmonics amplitudes with speed and misalignment severity and used it successfully to 

detect rotor misalignment. However, they noticed incomplete conformance between the 

harmonics from the accelerometer and those from the encoder. 
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Another work introduced by Baghli et al. [8] in order to consider the rotational speed 

variation is measured by the tangential on-shaft sensor. The variation was correlated with the 

net torque (difference between electromagnetic and load torques), hence can be used in the 

diagnosis of motor faults. Additionally, they used the radial sensor output to estimate speed as 

it is affected by the centrifugal acceleration. The estimated speed matched with that measured 

using an encoder limited by the measurement range of the radial sensor to 350 rpm. It also 

showed higher fluctuations since it is proportional to the squared rotational speed. To 

eliminate the gravity effect, they used two opposing micro-electro- mechanical systems 

(MEMS) accelerometers soldered to a Printed Circuit Board (PCB) surrounding the rotor. At 

any instant of time, the gravity field affects both accelerometers with the same magnitude but 

with different signs. The direct addition of their outputs produces a gravity free signal. This 

arrangement reduces the applicability of OSVM especially for large diameter rotors. 
 

Thompson [9] used a MEMS accelerometer bonded to a fan blade to monitor the centrifugal 

acceleration imposed on it. He used only a radial accelerometer and therefore was limited to a 

high range and low sensitivity accelerometer type. 
 

As well as accelerometer-based OSVM systems, Sloetjes et al. [10] bonded a strain gauge to a 

rotor and used the measured vibration amplitude as an input to a vibration reduction system. 

Although this may be the only article that discussed the critical speed crossing while using 

OSVM, they did not analyze the vibration spectrum and consequently very important 

observations was missed. 
 

Reviewing the research on OSVM the following drawbacks are identified: 

a) Most studies reported limited observations and did not consider how the measurement 

process works. 

b) OSVM has not been applied in rotor dynamics analysis of lateral vibration. 

c) Most of test rigs used have high critical speeds. This prevented important observations 

being made. 
 

In this study, the above mentioned drawbacks are considered, disadvantages are turned into 

advantages and a better understanding of OSVM is established. 

 

 

2. Test Rig and FE Model 
 

2.1 Test Rig 
The test rig (Figure 2) is a modified version of the rig used earlier [11, 12] to investigate 

OSVM during constant speed [11] and during run-up [12]. In Elnady et al. [11], the rotor used 

to be short and mounted on rigid supports (with a critical speed of 68 Hz). In that 

configuration, the signal produced by the on-shaft sensor was only due to the shaft rotation 

with negligible rotor vibration. This proved the feasibility of the proposed OSVM system and 

also revealed the gravity effect within the sensor output. 

 

In Elnady et al. [12], the rotor length has been increased to attain lower critical speeds (34 and 

35 Hz in horizontal and vertical directions respectively). Upon conducting run-ups, the 

response amplifications upon crossing integer fractions of the critical speeds where very clear. 

However, response modulation was observed and reported as a major finding. 
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Figure 2: Test rig. 

 

In the current work, it is required to get critical speeds less than the maximum speed of the 

rotor (25 Hz). This is done by two measures; increased pedestal flexibility and increased rotor 

mass. Flexible supports are used to mount the bearing on the pedestals [13]. Additional discs 

are used to increase the rotor mass. These two modifications yielded two critical speeds of 

11.8 and 13.66 Hz in the vertical and horizontal directions respectively. 

 

2.2 FE Model 
The purpose of this FE modeling is to build a mathematical model for the test rig that can be 

used later in discussing the OSVM process through comparison between simulated and 

experimental responses.The procedure starts by modeling the rig components individually 

[13]. Figure 3 depicts a graphical representation of the FE model. The associated mass and 

stiffness matrices are then computed and assembled before being substituted in the overall 

equation of motion. 

 
Figure 3: Graphical representation for the FE model 

 

Throughout the modeling process, all the materials are assumed to be isotropic. The shaft has 

a slender geometry, therefore, its rotary inertia and deformation due to shear can be neglected. 

The Euler-Bernoulli beam theory is adopted to build its stiffness and mass matrices. Discs are 

considered rigid and have no effect on the shaft stiffness. The shaft is discretized into 50 

elements and each component occupies one node. The wireless module is modeled as a point 

mass. 
 

Coupling Bearing 

 Additional discs 

Sensor–carrying- 

disc 

On-bearing 

accelerometers 

On-shaft 

accelerometers 

Bearing 

 

Wireless module 



Paper: ASAT-15-168-ST 

 

 

5 

To describe the motion of each node in the model in terms of its spatial coordinates, it is 

necessary to define a generalized coordinates vector that includes sufficient degrees of 

freedom. Each node is free to translate and rotate along two axes (x and y), hence a four 

element vector is sufficient. 

 

 

 

 

 

where u and θ are the translation and rotation coordinates for the x-axis respectively and v and 

ψ are the translation and rotation coordinates for the y-axis respectively.  

 

According to the coordinate system, a two-node shaft element can be represented as shown in 

Figure 4, where ω is the shaft angular speed and the suffix number for u, v, θ and ψ denotes 

the node number. 

 
Figure 4: Geometry of the used shaft element. 

 

 

For each element, the mass Me and stiffness Ke matrices are calculated according to the 

Euler-Bernoulli beam theory as: 
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where  

ρe density 

Ae cross section area 

le length 

Ee Young’s modulus of Elasticity 

Ie second moment of area 

 

A disc occupies only one node, consequently a 4*4 matrix Md is sufficient to describe its 

mass and inertia effects.  

 

 

 

 

 

where 

md, Id disc mass and diametral moments of inertia 

The disc has no contribution to the overall stiffness matrix, however its inertia adds some 

effect to the gyroscopic matrix Gd 

 

 

 

 

 

where 

Ip disc polar moments of inertia 

Obviously, the point mass has no moment of inertia, its mass matrix is: 

 

 

 

where 

mp point mass’s mass 

 

The bearing units allow the inner race to swivel; hence the angular stiffness terms are 

neglected. The cross stiffness terms are also neglected. The bearing stiffness matrix Kb is 

constructed as follows: 

 

 

 

where 

kuu, and kvv translational stiffnesses in x and y directions respectively 
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The bearing damping matrix Cb is constructed as follows: 

 

 

 

 

where 

cuu, and cvv damping in x and y directions respectively 

For the coupling, the angular stiffness is considered. The coupling stiffness matrix Kc is 

constructed as follows: 

 

 

 

 

 

 

where 

kuu, and kvv translational stiffnesses in x and y directions respectively 

kθθ, and kψψ rotational stiffnesses in x and y directions respectively 

 

The overall model matrices can be built by assembling the individual components ones. The 

shaft is composed of 51 nodes, which results in 204 dofs (degrees of freedom). Hence, a shaft 

matrix would be of size 204*204 elements. The rest of the rig elements are added to their 

respective nodes according to their relative positions on the rotor. The model will be adapted 

to match the rig in configurations A and B only. 

 

The overall equation of motion can be written as [14]: 

 

    ̈( )   (     ) ̇( )      ( )   ( )     (10) 

 

where 

M mass matrix 

C, G damping and gyroscopic matrices 

K stiffness matrix 

F(t) force vector 

 

The bearing and coupling damping and stiffness terms are estimated through modal testing of 

each component separately. The equation of motion is solved by a MATLAB code [14] which 

transforms it into a set of ordinary differential equations and solves them using the MATLAB 

function "ODE45". 

 

 

3. Method 
In this section, an analytical model for the OSVM process is derived. A plane is assumed to 

gather the sensor (S), the disc center of gravity (CG), and the disc geometric center (C).  

 

Figure 5 represents this plane with the applicable accelerations and reference planes. 

The shaft geometry center (C) rotates around center of rotation (O) and the sensor is 

positioned at point S. The gravity field (G) acts downward. The shaft whirls in an inertial 

frame (X, Y). A rotating frame (R, T) shares the same origin with the inertial one and is 

aligned along the line connecting the shaft center to the sensor. 
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Figure 5: OSVM model geometry 

 

where 

CG shaft gravity center 

r sensor radial distance from the shaft center 

Θ unbalance phase 

δ sensor setting angle  
 ̈   ̈  radial and tangential accelerations measured at the sensor position in the rotating frame 

(including gravity) 
 ̈   ̈  radial and tangential accelerations at the shaft geometric center in the rotating frame 

  ̈  ̈ horizontal and vertical accelerations at shaft geometric center in the inertial frame 

 

The objective is to predict the acceleration response at the sensor position in the rotating 

frame (R, T) given the acceleration response at the shaft center in the inertial frame (X, Y). 

We start from the displacement response at the shaft center in the inertial frame (X, Y) since it 

is the FE model output. This is done over four steps: 

1. Calculating the velocity and acceleration responses at the shaft center in the 

inertial frame. 

2. Transforming the response to the rotating frame using the axes rotation matrix. 

3. Moving the calculation point to the sensor location using the principle of relative 

motion. 

4. Adding the gravity effect. 

 

These steps combine to form the following equation:  
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where U and V are acceleration response amplitudes at shaft center in X and Y directions 
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4. Experiments 
A run up is conducted up to a speed of 950 rpm along 2 minutes; Figure 6 shows the time 

waveforms for OBVM and OSVM. 
 

OBVM is measured in the horizontal, On-Bearing Horizontal (OBH), and vertical, On-

Bearing Vertical (OBV), directions. OSVM is measured in the tangential, On-Shaft 

Tangential (OST), and radial, On-Shaft Radial (OSR), directions. OBVM shows well 

separated and almost uncoupled horizontal and vertical responses. On the other hand, both on-

shaft sensors are affected by critical speeds equally. Moreover, OSVM shows high influence 

of gravity for OST and OSR as well as centrifugal acceleration for OSR. 

Figure 7 shows the waterfalls of OBVM where the unbalance response clearly appears at 1X 

with peaks occurring as the speed crosses the critical values. Considerable 2X and 3X orders 

are also present. Figure 8 represents the waterfalls of OSVM where a nearly constant 1X 

order due to gravity can be detected. The resonances due to unbalance appear at the 2X 

harmonic. The DC components are excluded from the waterfalls. Both sensors are influenced 

when the speed passes the critical values. 
 

Resampling the signal at constant angular increments [15] enabled extending the analysis to 

the orders domain which facilitates the extraction of the orders of interest for further 

examination. 
 

Figure 9 shows 1X order for OBVM. Both horizontal and vertical responses are typical ones. 

Figure 10 shows 1X and 2X orders for OSVM. The 1X order is mainly due to gravity. The 2X 

order reflects the vibration increase across critical speeds. Their amplitudes are identical with 

some fluctuations at the critical speeds. Their phases are identical with 90
o
 shift. The sudden 

phase change corresponding to each critical speed appears in the phases of both sensors. 
 

 

5. Discussion 
The FE model described in Section 2.2 and the analytical model described in Section 3 are 

validated against experimental results. 
 

Upon solving the equation of motion (Equation 10), the unbalance response is obtained as 

shown in  

Figure 11. Compared against the experimental one in Figure 9, the critical speeds 

(characterized by amplitude amplifications and phase shifts) occurred at almost the same 

speeds noticed in the experimental run up. The sharp peaks and sudden phase transitions 

noticed in  

Figure 11 may indicate slightly lower damping, however, this is expected to give better 

decoupling between the horizontal and vertical responses. The FE model simulated the 

unbalance amplitude and phase to an acceptable extent.  
 

To validate the analytical model, Equation (11) is applied to the time waveforms of the 

unbalance response. Figure 12 shows the time waveforms of the simulated OSVM, Figure 13 

shows the waterfalls (without DC components) and Figure 14 shows the 1X and 2X orders. 
 

In both the experimental (Figure 6 c and d) and simulated (Figure 12) time waveforms, the 

centrifugal acceleration is clearly affecting the radial sensors output and gravity is present in 

all sensors. Inspecting the waterfalls (Figure 13), gravity is again localized at the 1X order 

and the unbalance response at the 2X order. These two observations are the same as in 

Figure 8. The only difference is the absence of the ridges at the 3X order. This may be 

referred to the fact that only unbalance is included in the FE model with almost no 

nonlinearities. 
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Figure 6: (a-b) Time waveforms of experimental OBVM (horizontal and vertical), and 

(c-d) OSVM (tangential and radial). 
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Figure 7: Waterfalls of experimental OBVM: (a) Horizontal, and (b) Vertical. 
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Figure 8: Waterfalls of experimental OSVM: (a) Tangential, and (b) Radial. 
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Figure 9: 1X order of experimental OBVM: (a) Amplitudes, and (b) Phases. 

 

 

The 1X orders amplitudes and phases in Figure 14 (a-b) show good matching to the 

experimental ones in Figure 10 (a-b). The amplitudes and phases of the 1X order are nearly 

constant along the whole speed range. This indices that the unbalance response has absolutely 

nothing to do with the 1X order. 

 

The simulated 2X orders amplitudes, Figure 14(c), show typical responses in the radial and 

tangential sensors. This contrasts to the experimental responses in Figure 10 c. This may be 

referred to additional effects from the 3X order noticed in Figure 7 which contributes to the 

resultant 2X order when measured using OSVM. The simulated 2X phases, Figure 14(d), 

show good matching with the experimental ones in Figure 10(d). The scattered readings at 

very low speeds may be due to resampling errors when moving to the orders domain. These 

erroneous points me be enhanced using higher sampling rates. 

 

These comparisons between experimental and simulated OSVM recommend the derived 

analytical model to represent the OSVM process. Moreover, the following guidelines are 

expected to govern the OSVM process: 

1) As the sensor rotates, modulation takes place where each order of OBVM splits into 

two parts at +/- the rotational speed. For example, the nominal 1X order contributes to 

the modulated DC and 2X orders, the nominal 2X order contributes to the modulated 

1X and 3X orders and so on.  

2) The DC component of OSVM is influenced by changes in both amplitude and phase 

of the 1X order in OBVM. 

3) Although OBVM shows uncoupled horizontal and vertical responses, OSVM provides 

coupled response. Each order in OSVM appears in both sensors OST and OSR with 

equal amplitudes and phases separated by 90
o
. 
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Figure 10: 1X and 2X orders of experimental OSVM: (a) 1X amplitudes, (b) 1X phases, 

(c) 2X amplitudes and (d) 2X phases. 
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Figure 11: 1X order of simulated OBVM: (a) Amplitude (horizontal and vertical), and 

(b) phase (horizontal and vertical). 

 

 

6. Conclusions and Future Work 
In this work, experimental and FE models for a simple rotating machine are proposed. The 

comparisons between unbalance responses from FE and experimental run-ups show good 

matching. This suggests the FE model to be a good representation for the experimental test 

rig. 

 

A simple analytical model is suggested to describe the OSVM process. The model is validated 

through experimental and FE results. The successful validation of the proposed model adds to 

the understanding of OSVM. The model also establishes some guidelines to help 

understanding how the OSVM process works. 

 

We are currently working on implementing OSVM to diagnose rotating machine faults. The 

clear vibration signal and low sensitivity to noise from surrounding machines are expected to 

result in robust fault features. 

 

Another suggestion for future work, in the case of multiple rotors, the number of on-shaft 

sensors may be optimised to acquire vibrations of adjacent rotors with the minimum number 

of sensors.  
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Figure 12: Time waveforms of simulated OSVM: (a) Radial and (b) Tangential. 

 

 

 

 

 

 
Figure 13: Waterfalls of simulated OBVM: (a) Tangential, and (b) Radial. 
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Figure 14: 1X and 2X orders of simulated OSVM: (a) 1X amplitude, (b) 1X phase, (c) 2X 

amplitude and (d) 2X phase. 
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