Assiut University Journal of Chemistry (AUJC) 44(2015)1-12

Journal homepage : <u>www.aujc.org</u>

ISSN 1678-4919

Vol(44)	No(1)	2014

Full Paper

Synthesis of new pyrazolo[3,4-*b*]pyridines and related fused tricyclic systems with possible biological activities

Abdu E. Abdel-Rahman,¹ Eman A. Thabet,² Elham A. Al-Taifi,³ and Etify A. Bakhite¹

¹⁾Department of Chemistry , Faculty of Science, Assiut University, Assiut 71516, Egypt

²⁾Department of Chemistry, Faculty of Science, Taiz University, Taiz, Yemen

³⁾Department of Chemistry, Faculty of Science, Sana'a, University, Sana'a, Yemen

Email: ebakhite@yahoo.com

Article history : Received: 2/6/2014 ; Revised : 26/6/2014 ; Accepted : 29/6/2014 ; Available Online : 1/6/2015;

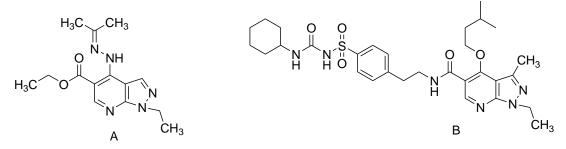
Abstract

The reaction of 5-acetyl-3-cyano-4-(p-methoxyphenyl)-6-methylpyridine-2(1H)-thione (1) with methyl iodide gave 2-methylthio derivative 2. Heating of 2 with hydrazine 5-acetyl-3-amino-4-(p-methoxyphenyl)-6hydrate produced the target methylpyrazolo[3,4-b]pyridine (3). Reaction of 3 with some reagents, namely acetylacetone, ethyl acetoacetate, diethyl malonate and ethyl α -cyano- β -ethoxyacrylate were carried out and their products were identified. Diazotisation of aminopyrazole 3 gave the isolable diazonium salt, 5-acetyl-4-(p-methoxyphenyl)-6-methylpyrazolo [3,4-b] pyridine-3-diazonium chloride (10). The reactivity of 10 was checked by coupling with β -naphthol whereby the azo dye **11** was isolated. Also, coupling of **10** with active methylenes such as: barbituric acid, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1,3-diphenyl-2-pyrazolin-5-one, malononitrile, ethyl cyanoacetate, cyanothioacetamide and/ or phenacylcyanide furnished the corresponding hydrazono compounds 12, 13a,b and 14a-d. Cyclization of 14a-d into the corresponding 4-aminopyridopyrazolotriazines 15a-d was achieved in boiling acetic acid. In contrast, reaction of 10 with acetyacetone or ethyl benzoylacetate furnished pyridopyrazolotriazines 17a and 17b directly.

Keywords: Pyrazolopyridines, hydrazono compounds, pyridopyrazolopyrimidines, barbituric acid, pyridopyrazolotriazines

http://www.aun.edu.eg

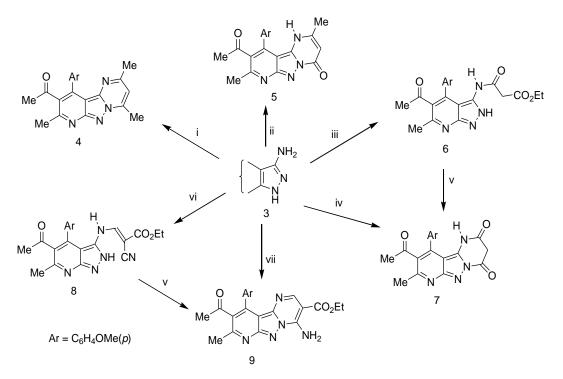
1. Introduction


Several pyrazolo[3,4-b]pyridine derivatives have been the subject of chemical and biological studies on account of their pharmacological properties [1-4]. Some derivatives found have applications as antimicrobial [5] antiviral [6], antiinflammatory [7], analgesic [8], and antitumor agents [9]. In addition, pyrazolo[3,4-b]pyridines represent the skeleton of pharmaceuticals possessing significant biological activities as represented by Etazolate EHT-0202 (A) and Glicaramide (B) (Scheme 1) [10,11]. Encouraged by the above facts and as a continuation of our program dealing with the development of bioactive heterocyclic derivatives [12-16], the present investigation planned was to synthesize new pyrazolo[3,4-b] pyridines, pyridopyrazolopyrimidines pyridopyrazolo-triazines as well as hoping to get compounds with good medicinal and biological importance.

2. Results and Discussion

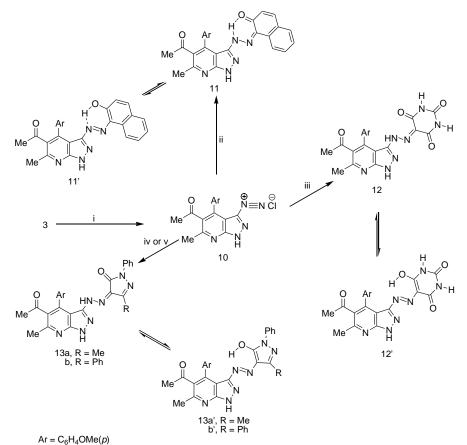
Our approach to the synthesis of the titled compounds started from 5acetyl-3-amino-4-(p-methoxyphenyl) -6-methyl-1H-pyrazolo[3,4-b] pyridine (3) which was prepared according to scheme 2. Thus, the reaction of 5acetyl-3-cyano-4-(p-methoxyphenyl) -6-methylpyridine-2(1H)-thione (1) with methyl iodide in the presence of sodium acetate gave 2-methylthio derivative 2. Heating compound 2 with hydrazine hydrate under neat conditions led to the formation of the 3-aminopyrazolopyridine target 3. When compound 3 was heated with acetylacetone in ethanol containing few drops of acetic acid, 9-acetyl-10-(p-methoxyphenyl)-2,4,8-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidine (4) was obtained. Also, the

reaction of 3 with ethyl acetoacetate under the same (above) conditions produced the corresponding pyridopyrazolopyrimidinone derivative 5 (Scheme 3). Refluxing compound 3 with diethyl malonate in acetic acid for one hour led to the formation of the ester 6. When the reaction time was increased to 3 hours, the product identified as 9-acetyl-10-(pwas methoxyphenyl)-8-methylpyrido [2',3':3,4]pyrazolo[1,5-a]pyrimidine-2,4(1H,3H)-dione (7). Cyclization of 6 to 7 was achieved by boiling in acetic acid for 2 hours (Scheme 3). Similarly, heating compound 3 with ethyl α cyano-β-ethoxyacrylate in ethanol produced the cyanoester 8. Cyclization of the latter compound to ethyl 9acetyl-4-amino-10-(*p*-methoxyphenyl) -8-methylpyrido[2',3':3,4]pyrazolo [1,5-*a*]pyrimidine-3-carboxylate (9) was achieved upon heating with acetic acid. Compound 9 was also obtained directly when the reaction of 3 with ethyl α -cyano- β -ethoxyacrylate was performed in boiling acetic acid (Scheme 3).


of 3-aminopyrazolo-Diazotisation pyridine 3 using sodium nitrite and HCl at 0-5°C produced the diazonium chloride 10 which seems to be stable conditions. under normal The reactivity of the diazonium chloride 10 was firstly checked by coupling with β -naphthol, in a cold and stirred ethanol solution containing sodium acetate, wherein the expected azo dye 11 was obtained in a nearly (Scheme quantitative vield 4). According to DFT calculations for similar compounds, the hydrazono tautomer 11 is favored over 11' [17] by 2.1 Kcal.mol⁻¹. The coupling between 10 and barbituric acid in the presence of sodium acetate produced compound 12 (Scheme 4). The 12/12'

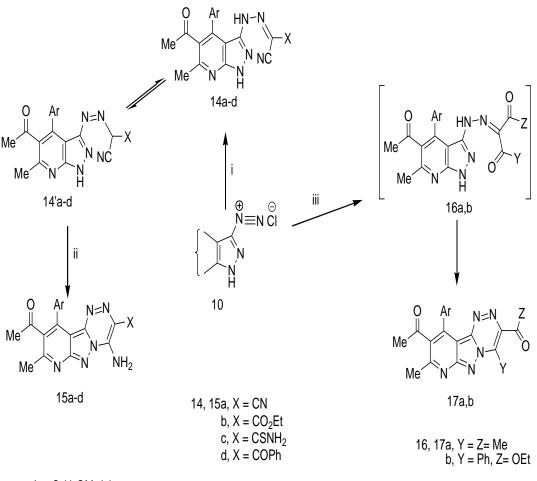
Scheme 1: Chemical structure of Etazolate (A) and Glicaramide (B).

i: Mel/ AcONa; ii: NH₂NH₂.H₂O/ EtOH Scheme 2: Synthesis of compounds **2** and **3**.



i: Ac₂CH₂; ii: MeCOCH₂CO₂Et; iii: CH₂(CO₂Et) AcOH/ 1 h; iv: CH₂(CO₂Et) AcOH/ 3 h; v: AcOH/ 2 h vi: EtOCH=C(CN)CO₂Et/ EtOH; vii: EtOCH=C(CN)CO₂Et/ AcOH

Scheme 3: Synthesis of compounds 4-9


tautomerism is clearly dominated by the barbituric acid moiety, and DFT calculations performed for related compounds [18] have the H-bridged hydrazone tautomer so much in favor over the azo form (>13 Kcal. mol⁻¹) that there cannot be any doubt that the structure molecular must be represented by 12 and not by 12'. Similarly, coupling of the diazonium salt 10 with 3-methyl-1-phenyl-2pyrazolin-4-one or 1,3-diphenyl-2pyrazolin-4-one in a cooled and stirred ethanolic solution containing sodium acetate, produced the corresponding hydrazono compounds 13a,b which may exist predominantly in hydrazono form rather than the azo one (Scheme 4). Moreover, coupling of 10 with other active methylene-containing

reagents such as malononitrile, ethyl cyanoacetate, cyanothioacetamide or phenacylcyanide resulted in formation of the corresponding intermediates Cyclization of the **14a-d**. latter hydrazones 14a-d into 3-substituted 9acetyl-4-amino-10-(p-methoxyphenyl) -8-meth-ylpyrido[2',3':3,4]pyrazolo [5, 1-c][1,2,4]triazines (15a-d)was carried out by refluxing in glacial acetic acid (Scheme 5) .In contrast, coupling between 10 and each of the acetylacetone and ethyl benzoylacetate did not stop at the hydrazono intermediates 16a,b but cyclized directly into the corresponding 4methyl-pyrido[2',3':3,4]pyrazolo[5,1c][1,2,4]triazines **17a,b** (Scheme 5).

i: NaNO₂⁷ HCl/ 0-5C; ii: 2-naphthol/ AcONa; iii: barbituric acid/ AcONa; iv: 3-methyl-1-phenyl-2-pyrazolin-5-one/ AcOH; v: 1,3-diphenyl-2-pyrazolin-5-one/ AcOH;

Scheme 4: Synthesis of compounds 10,11,12 and 13a,b.

Ar = $C_6H_4OMe(p)$

i: X CH₂CN (malononitrile, ethyl cyanoacetate, cyanothioacetamide or phenacyl cyanide) / AcONa; ii: AcOH; iii: YCOCH₂COZ(acetylacetone or ethyl benzoylacetate/ AcONa.

Scheme 5: Synthesis of compounds 14a-c, 15a-c and 17a,b.

3. Experimental

Starting materials were obtained from commercial suppliers and used without further purification. Melting points were determined on a Gallan-Kamp apparatus and are uncorrected. The IR spectra were recorded on a Shimadzu 470 IR-spectrophotometer (KBr; v_{max} in cm⁻¹). The ¹H NMR spectra were taken on a Varian EM-390, 90 MHz spectrometer or on a Jeol LA 400 MHz FT-NMR spectrometer using TMS as internal standard. Chemical shifts are given in δ ppm and coupling constants (*J*) are given in Hz. Electron impact (EI) MS spectra were carried out on a JEOL JMS-600 spectrometer. Elemental analyses (C, H, N and S) were performed on an Elemental Analyizer system GmbH VARIO EL V_{2.3} 1998 CHNS Mode.

3.1. 5-Acetyl-3-cyano-4-(p-methoxyphenyl)-6-methylpyridine-2(1H)thione (1)

It was prepared according to the reported method [13].

3.2. 5-Acetyl-3-cyano-4-(p-methoxyphenyl)-6-methyl-2-methylthiopyridine (2)

A solution of 1 (2.98 g, 0.01 mol), methyl iodide (0.5 ml, 0.01 mol) and sodium acetate trihydrate (1.36 g, 0.01 mol) in ethanol (30 ml) was heated under reflux for 2 h. The precipitate that formed on cooling was collected and recrystallized from ethanol to give white needles of 2. Yield: 3.0 g (96 %); m. p.: 153-154°C. IR: 2200 ^{1}H (C≡N), 1700 (C=O). NMR $(CDCl_3)$ (400 MHz): $\delta = 7.28-7.30$ (d, J = 8.8 Hz, 2H, ArH's), 6.99-7.01 (d, J = 8.8 Hz, 2H, ArH's), 3.86 (s, 3H, OCH₃), 2.66 (s, 3H, SCH₃), δ 2.53 (s, 3H, COCH₃), δ 1.87 (s, 3H, CH₃ at C-6). Anal. Calcd. for $C_{17}H_{16}N_2O_2S$ (312.39): C, 65.36; H, 5.16; N, 8.97; S, 10.27 %. Found: C, 65.15; H, 5.12; N, 9.10; S, 10.02 %

3.3. 5-Acetyl-3-amino-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4-b] pyridine (3).

A mixture of **2** (3.12 g, 0.01 mol) and hydrazine hydrate 99 % (15 ml) was heated under reflux for 6 h.. The reaction mixture was then left to cool and triturated with ethanol (20 ml). The solid product that formed was collected and recrystallized from ethanol to give yellow plates of **3**. Yield: 2.6 g (88 %); m. p.: 318-320°C. IR: 3450, 3300, 3200 (NH, NH₂), 1700 (C=O). ¹H NMR (DMSO-*d*₆) (400 MHz) : δ = 12.25 (s, 1H, pyrazole-NH), 7.27-7.29 (d, *J* = 8.5, Hz, 2H, ArH's), 7.08-7.11 (d, *J* = 8.5, 2H, ArH's), 4.36 (s, 2H, NH₂), 3.82 (s, 3H, OCH₃), 2.49 (s, 3H, COCH₃), 1.90 (s, 3H, CH₃ at C-6). Anal. Calcd. for $C_{16}H_{16}N_4O_2$ (296.32): C, 64.85; H, 5.44; N, 18.91; %. Found: C, 64.61; H, 5.39; N, 19.07 %.

3.4. 9-Acetyl-2,4,8-trimethyl-10-(pmethoxyphenyl)pyrido[2,3:3,4] pyrazolo[1,5-a] pyrimidine (4)

A mixture of **3** (1.5 g, 0.005 mol), acetylacetone (0.6 ml, 0.006 mol) in ethanol (20 ml), a few drops of acetic acid were added. The reaction mixture was refluxed for 4 h. then concentrated and allowed to cool. The precipitate that formed was collected and recrystallized from ethanol to give vellow crystals of 4. Yield: 1.1 g (61 %); m. p.: 227-228°C. IR: 1700 (C=O). ¹H NMR (CDCl₃) (90 MHz): δ7.6-7.8 (d, 2H, ArH's), 7.05-7.20 (d, 3H: pyrimidine-H and ArH's), 4.0 (s, 3H, OCH₃), 3.0 (s, 3H, CH₃ at C-4), 2.8 (s, 3H, CH₃ at C-2), 2.6 (s, 3H, COCH₃), 2.1 (s, 3H, CH₃ at C-8). Anal. Calcd. for $C_{21}H_{20}N_4O_2$ (360.41): C, 69.98; H, 5.59; N, 15.55. %. Found: C, 69.63; H, 5.62; N, 15.38 %.

3.5. 9-Acetyl-2,8-dimethyl-10-(pmethoxyphenyl)pyrido[2,3:3,4] pyrazolo[1,5-a]pyrimidine-4(1H)-one (5).

A mixture of **3** (1.78 g, 0.006 mol), ethyl acetoacetate (0.75 ml, 0.006 mol) and glacial acetic acid (15 ml) was reflux for 5 h. The solid product that formed after cooling was collected and recrystallized from ethanol to give vellow crystals of 5. Yield: 1.5 g (70 %); m. p.: 337-338°C. IR: 3400 (NH), 1700 (2C=O). ¹H NMR in (CF₃CO₂D) (90 MHz): δ 7.0-7.8 (m, 5H: pyrimidinone-H and Ar'H), 4.0 (s, 3H, OCH₃), 3.0 (s, 3H, CH₃ at C-2), 2.6 (s, 3H, COCH₃), 2.1 (s, 3H, CH₃ at C-7). Anal. Calcd. for C₂₀H₁₈N₄O₃ (362.38): C, 66.29; H, 5.01; N, 15.46. %. Found:

C, 66.34; H, 4.88; N, 15.25 %.

3.6. Ethyl 3-{[5-acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4-b] pyridin-3-yl]amino}-3-oxopropionate (6)

A mixture of **3** (0.59 g, 0.002 mol), diethylmalonate (0.31 ml, 0.002 mol) in glacial acetic acid (10 ml) was heated under fluxed for 1 h. The resulting mixture was poured onto water (10 ml) whereby a precipitate formed. It was collected and recrystallized from ethanol to give white crystals of 6. Yield: 0.65 g (79 %); m. p.: 219-220°C. IR: 3400, 3200 (2NH), 1700 (3C=O). MS: m/z = 408 (M^+-2) , 17 %), 294 (M+-COCH₂CO₂Et, 56 %), 279 $(M^+-$ COCH₂CO₂Et-Me, 78 %), 28 (N₂⁺, Calcd. 100 %). Anal. for C₂₁H₂₂N₄O₅(410.42): C, 61.46; H, 5.40; N, 13.65 %. Found: C, 61.25; H, 5.37; N, 13.38 %.

3.7. 9-Acetyl-10-(p-methoxyphenyl)-8-methylpyrido[2,3:3,4]pyrazolo[1,5a] pyramid-ine-2,4(1H,3H)-dione (7)

3.7. 1. Method A)

A mixture of **3** (0.6 g, 0.002 mol), diethylmalonate (0.3 ml, 0.002 mol) in glacial acetic acid (10 ml) was heated under reflux for 3 h. The resulting mixture was poured onto water (10 ml). The precipitate was collected and crystallized from ethanol to give buff crystals of 7. Yield: 0.6 g (82%); m. p.: 278-280°C. IR: 3380 (NH), 1700 (3C=O). ¹H NMR (CDCl₃) (90 MHz): δ 10.7 (1H, NH), 7.2-7.4 (d, 2H, ArH's), 6.8-7.0 (d, 2H, ArH's), 3.9 (s, 3H, OCH₃), 3.8 (s, 2H, CH₂), 2.6 (s, 3H, COCH₃), 1.9 (s, 3H, CH₃ at C-8). Anal. Calcd. for C₁₉H₁₆N₄O₄ (364.35): C, 62.63; H, 4.43; N, 15.38 %. Found: C, 62.48; H, 4.31; N, 15.53 %.

3.7. 2. Method B)

Compound **6** (0.85 g, 0.002 mol) in acetic acid (10 ml) was heated under reflux for 2 h. The resulting mixture was poured onto water (10 ml). The precipitate was collected and recrystallized from ethanol to give **7**. Yield: 0.6 g (73 %). This product was identical in all aspects to that described in method A.

3.8. Ethyl 3-[5-acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4b]pyridin-yl]amino-2-cyanoacrylate (8)

A mixture of 3 (3.0 g, 0.01 mol) and ethyl α -cyano- β -ethoxyacrylate (1.7 g , 0.01 mol) in ethanol (25 ml) was heated under reflux for 4 h.. The reaction mixture was concentrated and allowed to cool. The separated solid was filtered off and recrystallized from ethanol to give pale yellow needles of 8. Yield: 3.3 g (78 %); m. p.: 216-217°C. IR: 3400 (NH), 2200 (C≡N), 1710 (C=O, ester), 1700 (C=O, acetyl).¹H NMR (CDCl₃) (90 MHz): δ 6.9-7.3 (m, 5H: CH=C and ArH's), 4.0-4.2 (q, 2H, OCH₂), 3.85 (s, 3H, OCH₃), (s, 3H, COCH₃), 2.0 (3H, CH₃) at C-6), 1.2-1.4 (3H, CH₃). MS: m/z = 418 (M⁺-1, 7 %), 403 (M⁺-1-CH₃, 9 %), 28 (N_2^+ , 100 %). Anal. Calcd. for C₂₂H₂₁N₅O₄ (419.43): C, 62.99; H, 5.05; N, 16.70 %. Found: C, 63.08; H, 5.11; N, 16.57 %.

3.9. 9-Acetyl-4-amino-10-(p-methoxy phenyl)-8-methylpyrido[2,3:3,4] pyrazolo[1,5-a]pyrimidine-3carboxylate (9).

3.9. 1. Method A

A mixture of **3** (3.0 g, 0.01 mol) and ethyl 2-cyano-3-ethoxyacrylate (1.7 g, 0.02 mol) in glacial acetic acid (15 ml) was refluxed for 4 h. The reaction mixture was poured onto water

(20 ml). The precipitate which formed was collected, washed with water, dried and recrystallized from ethanol to give orange needles of 9. Yield: 3.2 g (76 %); m. p.: 284-285°C. IR: 3400, 3200 (NH₂), 1700 (2C=O).¹H NMR (CDCl₃) (90 MHz): δ 8.9 (br. s, 1H, NH), 8.8 (s, 1H, pyrimidine-H), 8.5 (br. s, 1H, NH), 7.3-7.6 (d, 2H, ArH's), 6.9-7.1 (d, 2H, ArH's), 4.2-4.5 (q, 2H, OCH₂), 3.8 (s, 3H, OCH₃), 2.6 (s, 3H, COCH₃), 1.9 (s, 3H, CH₃ at C-8), 1.2-1.4 (t, 3H, CH₃ of ester). MS: m/z =418 (M⁺-1, 2 %), 403 (M⁺-1-Me, 8 %), 28 $(N_2^+, 100 \%)$. Anal. Calcd. for C₂₂H₂₁N₅O₄ (419.43): C, 62.99; H, 5.05; N, 16.70 %. Found: C, 62.75; H, 4.88; N. 16.92 %.

3.9. 2. Method B

To a sample of **8** (0.42 g, 0.001 mol), glacial acetic acid (10 ml) was added and the mixture was heated under reflux for 4 h. After cooling, the reaction mixture was poured onto water (10 mL). The precipitated solid was collected and crystallized from ethanol to give compound **9**. Yield: 0.4 g (95 %). This product was identical in all aspects to that described in method A.

3.10. 5-Acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine-3-diazonium chloride (10).

A solution of **3** (3.0 g, 0.01 mol) in conc. HCl (15 ml) was cooled to 0- 5° C in an ice-bath and cooled sodium nitrite solution (1.5 g in 15 ml water) was added to it dropwise with stirring during 15 mins. The cooled reaction mixture was then stirred in an ice bath for 1 h. The solid product obtained was filtered off, washed with water and dried in air to give yellow crystals of 10. Yield: 2.9 g (84%); m. p.: 169-170°C (dec.). IR: 3420 (NH), 2130 (N≡N), 1690 (C=O). Anal. Calcd. for $C_{16}H_{14}ClN_5O_2$ (343.76): C, 55.90; H, 4.10; N, 20.37 %. Found: C, 56.11; H, 4.18; N, 20.29 %.

3. 11. Coupling of diazonium chloride 10 with β -naphthol and/ or active-methylene compounds; Synthesis of compounds 11, 12, 13a,b, 14a-d and 17a,b; General procedure.

To an ice-cooled mixture of β naphthol or the appropriate activemethylene compound (0.005 mol) and sodium acetate trihydrate (4.1 g, 0.03 mol) in ethanol (40 ml), a freshly prepared diazonium chloride **10** (1.7 g, 0.005 mol) was added portion wise with stirring during 15 mins. The cooled reaction mixture was then stirred in an ice bath for additional one hour. The solid product was collected by filtration, dried in air and recrystallized from the proper solvent.

3. 11. 1. 1-[(5-Acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4-b] pyridin-3-yl-diazo]-2-naphthol (11)

It is obtained by using β -naphthol as a coupler in the above general procedure, in the form of brown crystals (ethanol-chloroform). Yield: 1.5 g (67 %); m. p.: 224-225°C. IR: 1690 (C=O). Anal. Calcd. for C₂₆H₂₁N₅O₃ (451.48): C, 69.17; H, 4.69; N, 15.51 %. Found: C, 68.98; H, 4.47; N, 15.46 %.

3. 11. 2. 5-[(5-Acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4b]pyridin-3-yl)hydrazono] pyrimidine-2,4,6(1H,3H,5H)-trione (12)

It is obtained by using barbituric acid as coupler in the above general procedure, in the form of scarlet red crystals (ethanol-chloroform). Yield: 1.5 g (69 %); m. p.: 359-360°C. IR: 3410 (NH, pyrazole), 3200 (NH), 3120 (NH), 1720, 1700, 1680 (3C=O). Anal. Calcd. for $C_{20}H_{17}N_7O_5$ (435.39): C, 55.17; H, 3.94; N, 22.52 %. Found: C, 55.26; H, 4.08; N, 22.39 %.

3. 11. 3. 4-[(5-Acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4-b] pyridin-3-yl) hydrazino]-1-methyl-3phenyl-2-pyrazolin-5-one (13a)

It is obtained by using 3-methyl-1phenyl-2-pyrazolin-5-one as a coupler in the above general procedure, in the form of orange needles (ethanol). Yield: 1.87 g(78%) m. p.: 244-245°C . IR: 3420 (NH), 1690 (C=O, acetyl) 1660 (C=O, pyrazolinone).¹H NMR (DMSO- d_6) (90 MHz): δ 10.9 (s, 1H, NH), 7.0-8.0 (m, 9H, ArH's), 3.8 (s, 3H, OCH₃), 2.6 (3H, COCH₃), 2.2 (3H, CH₃), 2.0 (3H, CH₃). Anal. Calcd. for C₂₆H₂₃N₇O₃ (481.51): C, 64.85; H, 4.81; N, 20.36 %. Found: C, 64.73; H, 4.67; N, 20.09 %.

3. 11. 4. 4-[(5-Acetyl-4-(p-methoxyphenyl)-6-methyl-1H-pyrazolo[3,4b]pyridin-3-yl) hydrazino]-1,3diphenyl-2-pyrazolin-5-one (13b)

It is obtained by using 1,3-diphenyl-2pyrazolin-5-one as a coupler in the above general procedure, in the form of orange needles (ethanol). Yield: 2.0 g (74%) m. p.: 299-300°C. IR: 3420 (NH), 1690 (C=O, acetyl) 1660 (C=O, pyrazolinone). 1H NMR (CF3CO2D) (90 MHz): δ 7.2-8.3 (m, 14H, ArH's), 4.0 (s, 3H, OCH3), 3.0 (s, 3H, COCH₃), 2.2 (s, 3H, CH₃). Anal. Calcd. for C₃₁H₂₅N₇O₃ (543.58): C, 68.50; H, 4.64; N, 18.04 %. Found: C, 68.77; H, 4.58; N, 18.32 %.

3. 11. 5. 2-{2-[5-Acetyl-4-(pmethoxyphenyl)-6-methyl-1Hpyrazolo[3,4-b]pyridin-3-yl] hydrazono}malononitrile (14a)

It is obtained by using malononitrile

as a coupler in the above general procedure, in the form of pale yellow needles (ethanol). Yield: 1.5 g (80 %); m. p.:221-222°C. IR: 3400, 3200 (2 NH), 2210 (2 C \equiv N), 1690 (C=O), 1630 (C=N). Anal. Calcd. for C₁₉H₁₅N₇O₂ (373.37): C, 61.12; H, 4.05; N, 26.26 %. Found: C, 60.92; H, 4.16; N, 26.11 %.

3.11.6. Ethyl 2-{2-[5-acetyl-4-(pmethoxyphenyl)-6-methyl-1Hpyrazolo[3,4-b]pyridin-3-yl] hydrazono}-2-cyanoacetate (14b)

It is obtained by using ethyl cyanoacetate as a coupler in the above general procedure, in the form of pale vellow needles (ethanol). Yield: 1.6 g (76 %); m. p.:148-150°C. IR 3400, 3200 (2NH), 2220 (C≡N), 1690 (2 C=O), 1620 (C=N). ¹H NMR (CDCl₃) (90 MHz): δ 9.3 (s, 1H, NH), 6.9-7.3 (m, 4H, ArH's), 4.0-4.2 (q, 2H, OCH₂), 3.9 (s, 3H, OCH₃), 2.7 (s, 3H, COCH₃), 2.0 (s, 3H, CH₃ at C-6), 1.2-1.4 (t, 3H, CH₃ of ester). MS: m/z =420.22 (M⁺, 6 %). Anal. Calcd. for C₂₁H₂₀N₆O₄ (420.42): C, 59.99; H, 4.79; N, 19.99 %. Found: C, 60.12; H, 4.64; N, 19.75 %.

3. 11. 7. 2-{2-[5-Acetyl-4-(p-methoxy phenyl)-6-methyl-1H-pyrazolo[3,4b]pyridin-3-yl]hydrazono}-2cyanothioacetamide (14c)

It is obtained by using cyanothioacetamide as a coupler in the above general procedure, in the form of pale 1680 (C=O). Anal. Calcd. for $C_{19}H_{17}N_7O_2S$ (407.45): C, 56.01; H, 4.21; N, 24.06; S, 7.87 %. Found: C, 56.12; H, 4.35; N, 23.90; S, 7.71%.

3.11.8. 1-{2-[5-Acetyl-4-(pmethoxyphenyl)-6-methyl-1Hpyrazolo[3,4-b]pyridin-3-yl] hydrazono}-2-oxo-2-phenylethylcyanide (14d) It is obtained by using phenacylcyanide as a coupler in the above general procedure, in the form of pale yellow needles (ethanol). Yield: 1.9 g (84 %); m. p.: 198-199 °C. IR: 3400, 3200 (2NH), 2220 (C=N), 1690 (2 C=O), 1620 (C=N). Anal. Calcd. for $C_{25}H_{20}N_6O_3$ (452.47): C, 66.36; H, 4.46; N, 18.57 %. Found: C, 66.28; H, 4.54; N, 18.39 %.

3. 11. 9. 3,9-Diacetyl-4,8-dimethyl-10-(p-methoxyphenyl)pyrido[2,3:3,4] pyrazolo [5,1-c][1,2,4]triazine (17a)

It is obtained by using acetylacetone in the above general procedure as brown crystals (ethanol). Yield: 1.65 g (85%); m. p.: 249-250°C. IR: 1680 (2C=O).¹H NMR (CDCl₃) (90 MHz): δ 7.7-7.8 (d, 2H, ArH's), 7.1-7.2 (d, 2H, ArH's), 4.0 (s, 3H, OCH₃), 3.4 (s, 3H, COCH₃ at C-3), 3.0 (s, 3H, COCH₃ at C-9), 2.8 (s, 3H, CH₃ at C-4), 2.1 (s, 3H, CH₃ at C-8). MS: m/z =388 (M⁺-1, 57 %), 373 (M+-1-Me, 100 %), 43 (COCH₃⁺, 93%), 28 (N₂⁺, 25 %). Anal. Calcd. for $C_{21}H_{19}N_5O_3$ (389.41): C, 64.77; H, 4.92; N, 17.98 %. Found: C, 64.51; H, 4.82; N, 18.02 %.

3. 11. 10. Ethyl 9-acetyl-10-(pmethoxyphenyl)-8-methyl-4-phenylpyrido[2,3:3,4] pyrazolo[5,1c][1,2,4]triazine-3-carboxylate (17b)

It is obtained by using ethyl benzoylacetate as yellow crystals (ethanol). Yield: 1.9 g (79 %); m. p.: 199-200°C. IR: 1740 (C=O, ester), 1690 (C=O, acetyl).¹H NMR (CDCl3) (90 MHz): δ 7.0-7.9 (m, 9H, ArH's), 4.2-4.5 (q, 2H, OCH₂), 3.9 (s, 3H, OCH₃), 2.7 (s, 3H, COCH₃), 2.1 (s,3H, CH₃ at C-8), 1.0-1.3 (t, 3H, CH₃ of ester). Anal. Calcd. for C₂₇H₂₃N₅O₄ (481.50): C, 67.35; H, 4.81; N, 14.54 %. Found: C, 67.29; H, 4.77; N, 14.59 %.

3.12. Cyclization of compounds 14a-d; Formation of 3-functionalized 9-acetyl-4-amino-10-(p-methoxyphenyl)-8-methylpyrido[2,3:3,4] pyrazolo[5,1-c][1,2,4]triazines 15a-d; General procedure

A solution of **14a-d** (0.002 mol) in glacial acetic acid (10 ml) was heated under reflux for 30 min. and then left to cool. The precipitate was collected and recrystallized from acetic acid to give yellow crystals of **15a-d**.

3.12.1. 9-Acetyl-4-amino-10-(pmethoxyphenyl)-8-methylpyrido [2,3:3,4]pyrazolo [5,1-c] [1,2,4] triazine-3-carbonitrile (15a)

It is prepared by using compound **14a** in the above general procedure. Yield: 0.6 (80%); m. p.: 309-310°C. IR: 3500, 3400 (NH₂), 2200 (C=N), 1700 (C=O). MS: m/z = 372 (M⁺-1, 22%), 357 (M⁺-NH₂, 37%), 28(N₂⁺ 100%). Anal. Calcd. for C₁₉H₁₅N₇O₂ (373.37): C, 61.12; H, 4.05; N, 26.26%. Found: C, 61.19; H, 3.92; N, 26.39%.

3.12.2. Ethyl 9-acetyl-4-amino-10-(pmethoxyphenyl)-8methylpyrido[2,3:3,4]pyrazolo[5,1c][1,2,4]triazine-3-carboxylate (15b)

It is prepared by using compound 14b. Yield: 0.7(83%); m. p.: 268-270°C. IR: 3380, 3280 (NH₂), 1680 (2 C=O). ¹H NMR (CDCl₃) (90 MHz): δ 8.9 (s, 1H, NH), 8.4 (br. s, 1H, NH), 7.5-7.7 (d, 2H, ArH's), 7.0-7.2 (d, 2H, ArH's), 4.3-4.6 (q, 2H, OCH₂), 3.9 (s, 3H, OCH₃), 2.7 (s, 3H, COCH₃), 2.0 (3H, CH₃ at C-8), 1.3-1.6 (t, 3H, CH₃ of ester). MS: $m/z = 420 (M^+, 12\%), 405$ (M⁺-Me, 2 %), 347 (M⁺-CO₂Et, 5 %), 18 $(H_2O^+).$ Anal. Calcd. for $C_{21}H_{20}N_6O_4$ (420.42): C, 59.99; H, 4.79; N, 19.99 %. Found: C, 59.78; H, 4.71; N, 20.02 %.

3.12.3. 9-Acetyl-4-amino-10-(pmethoxyphenyl)-8-methylpyrido [2,3:3,4]pyrazolo [5,1-c][1,2,4] triazine-3-carbothioamide (15c)

It is prepared by using compound **14c** in the above general procedure. Yield: 0.65 (80 %); m. p.: >360°C. IR: 3430, 3300, 3150 (2 NH₂), 1690 (C=O). Anal. Calcd. for C₁₉H₁₇N₇O₂S (407.45): C, 56.01; H, 4.21; N, 24.06; S, 7.87 %. Found: C, 56.16; H, 4.08; N, 24.00; S, 7.77 %.

3.12.4. 9-Acetyl-4-amino-3-benzoyl-10-(p-methoxyphenyl)-8-methylpyrido[2,3:3,4] pyrazolo[5,1-c] [1,2,4]triazine (15d)

It is prepared by using compound **14d** in the above general procedure. Yield: 0.7 g (77 %); m. p.: 288-290°C. IR: 3500, 3400 (NH₂), 1700 (C=O). ¹H NMR (CDCl₃): δ 7.1-8.4 (m, 11H: NH₂ and ArH's), 4.0 (s, 3H, OCH₃), 2.8 (s, 3H, COCH₃), 2.1 (3H, CH₃ at C-8). Anal. Calcd. for C₂₅H₂₀N₆O₃ (452.47): C, 66.36; H, 4.46; N, 18.57 %. Found: C, 66.30; H, 4.45; N, 18.45 %.

4. Conclusion

In this paper we have successfully prepared the starting compound, 5acetyl-3-amino-4-(p-methoxyphenyl)-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine and converted it into (3) the corresponding diazonium chloride 10. Also, the synthetic utility of both 3and 10 for preparation of new pyridopyrazolopyrazolopyridines, pyrimidines and pyridopyrazolotriazines with anticipated biological activities was evaluated.

References

[1] A. Dı'az-Ortiz, J. Ramo'n Carrillo, F. P. Cossı'o, M. J. Go'mez-Escalonilla, A. de la Hoz, A. Moreno, P. Prieto, Tetrahedron 56 (2000) 1569.

[2] C. M. S. Menezes, C. M. R. Sant' Anna, C. R. Rodrigues, E. J. Barreiro, J. of Molecular Structure 579 (2002) 31.

[3] E. J. Barreiro, C. A. Camara, H. Verli, L. Brazil-Ma's, N. G. Castro,
W. M. Cintra, Y. Aracava, C. R. Rodrigues, C. A. M. Fraga, J. Med. Chem. 46 (2003) 1144.

[4] H. De Mello, A. Echevarria, A. M. Bernardino, M. Canto-Cavalheiro, L. L. Leon, J. Med. Chem. 47 (2004) 5427.

[5] T. E. Ali, European Journal of Medicinal Chemistry, 44 (2009) 4385.

[6] T. J. Tucker, J. T. Sisko, R. M. Tynebor et al. Journal of Medicinal Chemistry, 51 (2008) 6503.

[7] S. B. Bharate, T. R. Mahajan, Y. R. Gole et al., Bioorganic and Medicinal Chemistry 16 (2008) 7167.

[8] L. R. S. Dias, M. J. F. Alvim, A. C.C. Freitas, E. J. Barreiro, and A. L. P.Miranda, Pharmaceutica ActaHelvetiae 69 (1994) 163.

[9] M. Chioua, A. Samadi, E. Soriano,
O. Lozach, L. Meijer, and J. Marco-Contelles, Bioorganic and Medicinal Chemistry Letters 19 (2009) 4566.

[10] B. Vellas, O. Sol, P. J. Snyder et al., Current Alzheimer Research 8 (2011) 203

[11] H. H[•]ohn, I. Polacek, and E. Schulze, Journal of Medicinal Chemistry 16 (1973) 1340.

[12] O. S. Mohamed, E. A. Al-Taifi, T. I. El-Emary, E. A. Bakhite, Phosphorous, Sulfur and Silicon and the Related Elements 182 (2007) 1061.

[13] A. E. Abdel-Rahman, E. A. Bakhite, E. A. Al-Taifi, J. Chin. Chem. Soc. 49 (2002) 223.

[14] E. A. Bakhite, A. E. Abdel-Rahman, O. S. Mohamed, E. A. Thabet, J. Chem. Res. Synop. (2003) 58.

[15] E. A. Bakhite, A. E. Abdel-Rahman, E. A. Al-Taifi, J. Chem. Res. Synop.(2005) 147.

[16] E. A. Bakhite, A. E. Abdel-Rahman, E. A. Al-Taifi, Arab. J. Chem. 7 (2014) 936.

[17] G. Kaupp, M. A. Metwally, F. A. Amer, E. Abdel-Latif, Eur. J. Org. Chem, (2003) 1545.

[18] G. Kaupp, A. Herrmann, J. Schmeyers; Chem. Eur. J. 8 (2002) 1395.