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In this paper, a three dimensional surface using equiform motion of a surface of revolution 

in Euclidean 3-space E
3

 is generated. The main results obtained in this paper are that the 

surface foliated by equiform motion of sphere has a zero scaler curvature if the motion of 

sphere are in parallel planes. Also, the surface foliated by equiform motion of tours has a 

zero scaler curvature if the motion of torus are in parallel planes. Finally, for some special 

cases, new examples are constructed and plotted.  
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INTRODUCTION 
 

An equiform transformation in the 3-dimensional Euclidean space E 3  

is an affine transformation whose linear part is composed of an orthogonal 

transformation and a homothetical transformation. This motion can be 

represented by a translation vector d and a rotation matrix A as the following.  

,dAxx   (1) 

where 3,.,== ExxIAAAA tt   and   is the scaling factor. An 

equiform motion is defined if the parameters of (1) including   - are given as 

functions of a time parameter t. Then a smooth one - parameter equiform motion 

moves a point x  via )()()()(=)( tdtxtAttx  . The kinematic corresponding 

to this transformation group is called an equiform kinematic [1, 2]. 

Under the assumption of the constancy of the scalar curvature, kinematic 

surfaces obtained by the motion of a circle have been obtained in [3]. In a similar 

context, one can consider hypersurfaces in space forms generated by one - 

parameter family of spheres and having constant curvature see [4, 5]. 

The purpose of this paper is to describe the kinematic surface obtained 

by the motion of a surface of revolution whose scalar curvature vanished.  



2    Nassar H. Abdel-All, H. N. Abd-Ellah, Fathi M. Hamdoon,  and M. A. Abd-Rabo 

 

1.1  The scalar curvature 

In mathematics and physics, the Christoffel symbols, named for Elwin 

Bruno Christoffel, are numerical arrays of real numbers that describe, in 

coordinates, the effects of parallel transport in curved surfaces and, more 

generally, manifolds. As such, they are coordinate-space expressions for the 

Levi-Civita connection derived from the metric tensor. In general relativity, 

the Christoffel symbol plays the role of the gravitational force field with the 

corresponding gravitational potential being the metric tensor [6, 7, 8]. 

Consider the three dimensional surface M. Let ),,(= 321 xxxXX  be a local 

parametrization of M . The tangent vectors to the parametric curves of the 

surface M  are:  

1,2,3.=    ,= i
xi

i


X
X          (2) 

Then, we have the components of the metric tensor as in the following form  

        
1 , 2 , 3 .=,    ,)(=)(  ),(=  >,,=< 1 jiggggXXg ij

ij

ijjiij


         (3) (3) 

 The Christoffel symbols of the first kind is defined as in the following form  
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 The Christoffel symbols of the second kind can be written as in the following 

form  
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In Riemannian geometry, the scalar curvature (or the Ricci scalar) is 

the simplest curvature invariant of a Riemannian manifold. To each point on a 

Riemannian manifold, it assigns a single real number determined by the 

intrinsic geometry of the manifold near that point. Specifically, the scalar 

curvature represents the amount by which the volume of a geodesic ball in a 

curved Riemannian manifold deviates from that of the standard ball in 

Euclidean space. In two dimensions, the scalar curvature is twice the Gaussian 

curvature, and completely characterizes the curvature of a surface. In more 

than two dimensions, however, the curvature of Riemannian manifolds 

involves more than one functionally independent quantity [7, 9, 10]. Using (5), 

we have the Riemannian curvature tensor as the following  
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 The Riemannian tensor can be written either using its mixed components  

,= l

ikj

l

ijk RR   (7) 

0,=l

kij

l

jki

l

ijk RRR   (8) 
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 and are hold using its covariant components:  

,= j

klmij

j

iklm RgR   (9) 

 which satisfy the following properties  

.==

,=
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RR





 (10) 

 Applying the contraction, on the Riemannian tensor, we obtain the Ricci 

curvature ijR  in the form  

.== k

ijkmijk

km

ij RRgR  (11) 

 The scalar curvature is given by the formula:  

,=
,

ij

ij

ji

RgR   (12) 

 which is invariant. The components of the Riemannian tensor satisfy the 

following equality identically:  

0.=,,,

m

kilj

m

jikl

m

lijk RRR   (13) 

 These relations are called the Bianchi identities. 

 

2  Some geometric invariants on an 3- dimensional surfaces obtained by 

the equiform motion of a surface of revolution 
 

A surface of revolution is a surface in Euclidean space created by 

rotating a curve (the profile) around a straight line in its plane (the axis). 

Examples of surfaces of revolution generated by a straight line are cylindrical 

and conical surfaces depending on whether or not the line is parallel to the axis. 

A circle that is rotated about any diameter generates a sphere of which it is then 

a great circle, and if the circle is rotated about an axis that does not intersect the 

center of a circle, then it generates a torus which does not intersect itself (a ring 

torus). We can express the surface of revolution ),( ji xxR  as the following 

formula [6, 11, 12]  

        
)}(),(sin)(),(cos)({=),( ijijiji xHxxFxxFxxR          (14) (14) 

 Let )(= 1x  be an orthogonal smooth curve to each 1x -plane of the 

foliation and represented by its arc length 1x . We assume that the planes of the 

foliation are not parallel. Let t, n and b be unit tangent, normal and binormal 

vectors, respectively, to  . Then, Frenet equations of the curve   are:  
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where k and   are the curvature and torsion of )( 1x , respectively. Observe 

that 0k  because )( 1x  is not a straight-line. The three dimensional 

surfaces M generated by a surface of revolution (14) is represented by:  

)),()()()(sin)()()(cos)(()(=),,(: 131231231321 xxHxxxFxxxFrxxxxM bntcX  (16) 

where r  denote the radius and )( 1xc  denote the centre of each 1x -surface of 

revolution of the foliation, ][0,2, 32 xx . Also, putting  

,==
)( 

1

1 bntc
c

 '

dx

xd
                 (17) 

 where  ,,  are smooth functions in 1x  [13]. 

Remark 2.1 The surface ),( ji xxR  surface of revolution but the surface 

),,( 321 xxxX  not necessary to be surface of revolution.  

Using the equation (3), after some computation we have ijg  as the following 

values  
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From (5) and the abve equations, one can get the Christoffel symbols as 

the following 

                 1113231

2

3

2

32

1

11 ()cos()((2(
2

1
= xxxxHrxxkrFxxHxF '''' 


  

                  323123123 sin2())sin()sin xFxxHrxxxFrxxxkrF ''   

     

                     )sinsincos 31323321321 xHxxHxxFrxFxxxFxx ''''      

                 321323332 sin)cos)(cos(( xFxkxxHrxxkrFxHxFxk '''  
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                   2312332231 cos()sin(sin)sin( xxFxxxFrxFxxxkrFx ''  
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3
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                    3213233132 cossinsin xHxxxHxxHrxFxxFx '''''''' 

          ))),sin2sin
2

32321 xHxrxHxx '''    

where 

 

                   2123331323 cossin(sin((= xxxxHrxHxFxxFxxFr '''  

     ).))sin 2

21 xx  

 By a computations similar to the previous results, we can find the 

other components of 
k

ij . 

 Our method depends on equations reduces (12), to an expression that 

can be rewrite as a linear combination of the functions )(cos jix , )(sin jix  

whose coefficients iA , iB  are function of the 1x , 3x  variables. Therefore, 

they must be vanish in some 31, xx -interval. By using equations (15), (17), we 

can expressed (12) by trigonometric polynomial on )(cos 2ix , )(sin 2ix , 

60  i , these coefficients iA , iB , are functions on the 31  , xx -variables. 
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Therefore, these coefficients must vanish in some 31  , xx -intervals. The work 

is then to compute explicitly these coefficients by successive manipulations. 

Using the symbolic program mathematica to check our work.  

0))(sin)(cos( 22

6

0=

 ixBixA ii

i

 (19) 

 Since this is an expression on the independent trigonometric terms 2cos nx  

and 2sin nx , all coefficients iA  , iB  vanish identically. 

 After some computation, the values for ii BA ,  can be write in the 

form  

1,...,6=  0))(sin)(cos( 3,3,

12

0=

ijxBjxA jiji

j

               (20) 

3  Three dimensional surfaces obtained by the equiform motion of a 

sphere 

 In this section we prove that the scalar curvature of surface M 

obtained by the equiform motion of sphere is vanished identically. Thus, the 

the equation (14) written as  

              
) } .(cos),(sin)(sin),(cos)(sin{=),( ijijiji xxxxxxxR       (21) (21) 

 Thus, we can rewrite the surface M as the following representation  

)),()(cos)()(sin)(sin)()(cos)(sin()(=),,(: 131231231321 xxxxxxxxrxxxxM bntcX  (22)  

 Using equations (22), (18), and after some computation we have 6A  of 

equation (19) as in the following form  
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  (23)  

 we can expressed (23) by trigonometric polynomial on )(cos 3jx , )(sin 3jx , 

120  j , these coefficients jiA , , jiB , , are functions on the 1x -variable. 

Therefore, these coefficients must vanish in some 1x -interval. 

 Since this is an expression on the independent trigonometric terms 

)(cos 3jx  and )(sin 3jx , all coefficients jA6,  , jB6,  vanish identically. 

 After some computation, the coefficients for 6,116,116,126,12 ,,, BABA  

take the form  

0.=  ),(
256

3
=  0,=  ,

512
= 6,111

55

6,116,12

66

6,12 BxrAB
r

A 


 

 From 6,12A  we have one possibility, 0= , then, 0=6A . 
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Using the equation (12), it is easy to see that the scalar curvature equal to zero. 

Thus, we have the proof of the following theorem: 

 

Theorem 3.1 The three dimensional surface generated by equiform motion of 

a sphere has zero scalar curvature if the motions of the spheres in parallel 

planes.   
 

4  Three dimensional surfaces obtained by the equiform motion of a 

torus 

 

In this section we try to prove that the scalar curvature of surface M 

obtained by the equiform motion of torus is vanished identically for which the 

torsion is zero. Thus, the the equation (14) written as  

 

)}(cos),(sin)(sin))(sin(),(cos))(sin{(=),( ijiijiji xaxxxabxxabxxR   (24) 

 Thus, we can rewrite the surface M as the following representation  

)),()(cos   

)()(sin))(sin()()(cos))(sin(()(=),,(:

13

1231231321

xxa

xxxabrxxxabxxxxM

b

ntcX




 (25)    

Using equations (25), (18), and after some computation we have 6A  of 

equation (19) as the following  
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              133
3

3

3

313 )3cos)7sin(8cos(()sinsin2 xbxbxaxarxxbxa  

            )).83sin3sin(9sin))83sin3sin(9 33

4

13
3

33 bxaxaxxbxaxa    (26) 

 We can expressed (26) by trigonometric polynomial on )(cos 3jx , )(sin 3jx , 

120  j , these coefficients jiA , , jiB , , are functions on the 1x -variable. 

Therefore, these coefficients must vanish in some 1x -interval. 

 Since this is an expression on the independent trigonometric terms 

)(cos 3jx  and )(sin 3jx , all coefficients jA6,  , jB6,  vanished identically. 

 After some computation, the coefficients 6,116,116,126,12 ,,, BABA  are 

give as  
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braBxraAB
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 From 6,12A  we have one possibility, 0= , then, 0=6A . 

Using the equation (12), one can see the scalar curvature is equal to zero. 

Thus, we have the proof of the following theorem: 

Theorem 4.1 The three Dimensional Surface generated by the equiform 

motion of a torus has zero scalar curvature if the motions of the toruses in 

parallel planes.   
 

5  Example  

Example 5.1 (For three dimensional surfaces with zero scalar curvature), 

consider a plane curve (unit circle) given by  

),0}.(sin),(cos{=)( 111 kxkxxΨ                 (27) 

 where k is curvature of curve  . And we consider a centers curve given by  

}.)(sin)(cos{=)( 1111 bxnxtxx c        (28) 

 Using (15), and after some computations, we have  

}.),)((1cos),)((1sin{=)( 1111 xxkxkx c         (29) 

 Therefore, the representation of the surface which represented by equation 

(16) is 

  

}.)(),1)((cos)       

(cos)(),1)((sin)(sin)({=),,(: M

1312

131213321

xxrHxkx

kxxrFxkxkxxrFxxx



X
 (30) 

 Case 1: 

We consider the sphere as a surface of revolution. Thus, we take  

),(cos=)(     ),(sin=)( 3333 kxaxHkxaxF  

 where a is radius of sphere. Therefore, the representation of the surface which 

represented by equation (22) is  

}.)(cos),1)((cos)(sin)(cos       

),1)((sin)(cos)(sin)(sin)(sin)(cos)(sin{=),,( :M

131321

1123123321

xxaxkxxkxa

xkkxxxakxxxaxxx



X

 (31) 

 According to theorem (3.1) this is three dimensional surface satisfying the 

condition of zero scalar surface. This surface plotted as in Figs. 1.  

 Case 2: 

  We consider the torus surface of revolution, Thus, we take  

),(cos=)(     ),(sin=)( 3333 kxaxHkxaBxF   

 where a a and b are constants. Therefore, the representation of the surface 

which represented by equation (25) is  
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}.)(cos,       

)1)((cos)(cos))(sin(),1)((sin       

))(sin)((cos)(sin))(sin)((sin)(cos{=),,(: M

13

12131

312312321

xxa

xkxkxBxaxk

BxakxxBxakxxxxx





X

 (32) 

 According to theorem (4.1) this is three dimensional surface satisfying the 

condition of  zero scalar surface. This surface plotted as in Figs. 2.  
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 السطوع ثلاثيت البعد المولدة بالحركت شبه المتماثلت لسطوع دوراوي

 

 **فتحي محمد حمدون* -حمدى وور الديه عبد اللاه* -,**وصار حسه عبد العال*

 **محمود علي محمد عبد ربه*
 

 جاهعت اسيىط -كليت العلىم -*قسن الشياضياث
 السعىديت -القصين  -جاهعت القصين -كليت العلىم والأداب بعنيضة -**قسن الشياضياث

 اسيىط -الاصهشجاهعت  -كليت العلىم -***قسن الشياضياث
 

هزا البحث تن تىليذ سطح ثلاثً البعذ باستخذام الحشكت شبت الوتواثلت لسطح فً 

دوسانً فً الفشاغ الاقليذي. وتن استنتاج الششوط علً الحشكت التً تجعل السطح الناتج 

أو سطح  sphereله انحناء قياسً هنعذم ورلك فً حالت كىى السطح الذوسانً هى كشة 

. وفً النهايت تن اختباس بعض الحالاث الخاصت وسسوها باستخذام torusقاسب نجاة 

 بشناهج الواثيواتيكا. 

  

 

 


