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Abstract: Construction of tunnels in soft ground induces soil movement, which could 

seriously affect the stability of existing structures.  Evaluation of the effect of tunnel 

construction on the soil movement requires the solution of a complex soil–structure 

interaction problem. 

Finite element method (FEM) is considered as a good numerical tool to model tunnel system 

performance. The soil stresses and the soil displacements around a tunnel system are affected 

by the tunnel construction.  The influence zone depends on subsoil properties, tunnel depth, 

tunnel size, and tunnel support system. 

In the present study, finite elements analysis (FEA) is used to model soil-tunnel system 

performance based on a case study to investigate surface displacement due to tunneling.  The 

Greater Cairo metro tunnel (Line 3) is considered in the present study as case study. The 

surface displacements obtained by surface displacement equation (SDE) proposed by Peck 

(1969) and Schmidt (1969) are presented and discussed.  The main objective of this study is 

to examine surface displacements obtained by the FEA with those obtained by the SDE based 

on different sand soil types.  However, the SDE does not consider the impact of different sand 

soil types on the surface settlement due to tunneling.  

The study focuses on the parameters used in the SDE based on different sand soil densities.  

The limitation of the parameters used in the SDE is discussed and established to predict the 

surface displacement due to tunneling at different sand soil densities. 
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1. Introduction 
Tunnels solve many problems such as waste water, power supplies, and traffic jam (Mazek 

and El-Tehawy, 2008).  Several tunnels have been constructed worldwide to solve the 

transportation problems such as the Greater Cairo Metro and El-Azhar road tunnels (El-

Nahhas, 1999; NAT, 1993, 1999, 2010).  These tunnels are considered as major projects in 

Cairo city.  There are technologies to assist in excavation such as tunneling boring machine 

(TBM) and cut and cover method (Bicel and Kuesel, 1982). 

It is necessary to investigate the geotechnical problems related to tunneling for better 

understanding the performance of the tunnel system.  Many geotechnical problems were 

encountered during the construction of the Greater Cairo metro, El-Azhar road tunnels, and 

the Greater Cairo sewage tunnel.  Most problems are related to the damage of surrounding 

buildings due to surface and subsurface ground subsidence (Abu-Krisha, 2001).  Tunneling in 
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cohesionless soil is a sophisticated process leading to move surface and subsurface structures 

(Mroueh and Shahrour, 2008; Mazek and El-Tehawy, 2008). Ground movement results from 

tunneling work through soft ground due to the associated stress change due to tunnel 

advancing. 

Darabi et al. (2012) presented an appropriate model to predict the behavior of the tunnel in 

Tehran No. 3 subway line.  They employed empirical methods to determine the variation of 

radial displacements along the longitudinal direction of a tunnel.  They also determined the 

tunnel deformation using numerical analyses.  Elsayed (2011) used 2-D Finite Element 

Analysis (FEA) to model two phases of tunneling process through rocks.  First phase, the 

excavation phase was responsible to determine the pre-lining rock mass deformations and the 

reduced in-situ stresses.  Second phase, the interaction phase modeled the compatibility of the 

rock-lining system. The deformations and stresses of the rock-lining system and the final rock 

mass pressure acting on the lining were determined.  Cavalaro et al. (2011) analyzed the 

influence of the contact deficiencies between the segmented tunnel lining during the 

construction of tunnels and the consequent damage procedure with TBM.  They used the 

finite element analysis to simulate the contact deficiencies.   

Kivi et al. (2012) investigated settlement control of large span underground station in Tehran 

metro using 3-D finite element analysis.  They discussed the impact of central beam column 

(CBC) on the rigidity of the supporting tunnel system.  Liu et al. (2012) discussed the ground 

movement property caused by shield tunneling and expanding construction.  Ground 

movement and construction influence were obtained by numerical model.  Wang et al. (2012) 

used finite element analysis to predict surface settlement above tunnel in clay till.  The 

influence of drainage condition on surface settlement was investigated.  Wang et al. (2011) 

applied finite element analysis to investigate the effect of tunneling induced ground 

movement on buried pipelines.    

The numerical techniques are widely used to predict the ground movements. During the last 

three decades, numerical analysis has been grown rapidly (Abu Krisha, 2001; El-Nahhass, 

1986; 1999; Mazek, 2005). Finite element method is considered the most appropriate 

analytical technique to solve geotechnical problems (Abu–Farsakh and Tumay, 1999; El-

Nahhas, 1999; Mazek et al., 2004). Modeling of geotechnical properties and details of 

tunneling procedure are the sophisticated geotechnical problem (El-Nahhass, 1986; Mazek, 

2005; Mazek et al., 2004).  

The surface displacement is calculated by both the FEA and the SDE developed by Peck 

(1969) and Schmidt (1969) based on different sand soil densities.  The SDE does not consider 

the impact of different sand soil densities on the surface displacement. Extensive study is also 

conducted to discuss the impact of different tunnel diameters (D), different ground losses 

(VL), and different tunnel depths (Z) on surface settlement due to tunneling.  The parameters 

used in the SDE are discussed and established to predict surface displacement. 

 

 

2. Finite Element Model  
The finite element computer program (COSMOS/M) is used in the present study.  The finite 

element model (FEM) takes into account the effects of the vertical overburden pressure, the 

lateral earth pressure, the elasto-plastic properties of the soil, and the linear properties of the 

metro tunnel liner.  The soil, the metro tunnel liner, and the interface medium are simulated 

using appropriate finite elements.  Fig. 1 shows the cross section along the Greater Cairo 

metro Line 3.  The numerical modeling of the metro tunnel must reflect the characteristic of 

the ground continuum and the metro tunnel.  In addition, the interface between the soil media 

and the tunnel liner should be idealized in the numerical model.  

2-D plane strain elements are used for modeling the soil media and 2-D beam elements for 

modeling the metro tunnel liner, as shown in Fig. 2.  Three-node triangular plane strain 
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elements are adopted to simulate behavior of the soil media.  The 2-D beam element and the 

triangular plane strain element interface is used between the soil media and the tunnel liner to 

ensure the compatibility conditions at the interface between them as well as the associated 

stress and strains along the interface surface. 

The horizontal plane at the bottom of the mesh is represented by a rigid bedrock layer and the 

movement at this plane is restrained in all directions. The vertical boundaries of the 2-D FEM 

are restrained by roller supports to prevent a movement normal to the boundaries. The 

movement at the upper horizontal plane is free to simulate a free ground surface.  The 2-D 

finite element mesh is shown in Fig. 2. 

The finite element analysis is carried out to simulate the construction of Line 3. The stress 

changes in surrounding soil due to tunneling are investigated to study the detailed soil 

behavior around the metro tunnel.  The stresses in the subsoil have undergone three phases of 

change. At these phases, the loading steps of the metro tunnel construction are simulated 

using the 2-D FEA.   

First phase, the initial principal stresses are computed with the absence of the metro tunnel. 

Second phase, the excavation of the metro tunnel is modeled by means of the FEM.  The 

excavation is simulated by the removal of those elements inside the boundary of the metro 

tunnel surface to be exposed by the excavation.  The excavated tunnel boundary is free to 

move until the soil comes into contact with the metro tunnel liner resulting from volume loss.  

The volume loss is considered in this study.  Third phase, the calculated changes in stresses 

are then added to the initial principal stresses computed from the first phase to determine the 

final principal stresses resulting from the metro tunnel construction.  Fig. 3 shows final 

vertical stress around the metro tunnel system.  The initial in-situ vertical stresses before 

tunneling are calculated and plotted in Fig. 4.  The final vertical stress change after tunneling 

is calculated and shown in Fig. 4. 

 

 

3. Boundary Condition of Tunnel System 
A parametric study is conducted to choose the suitable geometric boundaries of the 2-D 

numerical model.  The 2-D numerical model should reflect the behavior of the metro tunnel in 

the field.  The 2-D finite element mesh models soil block width and depth in x and y 

directions, respectively, as shown in Fig. 2.  The calculated surface settlements of the metro 

tunnel against different model widths are shown in Fig. 5.  When the numerical model width 

exceeds 100 meters there is no change in the estimated surface settlement. 

The model mesh size is also studied to reflect the performance of the metro tunnel system 

based on the 2-D FEA.  The element size is varied from 2 m, 3 m, 4 m, up to 5 m along the 

outer boundary of the soil model block.  The element size is also varied from 1 m, 1.5 m, 2 m, 

2.5 m, up to 3 m along the metro tunnel liner.  The calculated surface settlement based on 

different element sizes is presented in Table 1.  The results reveal that as the element size 

along the outer boundary of the soil model block is smaller than three meters there is no 

change in calculated surface settlement due to tunneling.  The results also show that as the 

element size along the metro tunnel liner is smaller than one meter there is no change in 

calculated surface settlement.     

The element size is chosen to be three meters along the outer boundary of the soil block.  The 

element size is chosen to be one meter along the boundary of the tunnel liner because of the 

high stress change due to tunnel excavation.   

The volume loss (VL) is the ratio of the difference between excavated soil volume and tunnel 

volume over excavated soil volume.  The VL is studied and varied from 1.5% to 4.5%.  Fig. 6 

shows the calculated surface settlement along C.L of metro tunnel at different volume losses.   
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4. Greater Cairo Metro-Line 3 (Case Study) 
The Greater Cairo metro tunnel (Line 3) from Attaba station to Abasia station presented and 

discussed in the present study as a case study.  Fig. 7 shows the plan of the Greater Cairo 

metro-Line 3.  2-D nonlinear numerical model is proposed using the FEA to understand 

performance of tunnel system based on a case study.  The constitutive model for this analysis 

utilizes elasto-plastic materials.  A yielding function of the Mohr-Coulomb type and a plastic 

potential function of the Drucker-Prager type are employed (Chen and Mizuno, 1990).  The 

elasto-plastic parameters of different sand soil types are presented in Table 2.  A linear 

constitutive model is employed to represent the tunnel liner.  The mechanical properties of 

metro tunnel liner are tabulated in Table 3. 

The 2-D FEA is also adopted to estimate surface settlement and vertical displacement at 

different locations and levels around tunnel system.  The finite element mesh size of the 

proposed finite element model is studied.  Model boundaries and volume losses (VL) are also 

discussed to understand the performance of the metro tunnel.  Based on this study, the 

parametric study is conducted at volume loss of 3%.  The associated stress changes in soil due 

to tunneling are studied.  The results obtained by the 2-D FEA are compared with those 

obtained by the field reading to assess the accuracy of the proposed 2-D finite element model 

as shown in Fig. 8.  There is a good agreement between the measured readings and the 

calculated results.   

 

 

5.  Ground Response using 2-D Finite Element Analysis 
Based on the 2-D FEA, one can proceed to predict ground response due to tunneling using 

different sand soil densities.  In this study, loose sand, medium sand, dense sand, and very 

dense sand are considered around tunnel to study surface settlement due to tunneling.  The 

nonlinear parameters of different sand soil types are presented in Table 2.  The numerical 

analysis is carried out using the drained soil modulus (Es) calculated by the Janbu equation 

using different soil parameters as summarized in Table 2 (Duncan et al., 1980).  The different 

soil parameters (m, e) are selected to simulate the behavior of different soil types.   

 

 

6.  Ground Response using Surface Displacement Equation 
In this study, surface settlement around the centreline of tunnel is calculated by surface 

displacement equation (SDE) developed by Peck and Schmidt (1969). Peck and Schmidt 

(1969) proposed empirical equation to calculate surface displacement profile due to tunneling, 

as presented in Eq. 1. 

  S= Smax exp 
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   (1) 

In which; S is the surface displacement, Smax is the maximum surface settlement at the point 

above the tunnel centerline, x is the distance from the tunnel centerline in transverse direction, 

and i is the horizontal distance from the tunnel axis to the point of inflexion of the settlement 

trough.  

 

The surface displacement profile could be represented by Gaussian distribution curve as 

presented in Fig. 9.  Attewell el at. (1986) proposed (i) parameter adopted in the SDE, as 

written in Eq. 2. 
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0        a = 0.8 to 1.0         n = 0.8 to 1.0        (2) 

Where; Z0 is the depth of the tunnel springline below ground surface and R is tunnel diameter. 
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The study also examined the results obtained by the SDE with different (a) and (n) 

parameters. The (a) parameter is varied from 0.8 to 1 (0.8, 0.9 and 1).  The (n) parameter is 

varied from 0.8 to 1 (0.8, 0.9, and 1). 

The maximum surface settlement (Smax) used in the SDE is determined by the 2-D FEA and 

the field measurements.  The surface displacement induced by tunneling based on different 

sand soil types are predicted by both the 2-D FEA and the SDE.  The FEA and the SDE are 

also used to calculate surface settlement due to tunneling based on different tunnel diameters 

(D), different volume losses, and different (Z/D) ratios.  The surface displacement profiles 

obtained by the FEA are examined with those obtained by the SDE. 

 

 

7. Tunnel Performance under Various Parameters 
The soil investigation is discussed and analyzed in this study.  Five distinct soil layers are 

encountered.  The soil parameters are presented in Table 2. The different types of 

cohesionless soils are also considered in this study.  The different soil parameters (m, e) used 

in Janbu’s empirical equation (Eq. 3) (Janbu, 1963) are selected to simulate the performance 

of different soil types (Duncan et al., 1980).  
e

a

as
P

mPE 







 3    (3) 

In which; modulus number (m) and exponent number (e) are both pure numbers, Pa is the 

atmospheric pressure expressed in appropriate units, and σ3 an effective confining pressure. 

 

The tunnel is located at different types of cohesionless soils (loose sand, medium sand, dense 

sand, and very dense sand).  The diameter of the tunnel is varied from 7.5 m, 10 m, 12.5 m 

and 15 m.  The numerical analysis is carried out using the drained soil modulus (Es) 

calculated by Janbu equation as the metro tunnel passes through the sand soil.   

 

 

8. Surface Displacement due to Tunneling 
The tunnels constructed in soft ground leads to ground movement (Maroueh and Shahrour, 

2008).  In urban environment, this movement can affect surface and subsurface structures.  

Prediction of ground movement caused by tunneling is a major engineering challenge.  The 

FEA and the SDE are used to predict the soil movement by the tunnel excavation in soft 

ground.  In this Section, the results obtained by the SDE are compared with those obtained by 

FEA.   

 

 

8.1.   Ground Response under Loose Sand Impact 
Parametric studies are conduct at different tunnel depths from the ground surface.  The soil 

depth underneath tunnel invert is set to be three times the tunnel diameter (Mazek, 2005).  

Fig. 2 shows cross section of tunnel constructed in different sand soils. 

Different tunnel diameters (D), different overburden depths (Z), and different volume losses 

are discussed and presented to predict ground response due to tunneling. To study ground 

response under different sand soil types, tunnel diameter is varied from 7.5 m up to 15 m.  

Z/D ratio is varied from 2.5 to 4.  The volume loss (VL) is also varied from 1.5% to 4.5%. 

The surface displacements obtained by the SDE are calculated based on different (a) and (n) 

parameters.  The (a) parameter is varied from 0.8, 0.9, up to 1.0.  The (n) parameter is varied 

from 0.8, 0.9, up to 1.0.  The surface settlement profile obtained by both the FEA and the 

SDE in loose sand is shown in Fig. 10 at VL of 2.5%, D = 15 m, and Z/D = 3. 
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8.2.   Ground Response under Medium Sand Impact 
Surface settlement due to tunneling is also calculated for the case of medium sand soil. The 

different soil parameters (m, e) are selected to simulate the behavior of medium sand soil 

(Duncan et al., 1980).  

The surface settlement profile is predicted by both the FEA and the SDE.  The study also 

considered different tunnel diameters (D), different volume losses (VL), and different Z/D 

ratios.  In the parametric study, the VL is varied from 1.5 % to 4.5 %.  The tunnel diameter is 

varied from 7.5 m, 10 m, 12.5m, to 15 m.  The Z/D ratio is also varied from 2.5, 3, 3.5, 4, 4.5, 

to 5.  

The surface displacements are computed by the SDE based on different (a) and (n) 

parameters.  The (a) parameter is varied from 0.8, 0.9 up to 1.0.  The (n) parameter is varied 

from 0.8, 0.9 up to 1.0.  The Surface settlement profile obtained by both the FEA and the SDE 

is shown in Fig. 11 based on VL of 2.5%, D = 15 m, and Z/D = 3. 

 

 

8.3.   Ground Response under Dense Sand Impact 

The surface displacement is calculated by both the SDE and the FEA for dense sand due to 

tunneling. The surface displacement profile is computed by the FEA and the SDE. The soil 

parameters (m, e) are selected to simulate the behavior of dense sand as presented in Table 1 

(Duncan et al, 1980). 

The surface settlements are calculated by both the FEA and the SDE based on different tunnel 

diameters (D), different volume losses (VL), and different tunnel depths (Z).  The volume loss 

is varied from 1.5 % to 4.5 %.  The tunnel diameter is varied from 7.5 m, 10 m, 12.5 m, to 15 

m.  The (Z/D) ratio is ranged from 2.5, 3, 3.5, to 4. 

The surface displacements are calculated by the SDE based on different (a) and (n) 

parameters.  The (a) parameter is varied from 0.8, 0.9, up to 1.0.  The (n) parameter is varied 

from 0.8, 0.9, up to 1.0.  The surface settlement profile obtained by both the FEA and the 

SDE is shown in Fig. 12 at VL of 2.5%, D = 15 m, and Z/D = 3. 

 

 

8.4.   Ground Response under Very Dense Sand Impact 
To further understand the ground response due to tunneling, the ground surface displacement 

is calculated by both the SDE and the FEA at the case of very dense sand. The soil parameters 

(m, e) are selected to simulate the behavior of very dense sand (Duncan et al, 1980).   

The parametric study also considers different tunnel diameters, different volume losses, and 

different overburden depths.  In the parametric study, the volume loss is varied from 1.5 % to 

4.5 %.  The tunnel diameter is varied from 7.5 m, 10 m, 12.5 m, to 15 m. The Z/D ratios are 

ranged from 2.5, 3, 3.5, to 4. 

The surface displacement is calculated by the SDE is varied based on different (a) and (n) 

parameters.  The (a) parameter is varied from 0.8, 0.9, up to 1.0.  The (n) parameter is varied 

from 0.8, 0.9 up to 1.0.  The surface settlement profile obtained by both the FEA and the SDE 

is shown in Fig. 13 at VL of 2.5%, D = 15 m, and Z/D = 3. 

 

 

9. Discussions 
The surface displacement profile computed by the FEA and the SDE are studied and 

compared based on different sandy soil densities.  The surface settlement due to tunneling is 

also calculated by the SDE based on different ground losses, different overburden depths (Z) 

and different (a) and (n) parameters, as shown in Figs. 10 to 13. The (a) parameter is varied 

from 0.8, 0.9, up to 1.0. The (n) parameter is varied from 0.8, 0.9, up to 1.0.  In this study, the 

volume loss is considered to be 2.5%.  The tunnel diameter is considered to be 15 m.  The 
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Z/D ratio is equal to 3.  The finite element analysis takes into account strength and stress 

parameters of different sand soil types. However, the surface displacement equation proposed 

by Peck (1969) and Schmidt (1969) does not consider the impact of different sand densities. 

The difference between the two sets of computed settlements is noticed in different sand 

densities (loose, medium, dense, and very dense). The difference between the two sets of 

computed settlements lies on the use of the width parameter equation (i), as presented in Fig. 

9 (Attewell et al, 1986).  The width parameter equation is used for cohesionless soils but it 

neglects the impact of different sand soil densities.  Therefore, the differences between 

surface displacement profiles obtained by the FEA and those obtained by the SDE may be due 

to the value of the shear strength and stress parameters for the soil media around tunnel 

system.  Figs. 10 to 13 show the comparison between the results obtained by both the FEA 

and the SDE.  The surface settlements due to tunneling are calculated by the SDE with 

different (a) and (n) parameters. 

It is also observed that the FEA takes into account the effects of volume losses. However, the 

surface displacement equation does not consider the impact of the volume loss.  The volume 

loss is an important parameter effect on the performance of the tunnel system.  An increase of 

volume loss from 1.5 % to 4.5 % leads to increases the estimated surface settlements due to 

tunneling by up to 60%.  The smaller the volume loss due to tunneling the smaller the 

calculated surface settlement. 

In the case of loose sand, the surface displacement profiles obtained by the FEA are examined 

with those obtained by the SDE.  The surface displacements calculated by the SDE are very 

close to those calculated by the FEA as the (a) parameter is ranged from 0.92 to 0.95 at (n) 

parameter to be 1.0. 

In the case of medium sand, the surface displacement profiles obtained by the FEA are 

examined with those obtained by the SDE.  The surface displacements calculated by the SDE 

are very close to those calculated by the FEA as the (a) parameter is ranged from 0.89 to 0.92 

at (n) parameter to be 1.0. 

In the case of dense sand, the surface displacement profiles obtained by the FEA are 

examined with those obtained by the SDE. The surface displacements calculated by the SDE 

are very close to those calculated by the FEA as the (a) parameter is ranged from 0.86 to 0.89 

at (n) parameter to be 1.0. 

In the case of very dense sand, the surface displacement profiles obtained by the FEA are 

examined with those obtained by the SDE. The surface displacements calculated by the SDE 

are very close to those calculated by the FEA as the (a) parameter is ranged from 0.82 to 0.86 

at (n) parameter to be 1.0. 

Therefore, the finite element analysis gives a better estimation of surface settlement as 

demonstrated with the comparison between the calculated and the measured surface 

settlements based on the case study.   

Figs. 10 to 13 show that the (n) parameter used at the (i) parameter does not give a big 

difference in the surface settlement.  However, the (n) parameter used at the (i) width 

parameter is considered to be constant value (n= 1.0).  Based on n to be equal 1, the width 

parameter equation (i) is used to calculate the new (a) parameter at different sand soil 

densities based on the FEA.  Therefore, this study establishes the value of new (a) parameter 

for different sand soil types as summarized in Table 4. 
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10. Conclusions 
 The 2-D nonlinear finite element analysis is applicable to analyze and predict detailed 

performance of tunnel systems. 

 The results calculated by the 2-D finite element analysis have a good agreement with the 

field data. 

 The (n) parameter used in the (i) width parameter does not give a big difference in the 

surface settlement calculated by the SDE. 

 The (a) parameter used in the (i) width parameter has significant effect on the surface 

settlement calculated by SDE.  

 In the case of loose sand, the surface displacements calculated by the SDE are very close to 

those calculated by the FEA as the (a) parameter lies from 0.92 to 0.95 at the (n) parameter 

to be 1.0. 

 In the case of medium sand, the surface displacements calculated by the SDE are very 

close to those calculated by the FEA as the (a) parameter lies from 0.89 to 0.92 at the (n) 

parameter to be 1.0. 

 In the case of dense sand, the surface displacements calculated by the SDE are very close 

to those calculated by the FEA as the (a) parameter lies from 0.86 to 0.89 at the (n) 

parameter to be 1.0. 

 In the case of very dense sand the surface displacements calculated by the SDE are very 

close to those calculated by the FEA as the (a) parameter lies from 0.82 to 0.86 at the (n) 

parameter to be 1.0. 
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Table 1: Estimated surface settlement considering different elements sizes 
 

Mesh size 

(m) 

Element size 

along outer 

boundary of 

soil block 

mesh 

5 m 4 m 3 m* 2 m 1 m 

Element size 

along tunnel 

liner 

1 m 2m 1 m 2 m 1m* 2 m 1 m 2 m 1 m 

Surface Settlement (mm) 4.4 4 4.6 4.15 4.9 4.2 4.9 4.28 4.9 
 

* Selected element size of the 2-D finite element model 

 

 

Table 2: Geotechnical Soil Parameters 
 

Layer Fill 
Upper 

Sand 

Middle 

Sand 

Silty-

Clay 

Loose 

Sand 

Medium 

Sand 

Dense 

sand 

(lower 

layer) 

Very 

dense 

sand 

Bulk Density b  (t/m
3
) 1.7 1.9 1.95 1.8 1.8 1.85 1.9 2.0 

Drained Poisson’s Ratio s 0.3 0.3 0.3 0.35 0.35 0.30 0.3 0.25 

Effective Angle of Initial Friction 

() 
27 36 38 29 27 32 38 43 

Effective Cohesion C (KPa) 0 0 0 0 0 0 0 0 

Modulus Number (m) 300 400 500 325 300 500 800 1000 

Exponent Number (n) 0.74 0.55 0.52 0.6 0.6 0.51 0.5 0.4 

Coefficient of Lateral Earth 

Pressure K0 
1 0.412 0.385 0.8 0.56 0.47 0.38 0.32 

 

 

Table 3: Mechanical properties of metro tunnel liner 

 

 

 

 

 

Type Eb  (t/m
2
) (t) cm Fc  (t/m

2
) γ  (t/m

3
) Ν 

Tunnel liner 2.1×10
6 

50 4000 2.5 0.20 
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Table 4: New (a) parameter used at the (i) parameter equation 

 at different sand soil densities 
 

S/N Sand soil type n-parameter a-parameter 

1 loose sand 1 0.92- 0.94 

2 medium sand 1 0.9- 0.92 

3 dense sand 1 0.88- 0.9 

4 very dense sand 1 0.86- 0.88 
 

 

Fig. 1: Cross section shows soil parameters along the Greater Cairo metro-Line 3 

(after NAT, 2010) 
 

 
 

Fig. 2:  2-D finite element model of the Greater Cairo Metro-Line 3 
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Fig. 3: Calculated final vertical stress around the metro tunnel system 

 

 

 
 

Fig. 4: Vertical stress before and after tunnelling  

(The Greater Cairo Metro tunnel-Line 3) 

 
 

Fig. 5: Calculated surface settlement against different model widths due to tunneling 
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Fig. 6: Calculated surface settlement along C.L of metro tunnel  

at different volume losses 
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Fig. 7: Plan of the Greater Cairo metro (Line 3) 
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Fig. 8: Comparison between measured and calculated surface settlements 

 along the centreline of the Grater Cairo metro tunnel-Line 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Gaussian curve for transverse settlement trough 

 (after Peck, 1969 and Schmidt, 1969) 
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Fig. 10: Surface settlement profile obtained by both finite element analysis and 

surface displacement equation in loose sand  

(ground loss of 2.5%, D=15 m, Z/D=3) 
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Fig. 11: Surface settlement profile obtained by both finite element analysis and 

surface displacement equation in medium sand  

(ground loss of 2.5%, D=15 m, Z/D=3) 



Paper: ASAT-15-188-CV 

 

 

17 

 

n=0.8 a=0.8

n=0.8 a=0.9

n=0.8 a=1

FEM

Distance from C.L of tunnel (m) 

Su
rf

ac
e 

se
tt

le
m

e
n

t 
(m

m
) 

n=0.9 a=0.8

n=0.9 a=0.9

n=0.9 a=1

FEM

Su
rf

ac
e

 s
e

tt
le

m
e

n
t 

(m
m

) 

Distance from C.L of tunnel (m) 

n=1 a=0.8

n=1 a=0.9

n=1 a=1

FEM

Su
rf

ac
e 

se
tt

le
m

e
n

t 
(m

m
) 

Distance from C.L of tunnel (m) 

Su
rf

ac
e 

se
tt

le
m

e
n

t 
(m

m
) 

Distance from C.L of tunnel (m) 

Fig. 12: Surface settlement profile obtained by both finite element analysis and 

surface displacement equation in dense sand  

(ground loss of 2.5%, D=15 m, Z/D=3) 
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Fig. 13: Surface settlement profile obtained by both finite element analysis and surface 

displacement equation in very dense sand (ground loss of 2.5%, D=15 m, Z/D=3) 
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