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Abstract: This paper presents the application of Compressive Sensing (CS) theory in radar 

signal processing. CS uses the sparsity property to reduce the number of measurements 

needed for digital acquisition, which causes reduction in the size, weight, power consumption, 

and the cost of the CS radar receiver. Complex Approximate Message Passing (CAMP) 

algorithm is a fast iterative thresholding algorithm which is used to reconstruct the 

undersampled sparse signal and improves its Signal-to-Noise Ratio (SNR) [12- 16]. In present 

work, the superiority in performance of applying the CAMP algorithm in radar signal 

processing compared to the Digital Matched Filter (DMF), and the simple envelope detector 

is proved through the Receiver Operating characteristic (ROC) curves. 
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1. Introduction 
In recent years, because of people’s growing demand for information, the bandwidth of the 

signal carrying the information becomes wider. Digital signal processing technology and the 

rapid development of digital processing devices make digital signal processing play an 

important role in signal processing. Sampling is the only way to convert the analog signal into 

digital signal, and sampling theorem is a bridge which links between them. Sampling theorem 

(Shannon theorem) demands that the sampling rate should equal at least twice the bandwidth 

of the signal, in order to reconstruct the original analog signal without distortion.  

 

In 2004, Donohue and Candes proposed CS theory, which is a new signal acquisition, 

encoding, and decoding technique [1]. CS theory combines the sampling and compression to 

reduce the signal sampling rate, the cost of the transmission, and the processing time. The CS 

theory shows that, when the signal has the characteristic of sparsity, the original signal can be 

exactly or approximately reconstructed from undersampled measurements. 

 

In radar signal processing, in order to accurately probe the target, large-bandwidth signals 

need to be launched (very narrow pulse duration), which requires a very high sampling rate to 

accurately estimate the target parameters. The CS theory may be applied in radar signal 

processing to manage this issue [1–8].  

 

This paper is organized as follows; after the introduction, section 2 gives a survey on the 

bases of CS theory. Section 3 focuses on the feature of the CAMP algorithm (kind of the 

iterative thresholding algorithms). Performance evaluation through the ROC curves of the 

CAMP algorithm compared to the DMF and the simple envelope detector with comparator 

are presented in section 4. Finally, conclusion comes in section 5. 
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2. Compressive Sensing theory 
Based on the characteristic of sparsity of signal, CS theory converts the high dimensional 

signal to a lower dimensional signal using a sensing matrix, A,  then reconstructs the original 

signal with high probability using a small number of measurements. Considering the problem 

of recovering a sparse signal, x, from an undersampled set of measurements, y: 

 

 y = Ax + n  (1) 

 

 δ = M / N      ,      ρ = K / M (2) 

 

where y is (M×1) measurement matrix, A is (M×N ) sensing matrix,  x is (N×1) sparse radar 

signal, n is Gaussian random noise with zero mean and unity variance, ρ is the radar signal 

sparsity, and δ is the undersampling factor. The process of compression and reconstruction of 

signal using CS theory is organized, as shown in figure (1) [7]. 

 

 

 

 

 

Fig. 1   General CS diagram. 

 

As shown in figure (1), application of CS in radar signal processing may be organized 

separately in three aspects: sparse representation of radar signal, designing of sensing matrix, 

and reconstruction of the radar signal. These aspects shall be discussed in the following 

subsections: 

 

2.1 Sparse representation of radar signal 
The Fourier transform and the Wavelet transform are used to provide more direct analysis for 

the radar signal. The purposes of these transformations are aimed at representing the radar 

signal in sparse form. Suppose, s, is one-dimensional discrete-time signal with finite length 

and real value. From the Matrix theory, the signal, s, can be represented by its orthonormal 

basis [10]: 

 

 s = [s1 s2 s3 …. sN ] (3) 

 

   ψ = Fourier or wavelet transform [s]   (4) 

 

So, the sparse representation, x, of the signal, s, is given in equation (5): 

 

 x = ψ s        (5) 

 

where, x, is the sparse representation of the original signal, and ψ is the representation in the 

transformation domain (Fourier / Wavelet). Suppose k be non-zero number of elements of, x. 

If k is smaller than N, so the signal, x, is sparse or compressible. Sparsity reduces the number 

of zero coefficients which help to reduce the sampling rate with the factor M [12] which is 

given by equation (6) : 

 

  (6) 

 

where M is the number of measurements, N is the number of Nyquist rate samples, and k is 

the number of the non-zero coefficients. 
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From the nature of the radar signal, it is clear that the radar signal has a sparsity property. This 

is because the number of targets is typically much smaller than the number of resolution cells 

in the illuminated area or volume. This means that, the step of sparsity transformation for the 

received radar signal is not included in the present work. So, the compressed measurement 

vector may be obtained directly from the received radar signal. 

 

2.2 Designing the sensing matrix A 
The sensing matrix A which contains random numbers is designed to ensure that the sparse 

signal, s, can be reconstructed perfectly according to a sufficient and a necessary conditions. 

The sufficient condition is that the matrix A has the coherence property μ (A), which is the 

largest absolute inner product between any two columns (i, j) of A as in equation (7) [11]. The 

coherence property of the matrix A is used to ensure that the matrix A is sparse matrix by 

designing it to be orthonormal matrix:  

 

 μ (A) =        (7) 

 

The necessary condition of the matrix A is the Restricted Isometry Property (RIP), which is 

given in equation (8), which provides guarantees of uniqueness when the measurement vector 

y is obtained without error by determining the number of measurements M (equation 6). RIP 

solves two problems: the first problem appears when the pseudo inverse is used to reconstruct 

the sparse signal, s, as the matrix A isn't invertible [12]. The second problem is the two kinds 

of errors (radar system noise and Mean Square Error (MSE)). Under these problems, it is no 

longer possible to guarantee uniqueness, which is controlled by the RIP property, which 

insures that the recovery process is stable in presence of the noise, and to control the tolerant 

for both types of errors [12]: 

 

 (1-δ)  (8) 

 

2.3 Reconstruction of radar signal 
In the CS theory, because the number of measurements M is lower than the number of the 

samples N of the original sparse radar signal, s, the problem is solvable. It can be solved by ℓ1 

norm minimization, and the estimated radar signal, , is given by the equation (9) [12]: 

 

 (λ) = arg min  (9) 

where  is the regularization parameter that controls the update of the measurement vector, y. 

Equation (9) is a convex function and can be solved by standard techniques such as interior 

point or homotopy methods. However, these approaches are computationally expensive; 

therefore iterative algorithms are applied with inexpensive computations like the CAMP 

algorithm [15, 16]. 

 

 

3. Complex Approximate Message Passing (CAMP) 
The Complex Approximate Message Passing (CAMP) algorithm is a kind of Iterative 

Thresholding algorithms, which refines the reconstructed signal at each iteration by a 

thresholding steps. In the present work, this algorithm is used to reconstruct the radar signal, 

as shown in figure (2) [13- 16]. 
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Fig. 2. Flowchart of the CAMP algorithm. 

 

As shown in figure (2), the CAMP algorithm can be summarized as follows, where the 

estimated signal is firstly initialized: 

 

   ,      zo = y 

 

where  is the estimated value of the signal, s, and zo is the measurement matrix at  

a certain iteration. Then CAMP algorithm firstly compute the noisy estimation of the radar 

signal, then the threshold value is determined from this noisy estimation. 

 

In the previous work [16], this threshold was chosen according to sorting the noisy estimation 

of the radar signal, , and choosing the value number (M), by performing different simulation 

trails, it is found that setting this threshold value as the average of the noisy estimation of the 

radar signal, , gives better results (equation 11). 

 

    (10) 

 

   (11) 

 

where  is the non sparse noisy estimation of the signal, s, and  is the threshold of the noisy 

estimated non sparse signal.  
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Then the measurements will be updated to be prepared to the next iteration for reconstructing 

the sparse radar signal, s, by using the iteration soft threshold function : 

 

   (12) 

 

  (13) 

 

where  is the threshold value, and MSE is the Mean Square Error (the error due to the 

mismatches between the original and the reconstructed radar signal). The previous algorithm 

is repeated many times in order to minimize the MSE, which is the difference between the 

original and the reconstructed signal. When the MSE value becomes less than the tolerance 

value, the iteration is stopped. 

 

To evaluate the performance of the CAMP algorithm, it is compared to the DMF as a 

traditional signal processing technique as well as the simple envelope detector through the 

ROC. 

 

4. Simulation Results 
Considering an analog received pulse radar signal with duration δt = 4 μs. According to 

Shannon theory, the sampling rate is chosen to be 1 MHz, so the radar signal has four samples 

in its pulse duration. The simulation results are obtained for three schemes: the CAMP 

algorithm, the envelope detector with comparator, and the DMF.  

 

4.1 The CAMP algorithm 
Firstly, the received radar signal is considered to be a perfect radar signal which doesn't have 

any noise or clutter  as shown in figure (3), consider a sparse radar signal of length 100 

samples, which can be reconstructed from a minimum number of measurements  

M = 75 samples according to equation (6). The signal is considered to have four peaks, so the 

number of non zero coefficients is k = 4 (sample at the pulse width), and the signal sparsity 

ρ = K / M = 0.053 and undersampling factor δ = M / N = 0.75. The spectrum of both signals 

are the same, so the reconstructed radar signal by the CAMP algorithm is completely like the 

original radar signal. 

 

 

 

 

 

 

 

 

 

 

          

 

        (a)                              (b)              (c)           (d) 

 

Fig. 3   Reconstruction of the noise free radar signal by using the CAMP algorithm 

 (a) original signal, (b) reconstructed signal (c) spectrum of original signal, 

(d) spectrum reconstructed signal. 



Paper: ASAT-15-212-AV 

 

 

6 

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
the original pulsed radar signal+Noise

Number of Samples

A
m

pl
itu

de

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
the reconstructed signal by using CAMP

Number of Samples

A
m

pl
itu

de

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
the spectrum of the original signal

frequncy

am
pl

itu
de

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
the spectrum of the reconstructed signal

frequncy

am
pl

itu
de

0 1 2 3 4 5 6 7 8 9 10
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Mean Square Error

iteration

MS
E

 

 

under sampling factor = 0.5

under sampling factor = 0.75

under sampling factor = 1

A
m

p
li

tu
d

e 

A
m

p
li

tu
d

e 

samples samples frequency frequency 

Iteration 

M
S

E
 

For a case of noisy radar signal the reconstructed signal will be like the original signal but 

without noise, and the spectrum of the reconstructed signal will be as the ideal noise free 

signal, as shown in figure (4). 

 

The Mean Square Error (MSE) is the square of difference between the original radar signal 

and the reconstructed signal, and it accurately predicts the behavior of the CAMP algorithm. 

It changes from iteration to iteration, and it depends on the sparsity ρ and undersampling 

factor δ [15], as shown in figure (5).  

 

 

 

 

 

 

 

 

 

 

 

 

  

                            (b)            (c)            (d) 

 

Fig. 4   Reconstruction of the noisy radar signal by using the CAMP algorithm 

 at Pfa = 10-5: (a) original signal, (b) reconstructed signal, (c) spectrum of 

 original signal, (d) spectrum of the reconstructed signal 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5   The MSE at different values of the undersampled factor δ at Pfa = 10-5. 

 

 

Figure (5) shows that the MSE of the reconstructed radar signal by using the CAMP 

algorithm approximately tends to zero after four iterations. The undersampled factor effects 

the MSE, where as the undersampled factor increases (number of measurements increase) the 

MSE decreases.  

 

The undersampled factor (number of measurements) affects the probability of detection of the 

CAMP algorithm, where as the undersampled factor increases (number of measurements 

increases), the probability of detection of the reconstructed radar signal will increase [16], as 

shown in figure (6). 
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Fig. 6   ROC of the CAMP algorithm at different values of the undersampled factor δ  

at Pfa = 10-5. 

 

 

4.2 The envelope detector 
The envelope detector is used by a radar system when the phase of the received pulse is 

unknown (non-coherent), and it is used with comparator to detect the received radar signal 

(target), as shown in figure (7). 

 

 

 

 

 

 

 

 

 

Fig. 7   Simple block diagram of the envelop detector with comparator. 

 

 

The envelop detector detects the received radar signal peaks by comparing it to 

 a pre-determinable threshold, which achieve a predesigned probability of false alarm, as 

shown in figure (8). 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                (b) 

 

Fig. 8   The effect of the envelope detector on the noisy radar signal at Pfa = 10-5: 

radar signal, (b) radar signal after the envelop detector and comparator. 
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4.3 Digital Matched Filter 
The DMF is used to maximize the SNR of the radar signal [16], and it is commonly used 

in radar applications, in which a known signal is reflected, and examined for common 

elements of the transmitted signal. Figure (9) shows a realization of the sub-pulse DMF for a 

rectangle video pulse [17].  

 

In the present work the radar signal has four samples in its peak, so the DMF will have four 

delay blocks in its design. The outputs of every delay block will be collected together by 

using a summator, which amplifies the amplitude of the radar signal, as shown in  

figures (9), (10). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9   Simple block diagram of the DMF. 

 

 

 

 

 

 

 

 

 

    

 

 

 

                (a)                            (b)                                   (c)                            (d) 

 

Fig. 10   The effect of the DMF on the received radar signal: 

(a) noise free signal, (b) noise free signal after DMF, 

 (c) noisy signal, (d) noisy signal after DMF. 

 

 

The ROC curves are plotted to compare between the performance of the envelope detector, 

the CAMP, and the DMF, at constant probabilities of false alarms of 10-4, 10-5, and 10-6, as 

shown in figures (11), (12), and (13) respectively. 

 

The constant probability of false alarm is controlled by the threshold. The threshold in the 

simple envelop detector, and the DMF is a constant threshold, which is set after the envelope 

detector and after the DMF, but the threshold of the CAMP algorithm is set inside the 

algorithm itself (soft thresholding function).  
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The superiority of the CAMP algorithm in detecting the radar signal compared to the DMF or 

the simple envelope detector is very clear from figures (11), (12), and (13). Regarding to the 

complexity of real time computation, it is clear that the CAMP algorithm needs more 

calculations than the DMF or the envelope detector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11   ROC of the CAMP algorithm, the DMF, and the simple envelope detector at  

Pfa = 10-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12   ROC of the CAMP algorithm, the DMF, and the simple envelope detector at  

Pfa = 10-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13   ROC of the CAMP algorithm, the DMF, and the simple envelope detector at  

Pfa = 10-6. 
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5. Conclusion 
This paper gives a general description about CS theory, the sparsity property of the radar 

signal, and focuses on the reconstruction of the radar signal from undersampled measurements 

by using the CAMP algorithm. A suggested method based on simulation is proposed for 

calculating the threshold value according to the average of the noisy estimation of the signal 

in the CAMP algorithm, which gives better results. Increasing the number of measurements 

reduce the MSE and increases the probability of detection of the reconstructed radar signal by 

using the CAMP algorithm. The detection performance of applying the CAMP algorithm on 

the pulse radar signal was found to be better than that of the DMF and envelope detector. The 

CAMP algorithm can be used in the radar signal processing to improve the SNR better than 

the DMF, and the envelope detector. On the other hand, complexity and time of calculation 

may be increased, and must be studied well for the real time implementation. 
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