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Investigation of a diffusion model of a substance from a point source in an urban area 

was carried out. The concentration (C) at the edge of the plume falls to almost zero for 

neutral, stable and unstable conditions. The new in this work is to consider the vertical 

wind speed (u) to be consisting of the sum of power and logarithmic law. This 

consideration was applied on the previous conditions. The calculated concentrations 

for these three conditions was compared with the observation’s concentration data 

measured for Iodine-131 (I131) at the reactor at Inshas. The emission rate (Q) was 

corrected (Q-corrected) from the observed results. In addition, the laps rate (ΔT/ΔZ) 

was found to be equals to (0.36), which is only in agreement with the stable case. 

Accordingly, the value of (Q) for this stable case was calculated and found to be 

greater than that calculated for each separated vertical wind speed. This result showed 

that the calculated ground concentration (C- corrected) is the same as that observed. 

This conclusion demonstrate that the suggested model is the best model suitable for 

this case. 
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 1- INTRODUCTION 

 The advection-diffusion equation is solved with 

Gaussian model considering that the vertical eddy 

diffusivity and wind speed are invariant [1- 4]. The 

advection-diffusion equation is evaluated by taking 

the vertical eddy diffusivity and wind speed as 

functions of power law [5-7]. Also, studying the 

influence of eddy diffusivity and wind speed as 

functions of power law on the advection-diffusion 

equation was investigated [8]. Advection-diffusion 

equation in Two-dimensional is calculated by 

separation of variables, considering the vertical 

turbulence as a function of downwind distance and 

power law of vertical height and the wind speed as a 

function of power law [9-10]. Advection-diffusion 

equation with steady state in three-dimensional is 

solved using Fourier transform and considering 

vertical eddy diffusivity as a function of downwind 

distance and constant wind speed to obtain the 

normalized crosswind integrated concentration [11]. 

Also, the same problem is obtained by assuming that 

the vertical eddy diffusivity as function of power law 

of vertical height [12]. Lately, the answer of the 

advection–diffusion equation in two dimensions with 

variable vertical eddy diffusivity and wind speed is 

the use of Hankel rework is expected [13]. In 

addition, the solution of advection-diffusion equation 

in three dimensions using Hankel transform was 

obtained [14]. 

2- MATHEMATICAL MODEL  
  

Fig. (1) shows the coordinate system direction of 

the mean wind. The effective height is H =hs + Δh, 

where hs is stack height and Δh is the plume rise 

which the plume travel downwind is increased 

where, the ground surface is a complete reflector of 

substance. 
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Fig. (A): Graph of pollutants diffusion of the trace. 

 

The principle of mass conservative in steady state is as 

follows:  

   

H

0
Q u(z)C(z)dz= 

                                       
(1) 

 

Where, Q is the emission rate, u(z) is the average wind 

speed, and C(z) is the concentration of material. To get 

the integration in Eq. (1) one can define u(z)  ,H and 

C(z) as in the following sections.  

2.1- Wind Profile 

Power and Logarithmic wind law 

The power and Logarithmic laws formulas are referred 

[15,1] as follows: 
 

a- For Neutral Case: 

           u(z) = u1(
z 

10
)n  + 

u∗

k
 ln(

z+zo

zo
)                 (2) 

 

b- For Stable Case: 

           u(z) = u1(
z 

10
)n  + 

u∗

k
 ln (

z+zo

zo
+

5.2z

L
)                (3) 

c- For Unstable Case: 

u(z) = u1(
z 

10
)n  + 

u∗

k
{ln [

(1+f(z))
1
4−1

(1+f(z))
1
4+1

] +

2tan−1(1 + f(z))
1

4 + ln [
(1+

16zo
L

)
1
4+1

(1+
16zo

L
)

1
4−1

] +

                                   2tan−1(1 +
16zo

L
)

1

4}     (4) 

 

Where, z0 is the roughness height (m), zr=10m is the 

reference height, L is the Monim-Obukhov length, u1is 

the wind speed at reference height, u∗ is the fraction 

velocity, k is Von-karman constant and f(z)=16(z+zo). 

The values of power-law exponent ‘n’ of air stability 

are referred [1] and presented in Table (1). 

Table (1): Power-law exponent ‘n’ of eddy diffusivity 

as a function of air stability in urban area 

 A B C D E F 

n 0.85 0.85 0.80 0.75 0.60 0.40 
 

2.2- The effective height 

 The plume height Δh of diffusing substance at 

stack height hs is calculated from the following 

equation [16]: 

Duwh )/(3=
  

                                     (5)  

Where, the exit velocity is w (m/s), and D is the 

internal stack diameter (m). The effective stack height H 

equals: 
 

DuwhhhH
ss

)/(3+=+=             (6)     
 

2.3 Concentration Profile 

The following partial differential equation  

 
C C

u K(z)
x z z

   
=  

   
                         (7) 

Was solved [21] under the following boundary conditions  

 

C→0     and   x→  

C
K(z)

z




→0 as   z→0 

 

The profile of concentration is assumed as follows: 
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2
0 1 2C/ C 1 (z / H) (z / H) ...= + + +          (8) 

where, Co is the concentration value at the plume axis, C 

is the concentration value at a distance z away from the 

shaft axis, H is the effective stack height of the plume, 

and α1 and α2, etc are constants.  
 

     It was found that the series in Eq. (8) gives well fit to 

the observed data even if only the first two terms are 

retained as shown in Fig.(2) as follows:     
 

 
Fig. (2): The concentration of Iodine (I131) via downwind 

distance from the reactor. 

0 1C/ C 1 (z / H)= +                              (9) 

Eq. (9) is a straight-line equation. The value α1 depends 

on the concentration desired at the edge of the plume. If 

the edge of the plume is defined as having r percent of the 

concentration, then  

         α1= -1+ 0.01 r                                (9a) 

and if "r = 0"   then α1= -1 

                     C/Co=1-(z/H)                                 (9b) 

2.4-Proposed Model 

In Eq. (1) substituting u(z)  by wind profiles which 

presented in Equations (2), (3) and (4), H by Eq. (7) and 

C(z) by concentration profile which presented in Eq. (9).  

One can get different forms during different stabilities as 

follows: 
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which, after integrating yields: 
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where, Co is the concentration at the plume axis. Q is the 

emission rate. α1= -1 in concentration profile, (Eq.9). 

2.4.2 Stable case 
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which, after integrating yields: 
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2.4.3 Unstable case 

Similarity, the conservative mass of the plume is as 

follows: 
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where,  is taken from [17]. 

 

2.5-Case study 

The derived expression for Co/Q is applying on of the 

first Research Reactor in Egyptian Atomic Energy 

Authority. The total ventilation rate is 39965 m3/hr [18], 

which was emitted from the reactor stack of 43 m height, 

1 m internal diameter, and exist velocity is 4 m/s, taking 

α=-1.    

The predicted values of u, u*,  h, H and Co/Q of 

neutral, stable and unstable conditions are presented in 

Table (2), (3) and (4) respectively. The last three 

columns in the three tables show that the usual 

continuous operation time of the reactor through 48 

hours. 
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Table (2): The wind speed (u), friction velocity (u*), the plume rise (h), effective height (H) and the 

concentration at the axis of the plume over emission rate (Co/Q) during the year 1999 in neutral 

case. 

u (m/s) u* (m/s) ∆h(m) H (m) 
C o/Q *10 3   s/m3 

(ref. 1) 

C o/Q *10 3   

s/m3(ref. 2) 

Proposed model 

C o/Q *10 3 s/m3 

5.27 0.33 2.28 45.28 33.62 8.17 41.79 

5.31 0.33 2.26 45.26 33.64 8.11 41.75 

5.34 0.34 2.25 45.25 32.67 8.07 40.74 

6.37 0.4 1.88 44.88 28.10 8.83 36.93 

5.17 0.32 2.32 45.32 34.62 8.32 42.94 

4.45 0.28 2.70 45.70 39.09 9.57 48.66 

5.1 0.32 2.35 45.35 34.59 8.43 43.02 

4.81 0.3 2.49 45.49 36.73 8.9 45.63 

5.3 0.33 2.26 45.26 33.64 8.13 41.77 

4.86 0.31 2.47 45.47 35.57 8.8 44.37 

5.36 0.34 2.24 45.24 32.67 8.04 40.71 

5.19 0.33 2.31 45.31 33.58 8.29 41.87 

5.41 0.34 2.22 45.22 32.70 7.97 40.67 

5.54 0.35 2.17 45.17 31.82 7.79 39.61 

5.2 0.33 2.31 45.31 33.59 7.27 40.86 

5.61 0.35 2.14 45.14 31.84 7.7 39.54 

5.79 0.36 2.07 45.07 31.03 7.48 38.51 

6.27 0.39 1.91 44.91 28.79 6.94 35.73 

5.93 0.37 2.02 45.02 30.24 7.31 37.55 

6.01 0.38 2.00 45.00 29.47 7.22 36.69 

5.41 0.34 2.22 45.22 32.70 7.97 40.67 

5.75 0.36 2.09 45.09 31.01 7.53 38.54 

5.26 0.33 2.28 45.28 33.62 8.19 41.81 

Ref. (1) is Essa and Maha (2006) [17] and Ref. (2) is Essa and Ghobrial (2013) [19]. 
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Fig. (3): The normalized concentration at the plume axis via the effective height in neutral condition 
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Table (3): The wind speed (u), friction velocity (u*), the plume rise (h), effective height (H) and the 

concentration at the axis of the plume over emission rate (Co/Q) during the year 1999 in stable 

caseat L=55m. 

u (m/s) u* (m/s) ∆h(m) H (m) 
C o/Q *10 3   s/m3 

(ref. 1) 

C o/Q *10 3   

s/m3(ref. 2) 

Proposed model 

C o/Q *10 3  s/m3 

5.27 0.33 2.28 45.28 17.99 8.7 26.69 

5.31 0.33 2.26 45.26 20.97 9.93 30.9 

5.34 0.34 2.25 45.25 19.64 9.5 29.14 

6.37 0.4 1.88 44.88 16.62 7.87 24.49 

5.17 0.32 2.32 45.32 20.90 10.19 31.09 

4.45 0.28 2.70 45.70 21.61 10.52 32.13 

5.1 0.32 2.35 45.35 21.66 10.34 32 

4.81 0.3 2.49 45.49 22.38 10.85 33.23 

5.3 0.33 2.26 45.26 21.63 10.45 32.08 

4.86 0.31 2.47 45.47 20.97 9.95 30.92 

5.36 0.34 2.24 45.24 19.63 9.52 29.15 

5.19 0.33 2.31 45.31 20.27 9.75 30.02 

5.41 0.34 2.22 45.22 20.94 10.07 31.01 

5.54 0.35 2.17 45.17 19.63 9.54 29.17 

5.2 0.33 2.31 45.31 22.39 10.79 33.18 

5.61 0.35 2.14 45.14 19.67 9.37 29.04 

5.79 0.36 2.07 45.07 18.51 8.9 27.41 

6.27 0.39 1.91 44.91 18.52 8.88 27.4 

5.93 0.37 2.02 45.02 19.65 9.46 29.11 

6.01 0.38 2.00 45.00 19.04 9.27 28.31 

5.41 0.34 2.22 45.22 20.30 9.63 29.93 

5.75 0.36 2.09 45.09 20.26 9.81 30.07 

5.26 0.33 2.28 45.28 21.68 10.27 31.95 
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Fig. (4): The normalized concentration at the plume axis via the effective height in stable condition 
 

Table (4): The wind speed (u), friction velocity (u*), the plume rise (h), effective height (H) and the 

concentration at the axis of the plume over emission rate (Co/Q) during the year 1999 in 

unstable class at L=2.5m. 

u(m/s) u* (m/s) ∆h(m) H (m) 
C o/Q *10 3   

s/m3 (ref. 1) 

C o/Q *10 3   

s/m3(ref. 2) 

Proposed model 

C o/Q *10 3  s/m3 

5.27 0.33 2.28 45.28 73.97 9.68 
83.65 

5.31 0.33 2.26 45.26 76.15 11.13 
87.28 

5.34 0.34 2.25 45.25 75.80 10.65 
86.45 

6.37 0.4 1.88 44.88 72.22 8.78 
81 

5.17 0.32 2.32 45.32 76.60 11.44 
88.04 

4.45 0.28 2.70 45.70 77.64 11.82 
89.46 

5.1 0.32 2.35 45.35 77.13 11.61 
88.74 

4.81 0.3 2.49 45.49 78.07 12.19 
90.26 

5.3 0.33 2.26 45.26 77.07 11.73 
88.8 

4.86 0.31 2.47 45.47 76.74 11.16 
87.9 

5.36 0.34 2.24 45.24 75.79 10.67 
86.46 

5.19 0.33 2.31 45.31 76.26 10.1 
86.36 

5.41 0.34 2.22 45.22 76.67 11.3 
87.97 

5.54 0.35 2.17 45.17 75.78 10.69 
86.47 

5.2 0.33 2.31 45.31 77.48 12.13 
89.61 

5.61 0.35 2.14 45.14 75.29 10.24 
85.53 

5.79 0.36 2.07 45.07 74.40 9.96 
84.36 

6.27 0.39 1.91 44.91 74.41 9.94 
84.35 

5.93 0.37 2.02 45.02 75.82 10.6 
86.42 

6.01 0.38 2.00 45.00 75.34 10.38 
85.72 

5.41 0.34 2.22 45.22 75.73 10.79 
86.52 

5.75 0.36 2.09 45.09 76.22 11.0 
87.22 

5.26 0.33 2.28 45.28 77.17 11.52 
88.69 
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Fig. (5): The normalized concentration via the effective height in unstable condition 

 

 

Figs (3-5) show that a straight-line fit well to this 

data in the case of neutral, stable and unstable conditions 

between the normalized concentration at the plume axis 

Co/Q and effective height H. One finds that the data of 

the proposed model are larger than the power and 

Logarithmic laws. The smallest and moderate values are 

obtained in power and logarithmic laws for the wind 

speed respectively. 

3. Verification 

For a point source with hs=27m (height of the source 

of the Second Research Reactor in Egyptian Atomic 

Energy Authority (ETRR-2) from the ground. For 

Iodine-131 (I131), (H) is 31.29m, (Q) is 35 Bq, the wind 

speed (u1) is 2.8 m/s and the lapse rate (ΔT/ΔZ) 

(C˚/100m) is 0.36. This is stable case (n=0.5). from Eq. 

(13), one gets the concentration at (Co) equals 

0.822Bq/m3. Then the concentration at ground modifies 

to: 

3/113.0)1(822.0)( mBq
H

h
groundC s =−=    (15) 

The observed concentration at x=300m, H=31.29 m 

was 0.16 Bq/m3. To achieve the verification, the source 

strength is adjusted to yield observed concentration at 

the first point of observation to get the corrected source 

strength as follows: 

𝑄(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) =
0.16 × 35

0.113
= 49.7 

By using Q (corrected), one gets Co (corrected)=1.17 and 

Cground (corrected proposed model) =0.16Bq/m3. It is a 

same as observed model. i e.  The proposed model is a 

well perfect model because the ground corrected 

concentration (0.16Bq/m3) is the same as the observed 

concentration (0.16Bq/m3) than the previous ground 

concentrations in ref. (1) (0.18Bq/m3) [17] and in ref. (2) 

(0.155Bq/m3) [19]. 

4- CONCLUSIONS  

The proposed model described the pollutant 

concentrations at point source which emits pollutant into 

the atmosphere, the results of this study describe:  

(1) The mean wind speed should be as a constant 

quantity with height. In this study the sum of 

logarithmic and power law suggested by the authors 

has been used to get three different formulas for 

neutral, stable and unstable classes respectively, the 

model is being extended to the area and line source 

configurations.  

(2) The two factors L and zo are important factors in 

determining pollution concentrations. The model 

proposed in this study accounts for these parameters. 

One calculates the plume rise, effective height and 

the normalized concentration at the axis of the plume 

at the reactor release through different stability 

classes.  

Also, we get the concentration at the ground of the 

Iodine-131 (I131) which is the same as the observed 

concentration value and adjusted its source strength 

when the wind speed is the sum of logarithmic and 

power law than previous models. 

The proposed model is a well perfect model because 

the ground corrected concentration (0.16Bq/m3) is        

the same as the observed concentration (0.16Bq/m3) than 

the previous ground concentrations in ref. (1) 

(0.18Bq/m3) [17] and in ref. (2) (0.155Bq/m3) [19]. It is 

concluded that the proposed model is more suitable than 

the two previous models. 
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