مجلة|لشروق الملوع النجارية

Unit Root Test of Bounded AR (2) without Constant Model in Case Dependent Errors

د/ محمد أحد فاروق
مدرس الاحصاء ـ المعهل العالي للحاسبات وتكنولوجيا المعلومات

M.arslan2030@gmail.com

Bounded AR (2) model without constant, dependent errors, asymptotic distributions, OLS estimators, tests of hypothesis, the t-type statistics, Mean squared error, Thiel's inequality coefficient and power of the test.
: APA التوثيق المقترح وفقا لنظام
Farouk, Mohammed Ahmed (2021) Unit Root Test of Bounded AR (2) without Constant Model in Case Dependent Errors, Al-Shorouk Journal of Commercial Sciences, V.13, The Higher institute for Computers and Information Technology, Al-Shorouk Academy, page 199-235

$$
\text { مجلة الشروق للعلوم التجارية العدد الثالث عشر سنة } 2021
$$

Unit Root Test of Bounded AR (2) without Constant Model in Case Dependent Errors

Mohammed Ahmed Farouk Ahmed
Lecturer of Statistics
High Institute of Computer and Information Technology
Al-Shorouk Academy, Cairo
dr.mohammed.farooq@sha.edu.eg

Abstract

In this paper, the test of unit root for bounded AR (2) model without constant and dependent errors has been derived. Asymptotic distributions of OLS estimators and t-type statistics under different tests of hypotheses have been derived. A simulation study has been established to compare between different tests of the unit root. Mean squared error (MSE) and Thiel's inequality coefficient (Thiel's U) have been considered as criteria of comparison.

Keywords: Bounded AR (2) model without constant, dependent errors, asymptotic distributions, OLS estimators, tests of hypothesis, the t-type statistics, Mean squared error, Thiel's inequality coefficient and power of the test.

1. Introduction

Many unit root tests have been developed for testing the null hypothesis of a unit root against the alternative of stationarity, the tests for unit roots in AR (1) processes were first proposed and investigated by Dickey and Fuller $(1979,1981)$ but these unit root tests are proposed to unbounded time series in case of independent error terms.

Cavaliere (2000) tested the presence of unknown boundaries which constrain the sample path to lie within a closed interval that is in the framework of integrated processes of AR (1) model with a unit root or random walk model (with and without linear trend) and in
(2002) he introduced the logged nominal exchange rates $\left\{y_{t}\right\}$ that change in time accordingly to a first-order integrated process, I (1) within the framework of non-managed flexible exchange rates. In (2005), Cavaliere developed an asymptotic theory for integrated and near-integrated time series whose range is constrained in some ways. Such a framework arises when integration and cointegration analysis are applied to persistent series which are bounded either by construction or because they are subject to control.

Cavaliere and Xu (2011) defined bounded process as time series x_{t} with (fixed) bounds at $\underline{b}, \bar{b} ; \underline{b}<\bar{b}$, is a stochastic process satisfying $x_{t} \in[\underline{b}, \bar{b}]$ for all t. Carrion and Gadea (2013) showed that the use of generalized least squares (GLS) detrending procedures leads to important empirical power gains compared to ordinary least squares (OLS) detrending method when testing the null hypothesis of unit root for bounded processes. In (2015), they discussed the unit root testing when the range of the time series is bounded considering the presence of multiple structural breaks. But they all concentrated on the model of bounded AR (1) with constant or without constant under various assumptions for the error terms, and in this paper the concentration will be on the bounded AR (2) without constant model in case of dependent errors.

2. Test of Unit Root for Bounded AR (2) Model without Constant in Case of Dependent Errors

The bounded second order autoregressive AR (2) model without constant takes the form:

$$
\begin{equation*}
y_{t}=\rho_{1} y_{t-1}+\rho_{2} y_{t-2}+u_{t}, \quad t=1, \ldots, T \tag{1}
\end{equation*}
$$

where y_{t} is bounded time series with fixed bounds with lower bound at \underline{b} and upper bound at $\bar{b}, y_{t} \in[\underline{b}, \bar{b}]$, and $\underline{b}=\underline{c} T^{1 / 2}\left[1-\phi_{1}\right]^{-1}$,

$$
\text { مجلة الشروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

$\bar{b}=\bar{c} T^{1 / 2}\left[1-\phi_{1}\right]^{-1}$ and T is the sample size, $\underline{c}, \bar{c} \in R /\{0\}$ and $\underline{c}<\bar{c}$, $\phi_{1}=\{ \pm 0.1, \pm 0.2, \ldots, \pm 5\}, y_{0}=y_{-1}=0, \quad u_{t}$ are dependent error terms which achieved Beveridge-Nelson Decomposition Beveridge-Nelson (1981), ρ_{1} and ρ_{2} are the autoregressive coefficients.

2.1 Asymptotic Distributions of OLS Estimators under

 Different Tests of HypothesisConcepts of relative magnitude or order of magnitude are useful in investigating limiting behavior of random variables, where if $h(x)$ and $g(x)$ are two real functions that have a common domain $D \subset R$, and if the following relationship is exists for any positive constant $k(k>0)$

$$
\begin{align*}
& \quad \lim _{x \rightarrow x_{0}}\left|\frac{h(x)}{g(x)}\right| \leq k \quad, \quad x \in\left(D-x_{0}\right) \\
& \text { Where, } \quad h(x)=O(g(x)) . \tag{2}
\end{align*}
$$

Schatzman (2002)
If $A=\left[\begin{array}{ll}B & C \\ D & E\end{array}\right]$ an $m \times n$ matrix with $r^{*}=\operatorname{rank}(A)$ where B
is $r^{*} \times r^{*}$ and invertible then the generalized inverse G
for a given singular matrix A can be obtained as follows:
$G=\left[\begin{array}{ll}B^{-1} & 0 \\ 0 & 0\end{array}\right]$
And if an equation represented as:
$A x=h, x \in R$
Where, x is a vector or a matrix of unknown elements, h is vector or a matrix that has the same order as the product of $A x$. So, to obtain the forms of unknown elements of x the following equation is need to be used:
$x=G h+(I-G A) z, \quad z \in R$
Where \boldsymbol{I} is an identity matrix, z is a vector or a matrix of real numbers and G is the generalized inverse of the matrix A that satisfied $A G A=A$. Sawyer (2008)

If y_{t} is a pure random walk without drift as $y_{t}=y_{t-1}+u_{t}$, where $y_{0}=y_{-1}=0, u_{t}$ are dependent error terms, and assume that u_{t} is defined as follows:
$u_{t}=\phi_{1} u_{t-1}+e_{t}=\psi(L) e_{t}=\sum_{j=0}^{\infty} \psi_{j} e_{t-j},\left|\phi_{1}\right|<1, t=1,2, \ldots, T$
Where:
$\left.E\left(e_{t}\right)=0 \quad \begin{array}{l}\text { for all } t \\ E\left(e_{t} e_{s}\right)=\left\{\begin{array}{l}\sigma^{2} \text { if } t=s \\ 0\end{array} \text { if } t \neq s\right.\end{array}\right\}$
$\sum_{j=0}^{\infty}|j| \psi_{j}<\infty$

$$
\text { مجلة الثروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

Then the following relationship exists:
$\sum_{s=1}^{t} u_{s}=\psi(1) \sum_{s=1}^{t} e_{s}+\eta_{t}-\eta_{0}, t=1,2, \ldots, T$
$\psi(1)=\sum_{j=0}^{\infty} \psi_{j}$
$\eta_{t}=\sum_{j=0}^{\infty} a_{j} e_{t-j}$
$a_{j}=-\left(\psi_{j+1}+\psi_{j+2}+\psi_{j+3}+\ldots\right)=-\sum_{i=1}^{\infty} \psi_{j+i}, \quad \sum_{j=0}^{\infty}\left|a_{j}\right|<\infty$
$\eta_{0}=-\left(\psi_{1}+\psi_{2}+\psi_{3}+\ldots\right) e_{0}-\left(\psi_{2}+\psi_{3}+\psi_{4}+\ldots\right) e_{-1}$ $-\left(\psi_{3}+\psi_{4}+\psi_{5}+\ldots\right) e_{-2}+\ldots$.

By defining the following quantities:
$\gamma_{j}=E\left(u_{t} u_{t-j}\right)=\sigma^{2} \sum_{s=0}^{\infty} \psi_{s} \psi_{s+j}, j=0,1,2, \ldots$
$\lambda=\sigma \sum_{j=0}^{\infty} \psi_{j}=\sigma \psi(1)$
$y_{t}=u_{1}+u_{2}+\ldots+u_{t} \quad, t=1,2, \ldots, T \quad$
Then the following results are obtained:

1) $T^{-1} \sum_{t=1}^{T} u_{t} u_{t-j} \xrightarrow{p} \gamma_{j}, j=0,1,2, \ldots$
2) $T^{-1} \sum_{t=1}^{T} y_{t-1} u_{t} \xrightarrow{d} \frac{1}{2}\left\{\lambda^{2}\left[W(1)_{\underline{c}}^{\bar{c}}\right]^{2}-\gamma_{0}\right\}$
3) $T^{-3 / 2} \sum_{t=1}^{T} y_{t-1} \xrightarrow{d} \lambda \int_{0}^{1} W(r)_{\underline{c}}^{\bar{c}} d r$
4) $T^{-2} \sum_{t=1}^{T} y_{t-1}^{2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W(r)_{\underline{c}}^{\bar{c}}\right]^{2} d r \quad$

Where, $W_{\underline{c}}^{\bar{c}}(r)$ is a Regulated Brownian Motion, when $r=1$, then:
$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} u_{t} \xrightarrow{d} \sigma \psi(1) W_{\underline{c}}^{\bar{c}}(1)=\lambda W_{\underline{c}}^{\bar{c}}(1)$
By using equation (2) the results for orders of convergence of estimators in these equations will be as follows:

1) $T=O_{p}(T)$
2) $\sum_{t=1}^{T} u_{t}=O_{p}\left(T^{1 / 2}\right)$
3) $\sum_{t=1}^{T} u_{t} u_{t-j}=O_{p}(T)$
4) $\sum_{t=1}^{T} y_{t-1} u_{t}=O_{p}(T)$
5) $\sum_{t=1}^{T} y_{t-1}=O_{p}\left(T^{3 / 2}\right)$
6) $\sum_{t=1}^{T} y_{t-1}^{2}=O_{p}\left(T^{2}\right)$

The asymptotic distributions of OLS estimators $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ for bounded AR (2) model without constant that represented by equation
(1) for testing the null hypothesis $H_{0}: \rho_{1}=1, \rho_{2}=0$, (i.e. $y_{t}=y_{t-1}+u_{t}$) against the alternative hypothesis $H_{a}:\left|\rho_{1}\right|<1,\left|\rho_{2}\right|<1$, (i.e. $y_{t}=\rho_{1} y_{t-1}+\rho_{2} y_{t-2}+u_{t}$) will be derived as follows:

Lemma (1): If y_{t} is a pure random walk without drift as $y_{t}=y_{t-1}+u_{t}$, where $y_{0}=y_{-1}=0, u_{t}$ are dependent error terms that achieved the Beveridge-Nelson Decomposition as in equation (7) then as $T \rightarrow \infty$ the following results are obtained:
$\left.\begin{array}{l}\text { 1) } T^{-1} \sum_{t=1}^{T} y_{t-2} u_{t} \xrightarrow{d} \frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1} \\ \text { 2) } T^{-3 / 2} \sum_{t=1}^{T} y_{t-2} \xrightarrow{d} \lambda \int_{0}^{1} W_{\underline{c}}^{\bar{c}}(r) d r \\ \text { 3)T } T^{-2} \sum_{t=1}^{T} y_{t-2}^{2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W_{\underline{\underline{c}}}^{\bar{c}}(r)\right]^{2} d r \\ \text { 4)T } T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r\end{array}\right\}$

$$
\text { مجلة الثروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

Where,

$$
\gamma_{0}=\sigma^{2} \sum_{s=0}^{\infty} \psi_{s}^{2}, \gamma_{1}=\sigma^{2} \sum_{s=0}^{\infty} \psi_{s} \psi_{s+1} \quad \text { and }
$$

$\lambda=\sigma \sum_{j=0}^{\infty} \psi_{j}=\sigma \psi(1)$.

Proof:

Part (1)

From the successive substituting of y_{t} then:
$y_{t-2}=y_{t-1}-u_{t-1}$

So,

$$
\begin{equation*}
T^{-1} \sum_{t=1}^{T} y_{t-2} u_{t}=T^{-1} \sum_{t=1}^{T} y_{t-1} u_{t}-T^{-1} \sum_{t=1}^{T} u_{t-1} u_{t} \tag{14}
\end{equation*}
$$

By using equation (9) then:

$$
\left.\begin{array}{l}
\text { 1) } T^{-1} \sum_{t=1}^{T} y_{t-1} u_{t} \xrightarrow{d} \frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\} \tag{15}\\
\text { 2) } T^{-1} \sum_{t=1}^{T} u_{t-1} u_{t} \xrightarrow{d} \gamma_{1}
\end{array}\right\}
$$

Then, by substituting from equations (15) in (14) it can be concluded that:

$$
T^{-1} \sum_{t=1}^{T} y_{t-2} u_{t} \xrightarrow{d} \frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1}
$$

Part (2)

From equation (13);

$$
\begin{equation*}
T^{-3 / 2} \sum_{t=1}^{T} y_{t-2}=T^{-3 / 2} \sum_{t=1}^{T} y_{t-1}-T^{-3 / 2} \sum_{t=1}^{T} u_{t-1} \tag{16}
\end{equation*}
$$

From equation (11) the order of convergence of $\sum_{t=1}^{T} u_{t-1}=O_{P}\left(T^{1 / 2}\right)$ then:
$T^{-3 / 2} \sum_{t=1}^{T} u_{t-1} \xrightarrow{d} 0$
By using equation (9) it can be concluded that:
$T^{-3 / 2} \sum_{t=1}^{T} y_{t-1} \xrightarrow{d} \lambda \int_{0}^{1} W_{\underline{c}}^{\bar{c}}(r) d r$

Then, by substituting from equations (17 \& 18) in (16) it can be concluded that:
$T^{-3 / 2} \sum_{t=1}^{T} y_{t-2} \xrightarrow{d} \lambda \int_{0}^{1} W_{\underline{c}}^{\bar{c}}(r) d r \quad, \quad\left(y_{-1}=0\right)$

Part (3)

From equation (13);
$T^{-2} \sum_{t=1}^{T} y_{t-2}^{2}=T^{-2} \sum_{t=1}^{T} y_{t-1}^{2}-2 T^{-2} \sum_{t=1}^{T} y_{t-1} u_{t-1}+T^{-2} \sum_{t=1}^{T} u_{t-1}^{2}$
From equation (11) the order of convergence of $\sum_{t=1}^{T} y_{t-1}^{2}=O_{P}\left(T^{2}\right)$ and the order of convergence of $\sum_{t=1}^{T} u_{t-1}^{2}=O_{P}(T)$ then:
$\left.\begin{array}{l}\text { 1) } T^{-2} \sum_{t=1}^{T} y_{t-1} u_{t-1} \xrightarrow{d} 0 \\ \text { 2) } T^{-2} \sum_{t=1}^{T} u_{t-1}^{2} \xrightarrow{d} 0\end{array}\right\}$
By using equation (9) then:

$$
\begin{equation*}
T^{-2} \sum_{t=1}^{T} y_{t-1}^{2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r \tag{21}
\end{equation*}
$$

Then, by substituting from equations (20 \& 21) in (19), it can be concluded that:

$$
T^{-2} \sum_{t=1}^{T} y_{t-2}^{2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r, \quad\left(y_{-1}=0\right)
$$

Part (4)

$$
\text { مجلة الشروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

From equation (13);
$T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2}=T^{-2} \sum_{t=1}^{T} y_{t-1}^{2}-T^{-2} \sum_{t=1}^{T} y_{t-1} u_{t-1}$
Then, by substituting from equations (20 (1) \& 21) in (22) it can be concluded that:
$T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r$

2.2 Asymptotic Distributions of OLS Estimators under

Different Tests of Hypothesis

The asymptotic distributions of OLS estimators $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ for bounded AR (2) model that represented by equation (1) for testing the null hypothesis $H_{0}: \rho_{1}=1, \rho_{2}=0$, (i.e. $y_{t}=y_{t-1}+u_{t}$) against the alternative hypothesis $H_{a}:\left|\rho_{1}\right|<1,\left|\rho_{2}\right|<1$, (i.e. $y_{t}=\rho_{1} y_{t-1}+\rho_{2} y_{t-2}+u_{t}$) will be derived as follows:

Lemma (2): For model (1) and under the test $H_{0}: \rho_{1}=1$ and $\rho_{2}=0$, then the asymptotic distributions of $T\left(\hat{\rho}_{1}-1\right)$ and $T \hat{\rho}_{2}$ will be as follows:

$$
\begin{aligned}
& \text { 1) } T\left(\hat{\rho}_{1}-1\right) \xrightarrow{d} \frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{2} \\
& \text { 2) } T \hat{\rho}_{2} \xrightarrow{d} z_{2}, \quad \quad z_{2} \in \underline{c} \sqrt{T} \text { or } \bar{c} \sqrt{T}
\end{aligned}
$$

Proof:

Model (1) can be rewritten in matrix form as follows:

$$
\begin{equation*}
Y^{*}=X^{*} \beta^{*}+\mathbf{u}^{*} \tag{23}
\end{equation*}
$$

Where:

$$
\beta^{*}=\left[\begin{array}{c}
\rho_{1} \\
\rho_{2}
\end{array}\right], X^{*}=\left[\begin{array}{cc}
y_{0} & y_{-1} \\
y_{1} & y_{0} \\
\vdots & \vdots \\
y_{T-1} & y_{T-2}
\end{array}\right], Y^{*}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right] \text { and } \mathbf{u}^{*}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{T}
\end{array}\right]
$$

Then the OLS Estimators of $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ for model (1) can be obtained as follows:

$$
\hat{\beta}^{*}=\left(X^{*} X^{*}\right)^{-1} X^{*^{\prime}} Y^{*}
$$

Under the null hypothesis that $H_{0}: \rho_{1}=1$ and $\rho_{2}=0$ or $\beta^{*^{\prime}}=\left(\begin{array}{ll}1 & 0\end{array}\right)$ and by using equation (23) then:

$$
\hat{\beta}^{*}-\beta^{*}=\left(X^{*^{\prime}} X^{*}\right)^{-1} X^{*^{\prime}} \mathbf{u}^{*}
$$

$$
\binom{\hat{\rho}_{1}-1}{\hat{\rho}_{2}}=\left(\begin{array}{ll}
\sum_{t=1}^{T} y_{t-1}^{2} & \sum_{t=1}^{T} y_{t-1} y_{t-2} \tag{24}\\
\sum_{t=1}^{T} y_{t-1} y_{t-2} & \sum_{t=1}^{T} y_{t-2}^{2}
\end{array}\right)^{-1}\binom{\sum_{t=1}^{T} y_{t-1} u_{t}}{\sum_{t=1}^{T} y_{t-2} u_{t}}
$$

From equations (11 (4,6)), the order of convergence of $\sum_{t=1}^{T} y_{t-1} u_{t}$ and $\sum_{t=1}^{T} y_{t-1}^{2}\left(\sum_{t=2}^{T} y_{t-2}^{2}\right)$ will be $O_{p}(T)$ and $O_{p}\left(T^{2}\right)$ respectively. Also, from equation (12 (1)) and by using the role of equation (2) then the order of convergence of $\sum_{t=1}^{T} y_{t-2} u_{t}=O_{p}(T)$, and from equation (12 (4)) and by using the role of equation (2) then the order of convergence of the order of convergence of $\sum_{t=1}^{T} y_{t-1} y_{t-2}=O_{p}\left(T^{2}\right)$.

$$
\text { مجلة الثشروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

Then, the order of convergence of elements in equation (24) will be as follows:

$$
\binom{\hat{\rho}_{1}-1}{\hat{\rho}_{2}}=\left(\begin{array}{ll}
O_{p}\left(T^{2}\right) & O_{p}\left(T^{2}\right) \\
O_{p}\left(T^{2}\right) & O_{p}\left(T^{2}\right)
\end{array}\right)^{-1}\binom{O_{p}(T)}{O_{p}(T)}
$$

Then, to obtain the asymptotic distributions of the estimators equation (24) will be multiplied by the following scaling matrix:

$$
\psi_{T}^{\prime \prime}=\left(\begin{array}{ll}
T & \mathrm{O} \\
\mathrm{O} & T
\end{array}\right)
$$

Then equation (24) will be as follows:

$$
\begin{gather*}
\psi_{T}^{\prime \prime}\left(\hat{\beta}^{*}-\beta^{*}\right)=\left\{\psi_{T}^{\prime \prime-1}\left(X^{*} X^{*}\right) \psi_{T}^{\prime \prime-1}\right\}^{-1} \psi_{T}^{\prime \prime-1} X^{*^{\prime}} \mathbf{u}^{*} \\
\binom{T\left(\hat{\rho}_{1}-1\right)}{T \hat{\rho}_{2}}=\binom{T^{-2} \sum_{t=1}^{T} y_{t-1}^{2}}{T^{-2} \sum_{t=1}^{T} y_{t-1}^{-2} y_{t-2}^{T} T_{t=1}^{-2} y_{t-1}^{T} y_{t-2} y_{t-2}^{2}}^{-1}\binom{T^{-1} \sum_{t=1}^{T} y_{t-1} u_{t}}{T^{-1} \sum_{t=1}^{T} y_{t-2} u_{t}} \tag{25}
\end{gather*}
$$

From equations $(9(2,4)), \quad T^{-1} \sum_{t=1}^{T} y_{t-1} u_{t}$ and $T^{-2} \sum_{t=1}^{T} y_{t-1}^{2}$ convergence in distribution to $\frac{1}{2}\left\{\lambda^{2}\left[W(1)_{\underline{c}}^{\bar{c}}\right]^{2}-\gamma_{0}\right\}$ and $\lambda^{2} \int_{0}^{1}\left[W(r)_{c}^{\bar{c}}\right]^{2} d r$ respectively. Also, from equation (12), $T^{-1} \sum_{t=1}^{T} y_{t-2} u_{t}$ and $T^{-2} \sum_{t=1}^{T} y_{t-2}^{2}\left(T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2}\right)$ convergence in distribution to $\frac{1}{2}\left\{\lambda^{2}\left[W(1){ }_{c}^{\bar{c}}\right]^{2}-\gamma_{0}\right\}-\gamma_{1}$ and $\lambda^{2} \int_{0}^{1}\left[W(r)_{c}^{\bar{c}}\right]^{2} d r$ respectively.

Then, as $T \rightarrow \infty$ and by using the above results equation (25) will be as follows:
$x_{7}=A_{7} h_{7}, x_{7} \in R_{(2 \times 1)}$ (i.e. vector of order (2×1) of real numbers)

Where:
$x_{7}=\lim _{T \rightarrow \infty}\binom{T\left(\hat{\rho}_{1}-1\right)}{T \hat{\rho}_{2}}, A_{7}=\left(\begin{array}{ll}\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r & \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r \\ \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r & \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r\end{array}\right)$
and $h_{7}=\binom{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1}}$.

Since $\left|A_{7}\right|=0$ a generalized inverse G_{71} of A_{7} will obtained by using equation (3) and it will be as:

$$
G_{71}=\left(\begin{array}{cc}
\frac{1}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)_{(2 \times 2)}
$$

Now to obtain the forms of elements of x_{7} in equation (26), equation (4) will be used as follows:

Since:

$$
\begin{aligned}
& G_{71} A_{7}=\left(\begin{array}{cc}
\frac{1}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{c}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r & \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r \\
\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r & \lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \\
& G_{71} h_{7}=\left(\begin{array}{cc}
\frac{1}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{c}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)\binom{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1}}=\left(\begin{array}{c}
\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\} \\
\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r \\
0
\end{array}\right)
\end{aligned}
$$

Then, by using equation (4) it can be concluded that:

$$
x_{7}=\binom{\frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}}{0}+\left\{I_{2}-\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\right\}\binom{z_{1}}{z_{2}}
$$

$$
\text { مجلة الثنروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

Where $z^{\prime \prime s}$ are real numbers, then the asymptotic distributions of $T\left(\hat{\rho}_{1}-1\right)$ and $T \hat{\rho}_{2}$ will be as follows:

Corollary (1): If there is another generalized inverse G_{72} of A_{7} that can be obtained by using equation (3), it will be as follows:

$$
G_{72}=\left(\begin{array}{cc}
0 & \frac{1}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} \\
0 & 0
\end{array}\right)_{(2 \times 2)}
$$

Then, the asymptotic distributions of $T\left(\hat{\rho}_{1}-1\right)$ and $T \hat{\rho}_{2}$ will be as follows:

Corollary (2): If there is another generalized inverse G_{73}
of A_{7} that can be obtained by using equation (3), it will be as follows:

$$
G_{73}=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0
\end{array}\right)_{(2 \times 2)}
$$

Then, the asymptotic distributions of $T\left(\hat{\rho}_{1}-1\right)$ and $T \hat{\rho}_{2}$ will be as follows:

$$
\begin{align*}
& \text { 1) } T\left(\hat{\rho}_{1}-1\right) \xrightarrow{d} z_{1} \\
& \text { 2) } \left.T \hat{\rho}_{2} \xrightarrow{d} \frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{1}, z_{1} \in \underline{c} \sqrt{T} \text { or } \bar{c} \sqrt{T}\right\} \tag{29}
\end{align*}
$$

Corollary (3): If there is another generalized inverse G_{74} of A_{7} that can be obtained by using equation (3), it will be as follows:

$$
G_{74}=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}
\end{array}\right)_{(2 \times 2)}
$$

Then, the asymptotic distributions of $T\left(\hat{\rho}_{1}-1\right)$ and $T \hat{\rho}_{2}$ will be as follows:

$$
\left.\begin{array}{l}
\text { 1) } T\left(\hat{\rho}_{1}-1\right) \xrightarrow{d} z_{1} \\
\text { 2) } T \hat{\rho}_{2} \xrightarrow{d} \frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{c}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{1}, z_{1} \in \underline{c} \sqrt{T} \text { or } \bar{c} \sqrt{T} \tag{30}
\end{array}\right\}
$$

2.3 Asymptotic Distributions of the ${ }^{t-t y p e}$ Statistics under Different Tests of Hypothesis

In addition to the previous tests in (2.2), the tests that based on t-type statistics for the estimators $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ under the test $H_{0}: \rho_{1}=1, \rho_{2}=0,\left(y_{t}=y_{t-1}+u_{t}\right)$ against $H_{a}:\left|\rho_{1}\right|<1,\left|\rho_{2}\right|<1$, (i.e. $y_{t}=\rho_{1} y_{t-1}+\rho_{2} y_{t-2}+u_{t}$) will be derived as follows:

Lemma (3): If the variance-covariance matrix of the estimators of model (1) under the null hypothesis $H_{0}: \rho_{1}=1, \rho_{2}=0$ that can be written in matrix form as follows:

$$
\text { مجلة الثروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

$\operatorname{Var}\left(\hat{\beta}^{*}\right)=S_{T}^{\prime 2}\left(X^{*} X^{*}\right)^{-1}$
Such that,
$\left.\begin{array}{l}\text { 1) } \operatorname{Var}\left(\hat{\beta}^{*}\right)=\left(\begin{array}{cc}\operatorname{Var}\left(\hat{\rho}_{1}\right) & \operatorname{Cov}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) \\ \operatorname{Cov}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) & \operatorname{Var}\left(\hat{\rho}_{2}\right)\end{array}\right) \\ \text { 2) }\left(X^{*^{*}} X^{*}\right)^{-1}=\left(\begin{array}{ll}\sum_{t=1}^{T} y_{t-1}^{2} & \sum_{t=1}^{T} y_{t-1} y_{t-2} \\ \sum_{t=1}^{T} y_{t-1} y_{t-2} & \sum_{t=1}^{T} y_{t-2}^{2}\end{array}\right)^{-1} \\ \text { 3) } S_{T}^{\prime 2}=\sum_{t=1}^{T}\left(y_{t}-\hat{\rho}_{1} y_{t-1}-\hat{\rho}_{2} y_{t-2}\right)^{2} /(T-2)=\sum_{t=1}^{T} \hat{u}_{t}^{2} /(T-2)\end{array}\right\}$
Then, the asymptotic distributions for $t_{\hat{\rho}_{1}}$ and $t_{\hat{\rho}_{2}}$ will be follows:

1) $t_{\hat{\rho}_{1}}=\left[T\left(\hat{\rho}_{1}-1\right)\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)\right]^{-1 / 2} \xrightarrow{d}$
$\left[\frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{2}\right]\left[\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{21}\right]^{-\frac{1}{2}}$
2) $t_{\hat{\rho}_{2}}=\left[T \hat{\rho}_{2}\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\right]^{-1 / 2} \xrightarrow{d} z_{2}\left(z_{22}\right)^{-1 / 2}, z_{2} \in \underline{c} \sqrt{T}$ or $\bar{c} \sqrt{T}, z_{21} \in \underline{c} \sqrt{T}, z_{22} \in \bar{c} \sqrt{T}$

Proof:
By multiplying equation (31) by the scaling matrix $\psi_{T}^{\prime \prime}$ as follows:

$$
\begin{equation*}
\psi_{T}^{\prime \prime} \operatorname{Var}\left(\hat{\beta}^{*}\right) \psi_{T}^{\prime \prime}=S_{T}^{\prime 2}\left(\psi_{T}^{\prime \prime-1} X^{*} X^{*} \psi_{T}^{\prime \prime-1}\right)^{-1} \tag{33}
\end{equation*}
$$

Where $\psi_{T}^{\prime \prime}$ is defined as in lemma (2).
And by substituting from equations (32(1,2)) in equation (33) then the variance-covariance matrix will be as follows:

$$
\left(\begin{array}{cc}
T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right) & T^{2} \operatorname{Cov}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) \tag{34}\\
T^{2} \operatorname{Cov}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) & T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)
\end{array}\right)=S_{T}^{\prime 2} B_{4}
$$

Where:

$$
B_{4}=\left(\begin{array}{ll}
T^{-2} \sum_{t=1}^{T} y_{t-1}^{2} & T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2} \\
T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2} & T^{-2} \sum_{t=1}^{T} y_{t-2}^{2}
\end{array}\right)^{-1}
$$

As $T \rightarrow \infty$ and from the weak law of large number, Bell (2015), and from equation (9(1)) then the convergence in probability of $S_{T}^{\prime 2}$ will be as follows:

$$
\begin{equation*}
S_{T}^{\prime 2}=\sum_{t=1}^{T} \hat{u}_{t}^{2} /(T-2) \longrightarrow \gamma_{0} \tag{35}
\end{equation*}
$$

From equation (9 (4)), $T^{-2} \sum_{t=1}^{T} y_{t-1}^{2} \xrightarrow{d} \lambda^{2} \int_{0}^{1}\left[W(r)_{\underline{c}}^{\bar{c}}\right]^{2} d r$. Also, from equations $\quad(12 \quad(3,4)), \quad T^{-2} \sum_{t=1}^{T} y_{t-2}^{2}\left(T^{-2} \sum_{t=1}^{T} y_{t-1} y_{t-2}\right)$ convergence in distribution to $\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r$.

Then, as $T \rightarrow \infty$, by using the above results equation (34) will be as follows:

$$
\begin{equation*}
x_{8}=A_{8}^{-1} h_{8}, x_{8} \in R_{(2 \times 2)} \tag{36}
\end{equation*}
$$

Where:
$x_{8}=\lim _{T \rightarrow \infty}\left(\begin{array}{cc}T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right) & T^{2} \operatorname{Cov}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) \\ T^{2} \operatorname{Cov}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right) & T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\end{array}\right), A_{8}=\left(\begin{array}{ll}\frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{\varrho}}^{\bar{c}}(r)\right]^{2} d r & \frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{\varrho}}^{\bar{c}}(r)\right]^{2} d r \\ \frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{\varrho}}^{\bar{c}}(r)\right]^{2} d r & \frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r\end{array}\right)$

$$
\text { مجلة الثنروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

, $h_{8}=I_{2}$ and A_{8} is the asymptotic distribution of the matrix $S_{T}^{\prime 2} B_{4}$.
Since $\left|A_{8}\right|=0$ a generalized inverse G_{81} of A_{8} will obtained by using equation (3) and it will be as:

$$
G_{81}=\left(\begin{array}{cc}
\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)_{(2 \times 2)}
$$

Now to obtain the forms of elements of x_{8} in equation (36), equation (4) will be used, the forms of the asymptotic distributions of $T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)$ and $T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)$ and the asymptotic distributions for $t_{\hat{\rho}_{1}}$ and $t_{\hat{\rho}_{2}}$ will be derived as follows:

Since:

$$
\begin{aligned}
& G_{81} A_{8}=\left(\begin{array}{cc}
\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r & \frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r \\
\frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r & \frac{\lambda^{2}}{\gamma_{0}} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \\
& G_{81} h_{8}=\left(\begin{array}{cc}
\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right) I_{2}=\left(\begin{array}{cc}
\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Then, by using equation (4) it can be concluded that:

$$
x_{8}=\left(\begin{array}{cc}
\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0 \\
0 & 0
\end{array}\right)+\left\{I_{2}-\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\right\}\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right)
$$

Where $z^{\prime} s$ are real numbers, then the asymptotic distributions of $T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right), T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)$ will be as follows:

To achieve the variances in equation (37) to be positive, $z_{21} \leq 0$ and it assumed to be $z_{21} \in \underline{c} \sqrt{T}$ and $z_{22}>0$ and it assumed to be $z_{22} \in \bar{c} \sqrt{T}$.

The t-type statistics for the estimators $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ will be obtained as:

1) $t_{\hat{\rho}_{1}}=\left[T\left(\hat{\rho}_{1}-1\right)\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)\right]^{-1 / 2}$ 2) $\left.t_{\hat{\rho}_{2}}=\left[T \hat{\rho}_{2}\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\right]^{-1 / 2}, ~\right\}$

Then, by substituting from equation (27) that contains the asymptotic distributions of OLS estimators $T\left(\hat{\rho}_{1}-1\right)$ and $T \hat{\rho}_{2}$, and (37) in equation (38) then the asymptotic distributions for $t_{\hat{\rho}_{1}}$ and $t_{\hat{\rho}_{2}}$ respectively will be:

$$
\text { مجلة الثنروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

1) $t_{\hat{\rho}_{1}}=\left[T\left(\hat{\rho}_{1}-1\right)\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)\right]^{-1 / 2} \xrightarrow{d}$

$$
\begin{equation*}
\left[\frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{2}\right]\left[\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{21}\right]^{-\frac{1}{2}} \tag{39}
\end{equation*}
$$

2) $t_{\hat{\rho}_{2}}=\left[T \hat{\rho}_{2}\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\right]^{-1 / 2} \xrightarrow{d} z_{2}\left(z_{22}\right)^{-1 / 2}$,
$z_{2} \in \underline{c} \sqrt{T}$ or $\bar{c} \sqrt{T}, z_{21} \in \underline{c} \sqrt{T}, z_{22} \in \bar{c} \sqrt{T}$

Corollary (4): If there is another generalized inverse G_{82} of A_{8} that can be obtained by using equation (3), it will be as follows:

$$
G_{82}=\left(\begin{array}{cc}
0 & \frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} \\
0 & 0
\end{array}\right)_{(2 \times 2)}
$$

Then, the asymptotic distributions for $t_{\hat{\rho}_{1}}$ and $t_{\hat{\rho}_{2}}$ will be:

$$
\left.\begin{array}{rl}
\text { 1) } t_{\hat{\rho}_{1}} & =\left[T\left(\hat{\rho}_{1}-1\right)\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)\right]^{-1 / 2} \xrightarrow{d}\left[\frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{2}\right]\left(-z_{21}\right)^{-1 / 2} \tag{40}\\
\text { 2) } t_{\hat{\rho}_{2}} & =\left[T \hat{\rho}_{2}\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\right]^{-1 / 2} \xrightarrow{d} z_{2}\left(z_{22}\right)^{-1 / 2}, \\
& z_{2} \in \underline{c} \sqrt{T} \text { or } \bar{c} \sqrt{T}, z_{21} \in \underline{c} \sqrt{T}, z_{22} \in \bar{c} \sqrt{T}
\end{array}\right\}
$$

Corollary (5): If there is another generalized inverse G_{83} of A_{8} that can be obtained by using equation (3), it will be as follows:

$$
G_{83}=\left(\begin{array}{cc}
0 & 0 \\
\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r} & 0
\end{array}\right)_{(2 \times 2)}
$$

Then, the asymptotic distributions for $t_{\hat{\rho}_{1}}$ and $t_{\hat{\rho}_{2}}$ will be:

$$
\left.\begin{array}{rl}
\text { 1) } t_{\hat{\rho}_{1}} & =\left[T\left(\hat{\rho}_{1}-1\right)\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)\right]^{-1 / 2} \xrightarrow{d} z_{1}\left(z_{11}\right)^{-1 / 2} \\
\text { 2) } t_{\hat{\rho}_{2}} & =\left[T \hat{\rho}_{2}\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\right]^{-1 / 2} \xrightarrow{d}\left[\frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{c}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{1}\right]\left(-z_{12}\right)^{-1 / 2} \tag{41}\\
& , z_{1} \in \underline{c} \sqrt{T} \text { or } \bar{c} \sqrt{T}, z_{11} \in \bar{c} \sqrt{T}, z_{12} \in \underline{c} \sqrt{T}
\end{array}\right\}
$$

Corollary (6): If there is another generalized inverse G_{84} of A_{8} that can be obtained by using equation (3), it will be as follows:

$$
G_{84}=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}
\end{array}\right)_{(2 \times 2)}
$$

Then, the asymptotic distributions for $t_{\hat{\rho}_{1}}$ and $t_{\hat{\rho}_{2}}$ will be:

$$
\begin{align*}
& \text { 1) } t_{\hat{\rho}_{1}}=\left[T\left(\hat{\rho}_{1}-1\right)\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{1}\right)\right]^{-1 / 2} \xrightarrow{d} z_{1}\left(z_{11}\right)^{-1 / 2} \\
& \text { 2) } t_{\hat{\rho}_{2}}=\left[T \hat{\rho}_{2}\right]\left[T^{2} \operatorname{Var}\left(\hat{\rho}_{2}\right)\right]^{-1 / 2} \xrightarrow{d} \\
& \left.\left[\frac{\frac{1}{2}\left\{\lambda^{2}\left[W_{\underline{c}}^{\bar{c}}(1)\right]^{2}-\gamma_{0}\right\}-\gamma_{1}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{1}\right]\left[\frac{\gamma_{0}}{\lambda^{2} \int_{0}^{1}\left[W_{\underline{c}}^{\bar{c}}(r)\right]^{2} d r}-z_{12}\right]^{-1 / 2}\right\} \tag{42}\\
& , z_{1} \in \underline{c} \sqrt{T} \text { or } \bar{c} \sqrt{T}, z_{11} \in \bar{c} \sqrt{T}, z_{12} \in \underline{c} \sqrt{T}
\end{align*}
$$

```
مجلة الشروق للعلوم التجارية - العدد الثالث عشر - يونيو 2021
```


3. Simulation Study

A simulation study is used to obtain bias, MSE, Thiel's U under the null hypothesis $H_{0}: y_{t}=y_{t-1}+u_{t}$. Also, the same measures and the power of the test under the alternative hypothesis $H_{a}: y_{t}=\rho_{1} y_{t-1}+\rho_{2} y_{t-2}+u_{t}$ will be obtained in case of five samples size $\mathrm{T}=30,50,100,200$ and 500 for five boundaries value $c=-\underline{c}=0.3,0.5,0.7,0.9$ and 1.1 and in case of ten values for the coefficient of dependent errors $\phi_{1}= \pm 0.5, \pm 0.4, \pm 0.3, \pm 0.2$ and ± 0.1 by 5000 replications, OLS estimators of bounded AR (2) model without constant and with dependent errors which obtained in lemma (2) that used the generalized inverse G_{71}, in corollary (1) that used the generalized inverse G_{72}, in corollary (2) that used the generalized inverse G_{73} and in corollary (3) that used the generalized inverse G_{74} are used to obtain the bias, MSE, Thiel's U and the power of the test and the results can be discussed for the next five cases:

Unit Root Test of Bounded AR (2) without Constant Model in Case Dependent Errors
Case (1): $T=30$
Table (1)

$$
\text { مجلة الثروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

It can be notice from table (1) that G_{71} approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for values of MSE and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.3,-0.4$ and $-0.5, \quad G_{72}$ approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for the values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.2,-0.3,-0.4$ and -0.5 and for the values of MSE and $\bar{c}=-\underline{c}=0.5$ in case of $\phi_{1}=-0.5, \quad G_{73}$ approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of negative values of ϕ_{1} and G_{74} approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of all values of ϕ_{1} and for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of negative values of ϕ_{1}. Also, the values of the power of the test are equal to integer one for both G_{71}, G_{72}, G_{73} and G_{74} for most values of $\bar{c}=-\underline{c}$ and ϕ_{1} and the power of the test approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ and ϕ_{1}.

Case (2): $T=50$
Table (2)

$\bar{c}=-\underline{c}$		$\underbrace{\phi_{1}}_{\text {Criteria }}$	0.5	0.4	0.3	0.2	0.1	0.1	0.2	0.3	0.4	0.5
G_{71}	0.3		H_{a}								\mathbf{H}_{0}	
	0.5	MSE	$\mathbf{H a}_{\text {a }}$									
	0.5	Thiel's U										
	0.7	MSE										
		$\frac{\text { Thiel's }}{\text { MSE }}$										
	0.9	Thiel's U										
	1.1	MSE										
		Thiel's U										
\mathbf{G}_{72}	0.3	$\begin{gathered} \hline \text { MSE } \\ \hline \text { Thiel's U } \\ \hline \end{gathered}$	Ha_{a}						H_{0}			
	0.5	MSE	Ha_{a}									H
		Thiel's U	Ha_{a}									
	0.7	MSE										
	0.7	Thiel's U										
	0.9											
		MSE										
	1.1	Thiel's U										
\mathbf{G}_{73}	0.3	MSE	$\mathrm{Ha}_{\text {a }}$							H_{0}		
		Thiel's U			H_{0}							
	0.5	MSE	H_{a}								H_{0}	
		Thiel's U	$\mathrm{Ha}_{\mathbf{a}}$					H_{0}				
	0.7	MSE	H_{a}									
		Thiel's U	$\mathrm{Ha}_{\text {a }}$						H_{0}			
	0.9	MSE	H_{a}									
		Thiel's U	$\mathrm{Ha}_{\text {a }}$								H_{0}	
	1.1	$\begin{array}{\|c\|} \hline \text { MSE } \\ \hline \text { Thiel's U } \end{array}$	H_{a}									
\mathbf{G}_{74}	0.3	MSE	Ha_{a}									H
		Thiel's U	H_{0}									
	0.5	MSE	$\mathrm{Ha}_{\text {a }}$									
		Thiel's U	$\mathrm{Ha}_{\text {a }}$					H_{0}				
	0.7	MSE	H_{a}									
		Thiel's U	$\mathrm{Ha}_{\mathbf{a}}$							H_{0}		
	0.9	MSE	$\mathrm{Ha}_{\text {a }}$									
		Thiel's U	Ha_{a}									\mathbf{H} 0
	1.1	$\begin{gathered} \text { MSE } \\ \hline \text { Thiel's U } \\ \hline \end{gathered}$	H_{a}									

$$
\text { مجلة الثنروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

It can be notice from table (2) that G_{71} approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.4$ and $-0.5, G_{72}$ approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for the values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.2,-0.3,-0.4$ and -0.5 and for the values of MSE and $\bar{c}=-\underline{c}=0.5$ in case of $\phi_{1}=-0.5, G_{73}$ approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ and 0.5 in case of negative values of ϕ_{1} and G_{74} approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of all values of ϕ_{1} and for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of negative values of ϕ_{1}. Also, the values of the power of the test are equal to integer one for both G_{71}, G_{72}, G_{73} and G_{74} and approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ and ϕ_{1}.

Unit Root Test of Bounded AR (2) without Constant Model in Case Dependent Errors

Case (3): $\mathbf{T}=100$
Table (3)

$$
\text { مجلة الثشروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

It can be notice from table (3) that G_{71} approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.3,-0.4$ and $-0.5, G_{72}$ approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for the values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.2,-0.3,-0.4$ and -0.5 and for the values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of $\phi_{1}=-0.5$ and G_{73} and G_{74} approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of all values of ϕ_{1} and for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of negative values of ϕ_{1}. Also, the values of the power of the test are equal to integer one for both G_{71}, G_{72}, G_{73} and G_{74} and approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ and ϕ_{1}.

Case (4): $\mathbf{T}=200$
Table (4)

$\bar{c}=-\underline{c}$		Criteria	0.5	0.4	0.3	0.2	0.1	0.1	$\overline{-}$	$\stackrel{-}{0.3}$	0.4	0.5			
G_{71}	0.3	MSE	H_{a}												
		Thiel's U	$\mathrm{Ha}_{\text {a }}$						H_{0}						
	0.5	MSE	H_{a}												
		Thiel's U													
	0.7	MSE													
		Thiel's U													
	0.9	MSE													
		Thiel's U													
	1.1	MSE													
		Thiel's U													
G_{72}	0.3	MSE	H_{a}							H_{0}					
		Thiel's U													
	0.5	MSE	H_{a}												
		Thiel's U	Ha_{a}									\mathbf{H}_{0}			
	0.7	MSE	H_{a}												
		Thiel's U													
	0.9	MSE													
		Thiel's U													
	1.1	MSE													
		Thiel's U													
G_{73}	0.3	MSE	H_{a}						H_{0}						
		Thiel's U	H_{0}												
	0.5	MSE	$\mathrm{Ha}_{\text {a }}$									\mathbf{H}_{0}			
		Thiel's U			Ha_{a}					H_{0}					
	0.7	MSE	Ha_{a}												
		Thiel's U	H_{a}							H_{0}					
	0.9	MSE	Ha_{a}												
		Thiel's U					Ha_{a}					\mathbf{H}_{0}			
	1.1	MSE	Ha_{a}												
		Thiel's U													
G_{74}	0.3	MSE	H_{0}												
		Thiel's U													
	0.5	MSE	Ha_{a}												
		Thiel's U			Ha_{a}					H_{0}					
	0.7	MSE	H_{a}												
		Thiel's U													
	0.9	MSE	H_{a}												
		Thiel's U													
	1.1	MSE													
		Thiel's U													

$$
\text { مجلة الثنروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

It can be notice from table (4) that G_{71} approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for values of MSE and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.4$ and -0.5 and for values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.2,-0.3,-0.4$ and $-0.5, G_{72}$ approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for the values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.3,-0.4$ and -0.5 and for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of $\phi_{1}=-0.5, \quad G_{73}$ approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of all values of ϕ_{1} and for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of negative values of ϕ_{1} and G_{74} approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of MSE, Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of all values of ϕ_{1} and for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of negative values of ϕ_{1}. Also, the values of the power of the test are equal to integer one for both G_{71}, G_{72}, G_{73} and G_{74} and approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ and ϕ_{1}.

Case (5): $T=500$
Table (5)

$$
\text { مجلة الثنروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

It can be notice from table (5) that G_{71} approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for values of MSE and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.4$ and -0.5 , except for values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.2,-0.3,-0.4$ and -0.5 and except for values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of $\phi_{1}=-0.5, G_{72}$ approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ except for values of MSE and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.4$ and -0.5 , for values of Thiel's U and $\bar{c}=-\underline{c}=0.3$ in case of $\phi_{1}=-0.2,-0.3,-0.4$ and -0.5 and for values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of $\phi_{1}=-0.4$ and -0.5 and G_{73} and G_{74} approve the alternative hypothesis H_{a} for most values of $\bar{c}=-\underline{c}$ except for the values of Thiel's U and $\bar{c}=-\underline{c}=0.5$ in case of negative values of ϕ_{1}. Also, the values of the power of the test are equal to integer one for both G_{71}, G_{72}, G_{73} and G_{74} and approve the alternative hypothesis H_{a} for all values of $\bar{c}=-\underline{c}$ and ϕ_{1}.

4. Conclusions

Part (1): Theory

- The asymptotic distributions of OLS estimators of bounded AR (2) model without constant and with dependent errors under different tests of hypothesis have been derived.
- The asymptotic distributions of the t-type statistics of OLS estimators of bounded AR (2) model without constant and with dependent errors under different tests of hypothesis have been derived.

Part (2): Simulation Study

- For bounded AR (2) model without constant and with dependent errors the measurement of MSE approve H_{a} more than the measurement of Thiel's U .
- For bounded AR (2) model without constant and with dependent errors the positive values of ϕ_{1} approve H_{a} more than the negative values of ϕ_{1}.
- For bounded AR (2) model without constant and with dependent error the generalized inverse G_{71} approve H_{a} more than the generalized inverses G_{72}, G_{73} and G_{74} in all cases of sample size T, $\bar{c}=-\underline{c}$ and ϕ_{1}.
- For bounded AR (2) model without constant and with dependent errors and for each sample size $T, \bar{c}=-\underline{c}$ and for generalized inverses G_{72}, G_{73} and G_{74} the values of MSE are decreasing for decreasing of positive values of ϕ_{1} and increasing for decreasing of negative values of ϕ_{1}, while the values of Thiel's U are increasing for both decreasing

$$
\text { مجلة الثشروق للعلوم التجارية - العدد الثالث عشر - يونيو } 2021
$$

of positive values of ϕ_{1} and decreasing of negative values of ϕ_{1} under both the null and alternative hypotheses.

References

[1] Amer, G. A., (2015), "Econometrics and Time Series Analysis (Theroy, Methods, Applications)" Cairo University.
[2] Beveridge, S. and Nelson, C.R. (1981), "A New Approach to Decomposition of Economic Time Series In to Permanents and Transitory Components with Particular Attention to Measurement of the Business Cycle", Journal of Monetary Economics, Vol. 7, No. 3, pp. 151-174.
[3] Dickey, D. A. and Fuller, W. A., (1979), Distribution of the Estimators for Autoregressive Time Series With a Unit Root, JASA, Vol. 74, No. 366, pp. 427-431.
[4] Dickey, D. A. and Fuller, W. A., (1981), "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit", Econometrica; Vol. 49, No. 4, pp. 1057-1072.
[5] Cavaliere, G., (2005), Limited Time Series With A Unit Root. Econometric Theory, Vol. 21, No. 5, pp. 907-945.
[6] Schatzman, M., (2002), Numerical analysis: a mathematical introduction, Clarendon Press, Oxford.

Web sites

[7] Bell, J., (2015), The Weak and Strong Laws Of Large Numbers, University of Toronto,
https://pdfs.semanticscholar.org/4786/984d97527d81b17ba34bbf dbbb46f1e69f48.pdf
[8] Carrion,I. S. and Gadea, M.D., (2013), GLS based unit root tests for bounded processes, http://www.ub.edu/irea/working_papers/2013/201304.pdf
[9] Carrion,I. S. and Gadea, M.D., (2015), Bounds, Breaks and Unit Root Tests, https://core.ac.uk/download/pdf/78633760.pdf
[10] Cavaliere, G., (2000), A Rescaled Range Statistics Approach to Unit Root Tests, Econometric Society World Congress 2000 Contributed Papers 0318, http://fmwww.bc.edu/RePEc/es2000/0318.pdf.
[11] Cavaliere G., (2002), Testing undeclared central bank intervention in foreign exchange markets, https://www.forskningsdatabasen.dk/en/catalog/2398120236.
[12] Cavaliere, G. and Xu, F., (2011), Testing for unit roots in bounded time series, University of Bologna, European University Institute Christian-Albrechts-University of Kiel, http://www.econ.queensu.ca/files/event/Cavaliere_Xu.pdf [13] Sawyer, S. (2008), "Generalized Inverses: How to Invert a NonInvertible Matrix",
https://www.math.wustl.edu/~sawyer/handouts/GenrlInv.pdf.

Unit Root Test of Bounded AR (2) without Constant Model in Case Dependent Errors

اختبار جذر الوحدة لنموذج الاححدار الذاتى المحدود من الرتبة الثانية بدون حد ثابت فى حالة الأخطاء غير المستقلة

محمد أحمد فاروق أحمد المعهد العالى للحاسبات وتكنولوجيا المعلومات ـ أكاديمية الشروق
M.arslan2030@gmail.com

ملخص البحث

فى هذا البحث تم استتناج اختبار جذر الوحدة لنموذج الانحدار الذاتى المحدود من الرتبة الثانية بدون حد ثابت فى حالـة الأخطاء غبر المستقلة. واستتناج التوزيعات
 فروض مختلفة. كما تم بناء در اسة محاكاة لللمقارنة بين مختلف اختبار ات جذر الوحدة وتم استخذام متوسط مربعات الخطأ ومعامل عدم النساوى كمعايير للمقارنة.

الكلمات المفتاحية: نموذج الانحدار الذاتى المحدود من الرتبـة الثانيـة بـون حد ثابت، التوزيعـات النقاربيـة، مقـدر ات المربعـات الصـغرى العاديـة، اختبـار ات الفـروض، احصاءات "ت"، متوسط مربعات الخطأ، معامل عدم النشاوى وقوة الاختبار .

