

The effect of using core stability exercises on dynamic balance, some physical and skill variables for table tennis players

Hossam Hamed Abdelmagid Abdelkhalek¹

¹ Professor, Department of theories and applications of team sports and racket games, Faculty of Physical Education, University of Sadat City²

Abstract

The The aim of this research is to designing a training program thru core stability exercises and observes the effect of this suggested program on dynamic balance, some physical and skills variables for Table Tennis players, the researcher used the experimental method for the one experimental group.

The research sample was been selected from players of the Alnasr sporting club in Oman. The sample of the research was (5) players, the researcher applied physical and skills abilities tests after that he applied the training program using core stability exercises for (10) weeks, then he performed measurements on Dynamic balance, some physical and skills variables test.

The results revealed that there were statistical differences between the Premeasurement, Tracer- measurement, and the post-measurement regards variables Dynamic balance, some physical and skills variables the researcher recommended using the core stability exercises over the preparation period.

Keywords: Core stability exercises, Dynamic balance, physical variables, skills, table tennis, players.

Introduction

Karate Table tennis is distinguished from other sports by a great demand for its practice, as it is an interesting game that brings together many public and private advantages and benefits, which are not available in many other sports, which makes it at the top of friendly sports that are easy to practice to achieve various sporting and educational goals and purposes and this is evident. (12:9)

Basic Skills consider the backbone of table tennis, as they are the core of performance for this

activity. They also help the player in attack and defense to score points and win the match, Although the basic skills in table tennis seem easy to perform, they require great effort in learning and mastering them due to the difficulty of implementing them due to the small size of the table, the racket, and the ball, as its practice requires the player to have a high concentration of concentration as well as a high skill, physical, tactical and psychological ability to suit the nature of this sport. (23:33) (7:12)

It is known and scientifically proven that the mastery of basic skills is that the player training on them from a young age and continues to train on them in every training unit throughout his sporting life in the sports field, and it is clear that the player does not rise to the national level or the global level in his country unless these sports skills are fully mastered. (9:36) (22)

Also, preparing the player physically to meet the requirements of the sporting activity is considered one of the main duties of the sports training process, which leads to the progression of the training state of the player to reach the higher levels in the practiced activity especially in table tennis. (23:50) And It is known in advance that skill performance is closely related to special physical and motor abilities, as the mastery of skill performance depends on the extent to which the requirements for this performance are developed in terms of special physical and movement capabilities such as (reaction speed - muscle power- flexibility - agility - etc.) and often evaluates the level of performance Skills utilizing the extent of the individual's acquisition of these special physical and movement variables. (8:165)

The muscles of the core are the main physical and muscular center for the distribution of movement in the body, and for example, if the player moves the arms or legs, then he feels the movement of the core muscles and feels his physical and muscular center and leads to ease of Therefore. movement control. centering is the basis of movement performance and it is scientifically proven that the stability of the trunk is the group of muscles that work the stability of the abdomen, back, and thigh to perform the skill efficiently. (17:23)(2:61)(1)

Numerous researches have proven the importance and extent of the stability and rigidity of the lower

part of the core in mastering human movements in general, as well as the increase in the efficiency of force production and the generation of more associated power and the movement of the limbs and control of their movements and the economy in the effort as a result of the stability and stability of the lower core area And surrounding muscles as a study by Sammson MK (2005)(20), Kibler (2006)(11), Willardson (2007)(24), (2009)(19),Cissik, Sata J.M. (2011)(6), Ali Hasoona (2012)(3), Sameh Tantawi. Sami Aker (2014)(18), Adel Muhammad (2017)(1).

Mohamed Sobhi (2004) believes that balance is an important physical ability that highlights its importance in daily life in general and in the field of physical education in particular, as it is an important component in the performance of motor skills, whether basic or complex skills. (16: 431)

And the researcher believes that all the general and special physical characteristics required for the player to be possessed must be developed, in addition to the stability training of the trunk, which plays an important role in maintaining the balance of the body during movement, as the positioning is the basis of good motor performance, which is reflected in the skillful performance of the player, which helps to prepare the players physically. To be able to fulfill the requirements of the game's performance (physically, skillfully, and strategically) and to achieve the best possible level of achievement.

In light of the above and through the researcher's work as a table tennis trainer in addition to teaching table tennis at the Faculty of Physical Education at Sadat University, he sees the need to pay attention to the development of some important elements of physical fitness, which is reflected in the level of skill performance. and this what is prompted the researcher to design a program for trunk stability exercises and know its effect On the motor balance and the level of performance of some motor skills in table tennis.

Aims of the research:

To design a proposed program for core stability exercises for table tennis players, in an attempt to find out:

1. The effect of the proposed program on the Dynamic balance for the sample under study.

2. The effect of the proposed program on the level of some physical variables for the sample under study.

3. The effect of the proposed program on the level of some skill variables for the sample under study.

Terminology of research:

Core Stability: The ability of the muscles of the abdomen, back, and thigh to control the movement performed. (21:31)

Dynamic Balance: The ability to maintain body balance while moving. (15:334)

Methodology:

The researcher used the empirical approach because it is suitable for the nature of this study where it relied on the experimental design of the measurements (pre-, tracer, and Post) of one experimental group.

Sample

The research sample was been selected from players (Men) of the Alnasr sporting club in Oman. The sample of the research was (15) players, (10) players were selected to conduct exploratory studies, and (5) players for basic study, the researcher applied physical and skills abilities tests after that he applied for the training program thru core stability exercises throughout (10) weeks, then he performed measurements on physical and skills abilities test.

Statistical characterization of the sample in the variables (Length, Weight, Age, and Training age) (N=10) (5 for exploratory studies & 10 for basic study)

		Dasic stut	1 y)		
Variables	Measuring Unit	Mean	Median	St. Deviation	Skewness
Age	Year	22.4	22	0.843	0.389
Height	СМ	175.7	174.5	2.497	1.122
Weight	KG	74.1	74.5	2.998	0.096
Training Age	year	9.1	9.0	1.197	-0.233

Table (1) Shows the modality of the distribution of the sample in the variables (Length, Weight, Age, and Training Age) where the torsion coefficients

are limited to (± 3) which makes it moderate in the distribution of the research sample in those variables.

Table (2)								
Statistical chara	cterizatio	n of the	sample in	the physical a	nd skill			
variables (N=1	10) (5 for	explorat	ory studi	es & 5 for basi	c study)			
Variables	Unit	Mean	Median	St. Deviation	Skewness			
Muscular power	Meter	19.7	20	0.949	-0.234			
Performance	Second	50.9	51	1.370	-0.104			
Endurance								
Flexibly	cm	36.1	36	1.663	-0.145			
Agility	Rept.	16.1	15.5	1.792	0.394			
Coordination	Sec.	21.9	22	1.370	-0.104			
Motor Speed	Rept.	15.4	15	1.776	1.320			
Reaction Speed	Rept.	23.8	23.5	1.398	0.134			
Precision	Rept.	22.3	22	1.567	1.546			
Static Balance	Second	28.1	28	0.876	-0.223			
Dynamic Balance	Degree	34.7	35	1.160	-0.342			
Forehand counter	Rept.	7.4	8	1.578	-0.620			
drive								
Backhand counter	Rept.	7.3	7.5	1.494	-0.140			
drive								
Forehand Loop	Rept.	5.1	5	0.738	-0.160			
Backhand Loop	Rept.	4.5	4	1.179	0.255			

Table (2) Shows the modality of the distribution of the sample in the physical and skill variables where the torsion coefficients are limited to (± 3) which makes it moderate in the distribution of the research sample in those variables.

The proposed program for the Core Stability program:

According to the set goals of the program with its 3 stages and the degrees of training loads, the schedule was set for 10 weeks, at the rate of 3 units of core stability program every week. Thus, the proposed program included 30 units. The duration of each ranged from 90 – 120 minutes. Then, the researcher applied for the proposed Core stability program on the sample during the sports season 2018/2019 starting from Sunday 14 / 01 / 2018 to Thursday 22 / 03 / 2018. The program was applied under the supervision of the researcher and his assistants in special preparation period.

Methods of data collection:

Reference survey:

The researcher surveyed studies and scientific references in table tennis and sports training science that was available to the researcher to identify the global and professional variables in the operation of the research, as well as identify options in measuring these variables, as well as surveyed scientific references specialized in the sport of table tennis, defines basic skills in the sport of table tennis.

The tools used in the research:

The tape measure to measure the length "in centimeters" - the device for the thrower of the table tennis balls - a medical scale to measure the body weight "in kilograms" - table tennis - table tennis balls - cones medical balls 1.5 kg weight - chalk stopwatch - meter tape to measure distance - long ropes – Swedish ball – Bands - training mattresses.

Physical and skills tests used in the study:

- Passing test in (10) seconds ... to measure Motor speed.

- Passing accuracy test of movement ... to measure accuracy.

- The triangular jump test ... to measure agility.

Website://jat.journals.ekb.eg/

Email: Jatpess@phed.usc.edu.eg

- Numbered circuit test ... to measure coordination.

- Throwing a medical ball 1.5 kg test

... to measure Muscular Power.

- Fleishman Test ... to measure flexibility.

- Ball ejected machine test ... to measure the speed of the striking hand's response.

- Transition test between markers ...to measure dynamic balance.

-Table test ... to measure performance endurance. (Edited by the researcher)

- Forehand counter drive test ... to measure Forehand counter drive.

- Backhand counter drive test ... to measure Backhand counter drive.

- Forehand Loop test ... to measure Forehand Loop drive.

- Backhand Loop test ... to measure Backhand Loop drive.

Scientific Transactions for Tests:

Validated Tests:

The validity of the tests was calculated by calculating the validity of differentiation by applying them to two groups of (5) players each. The first group represents AlNasr Sports Club players from the same

research community and outside the research sample, and the participants in the League Table Tennis (Distinguished Group), while the second group represents the nonperformance category from AlNasr Club players (Undistinguished group) on Sunday 7/1/2018, and the following table shows the significance of the differences between the two groups in all tests.

Table (3)

The significance of the differences between the two distinct and non-	
distinguishing groups in physical and skill tests (N1=N2=5)	

0	00	Distinct G.		non-		Average	
Variables	unit			disting	uishing	Difference	T.Test
	_	Mean	S.DEV	Mean	S.DEV	-	
Muscular power	Meter	19.8	0.837	14	0.707	5.8	9.333*
Performance Endurance	Second	43.6	0.548	51.8	0.837	8.2	41.000*
Flexibly	Cm	35.6	1.817	29.4	1.517	6.2	6.395*
Agility	Rept.	14.8	0.837	9.8	0.836	5.0	9.129*
Coordination	Sec.	14.6	1.157	21.2	1.304	6.6	5.880*
Motor Speed	Rept.	15.4	1.673	10.4	0.894	5.0	4.767*
Reaction Speed	Rept.	24.2	1.643	17.6	0.548	6.6	7.117*
Precision	Rept.	21.6	0.894	17.2	0.837	4.4	17.963*
Static Balance	Second	28.0	1.000	20.4	1.517	7.6	9.355*
Dynamic Balance	Degree	34.6	1.140	16.6	0.894	16	25.298*
Forehand counter drive	Rept.	7.8	1.643	3.8	0.837	4.0	5.657*
Backhand counter drive	Rept.	6.2	1.095	2.0	0.707	4.2	7.208*
Forehand Loop	Rept.	5.2	0.837	1.6	0.548	3.6	9.000*
Backhand Loop	Rept.	4.0	1.225	1.6	0.548	2.4	4.707*

"T" tabulated value at (0.05) = 2.306

Table (3) showing there are statistically significant differences between the (**Distinct group**/ **nondistinguishing group**) groups in the variables under study, which shows the difference between the two groups in these variables since the calculated "T" value is more than the tabulated "T" value. So that the tests can be used.

Stability for Tests:

To find the stability of tests, the researcher applied the test and repeat it with a time interval of six days, and the researcher used Pearson's simple correlation coefficient to find the correlation coefficient between the results of the first and second apply.

Table (4)
The Correlation coefficient between the results of the first and
second apply of the tests under research N= (5)

Variables		First Apply		Second	R	
variables	umit	Mean	S.DEV	Mean	S.DEV	Value
Muscular power	Meter	19.8	0.837	20.4	0.894	0.830*
Performance Endurance	Second	43.6	0.548	44.0	0.548	0.764*
Flexibly	Cm	35.6	1.817	35.4	1.949	0.974*
Agility	Rept.	14.8	0.837	15.0	0.707	0.845*
Coordination	Sec.	14.6	1.157	14.8	1.342	0.943*
Motor Speed	Rept.	15.4	1.673	15.6	1.342	0.869*
Reaction Speed	Rept.	24.2	1.643	24.0	1.000	0.913*
Precision	Rept.	21.6	0.894	21.8	0.837	0.869*
Static Balance	Second	28.0	1.000	28.2	1.095	0.913*
Dynamic Balance	Degree	34.6	1.140	34.8	1.095	0.921*
Forehand counter drive	Rept.	7.8	1.643	8.0	1.581	0.866*
Backhand counter drive	Rept.	6.2	1.095	6.4	1.095	0.721*
Forehand Loop	Rept.	5.2	0.837	5.2	1.095	0.764*
Backhand Loop	Rept.	4.0	1.225	4.2	1.304	0.939*

It is evident from Table (4) that the value of correlation coefficients between the first and second apply for all variables ranged between (0.721 - 0.974), and these values are statistically significant at a significance level (0.05), which indicates that they have high coefficients and stability the stability of the tests.

Statistical processing:

The researcher used the statistical program with the following statistical data: (Mean - Median standard deviation - simple correlation coefficient Person - one way analysis of variance (Anova) -LSD test.

The researcher took (0.05) to be statistically significant.

Results:

Table (5)
Statistical characterization of the pre-, tracer, and post for measurements
of the research sample in the study variables $N=5$

	of the researc	n sampic n	ii the study		
Variables	Measurement	Mean	Median	St. Deviation	Skewness
	Pre- Test	17.6	18	0.548	0.609
Muscular	Tracer- Test	20.6	21	1.517	1.749
power	Post Test	25.4	26	0.894	1.258
Performance Endurance	Pre- Test	52.4	53	1.517	1.118
	Tracer- Test	50.4	50	0.894	2.236
	Post Test	46.2	46	1.304	0.541
	Pre- Test	32.2	32	0.837	0.512
Flexibly	Tracer- Test	34.8	35	0.837	0.512
	Post Test	37.0	37	1.225	1.361
	Pre- Test	12.2	12	0.837	0.512
Agility	Tracer- Test	14.8	15	1.304	0.541
	Post Test	15.8	16	0.837	0.5122
	Pre- Test	17.4	17	1.140	0.405
Coordination	Tracer- Test	16.2	16	1.095	1.293
	Post Test	13.6	14	1.140	0.405
	Pre- Test	11.8	12	0.837	0.512
Motor Speed	Tracer- Test	14.4	15	0.894	1.258
	Post Test	17.4	18	0.894	1.258
Depation	Pre- Test	20.2	20	0.837	0.512
Sneed	Tracer- Test	22.8	23	0.836	0.512
Speed	Post Test	25.6	25	0.894	1.258
	Pre- Test	20.6	20	1.342	0.166
Precision	Tracer- Test	22.8	23	1.095	1.293
	Post Test	25.8	26	0.837	0.5122
Static	Pre- Test	27.2	27	0.447	2.236
Balance	Tracer- Test	30.4	30	1.140	0.405
Dalance	Post Test	34.8	35	0.837	0.512
Dynamic	Pre- Test	33.8	34	0.837	0.512
Balance	Tracer- Test	37.0	37	0.707	0.000
Datallee	Post Test	39.4	39	0.548	0.609
Foreband	Pre- Test	7.4	7	0.458	0.607
counter drive	Tracer- Test	9.8	10	0.837	0.512
	Post Test	12	12	0.707	0.000

t sciences January-2022

Backhand counter drive	Pre- Test	5.6	6	0.548	0.609
	Tracer- Test	7.2	7	0.837	0.512
	Post Test	8.8	8	1.095	0.609
T	Pre- Test	5.6	5	0.894	1.258
Forenand	Tracer- Test	7.6	8	0.548	0.609
гоор	Post Test	11.6	12	0.547	0.609
Backhand Loop	Pre- Test	4.6	5	0.548	0.609
	Tracer- Test	6.4	6	1.140	0.405
	Post Test	10.2	10	0.837	0.512

It is evident from Table (5), which indicates the homogeneity of the research sample and the possibility of processing it statistically.

measurements in the variables under study N=3							
Variables	Source of the	Freedom	Sum of	Mean	Anova		
	contrast	Degree	squares	squares	Value		
Muscular	Between Groups	2	112.067	56.033			
	Within Groups	12	56.333	4.694	*11.936		
power	Total	14	168.400				
Dorformonoo	Between Groups	2	89.167	44.583			
Feriormance	Within Groups	12	30.167	2.514	*17.735		
	Total	14	119.333				
	Between Groups	2	57.833	28.917			
Flexibly	Within Groups	12	11.500	0.958	*30.174		
	Total	14	69.333				
	Between Groups	2	32.600	16.300			
Agility	Within Groups	12	14.333	1.194	*13.647		
	Total	14	46.933				
	Between Groups	2	42.100	21.050			
Coordination	Within Groups	12	10.833	0.903	*23.317		
	Total	14	52.933				
Motor Speed	Between Groups	2	60.000	30.000			
	Within Groups	12	33.333	2.788	*10.800		
	Total	14	93.333				
Deastion	Between Groups	2	60.900	30.450			
Speed	Within Groups	12	20.833	1.736	*17.539		
Speed	Total	14	81.733				

Table (6) One-way Anova of the pre-, tracer, and post for sample measurements in the variables under study N=5

ISSN : 2636-3925 (online)

Vol, () Is

Issue, ()

	Between Groups	2	46.267	23.133		
Precision	Within Groups	12	36.667	3.056	*7.571	
	Total	14	82.933			
G4 4	Between Groups	2	126.900	63.450		
Static	Within Groups	12	27.500	2.292	*27.687	
Dalalice	Total	14	154.400			
Demonio	Between Groups	2	65.600	32.800		
Dynamic Balance	Within Groups	12	19.333	1.611	*20.359	
	Total	14	84.9333			
	Between Groups	2	38.100	19.050		
r orenanu	Within Groups	12	20.833	1.736	*10.973	
counter urive	Total	14	58.933			
Deelshand	Between Groups	2	24.400	12.200		
Dacknanu	Within Groups	12	10.000	0.833	*14.640	
counter arive	Total	14	34.400			
Forehand	Between Groups	2	67.433	33.717		
	Within Groups	12	31.500	2.625	*12.844	
rooh	Total	14	98.933			
Backhand	Between Groups	2	48.600	24.300		
Backhand	Within Groups	12	42.333	3.528	*6.888	

14

"F" tabulated value at (0.05) = 3.880

Total

Loop

Table (6) shows that there are statistically significant differences at a level of significance (0.05) between the measurements of the pre, tracer, and post research sample in all the variables under study, and to clarify the significance of the differences between these measurements ... The researcher will calculate the lowest significant difference using the **LSD** test.

90.933

Table (7)

The significance of the differences between the averages of the measurements of the pre, Tracer, and post for in all variables of the sample under study

			Defere	LSD		
Variables	Measures	Mean	M1	M2	M3	Value
	Measure 1	17.6		4.0*	7.2*	
Muscular power	Measure 2	20.6			3.2*	2.986
	Measure 3	25.4				1
Doufournonoo	Measure 1	52.4		2.5*	6.7*	
Feriormance	Measure 2	50.4			4.2*	2.185
Endurance	Measure 3	46.2				
	Measure 1	32.2		2.8*	5.2*	
Flexibly	Measure 2	34.8			2.3*	1.349
	Measure 3	37.0				
	Measure 1	12.2		2.7*	3.5*	
Agility	Measure 2	14.8			0.8	1.506
	Measure 3	15.8				
	Measure 1	17.4		2.2*	4.5*	1.310
Coordination	Measure 2	16.2			2.3*	
	Measure 3	13.6				
	Measure 1	11.8		3.3*	5.0*	
Motor Speed	Measure 2	14.4			1.7	2.301
	Measure 3	17.4				
Depation	Measure 1	20.2		2.8*	5.3*	
Speed	Measure 2	22.8			2.5*	1.816
Speed	Measure 3	25.6				
	Measure 1	20.6		3.0*	4.3*	
Precision	Measure 2	22.8			1.3	2.409
	Measure 3	25.8				
Static	Measure 1	27.2		4.5*	7.5*	
Balance	Measure 2	30.4			3.0*	2.086
Datallee	Measure 3	34.8				
Dynamia	Measure 1	33.8		3.3*	5.3*	
Ralance	Measure 2	37.0			2.0*	1.749
Datatice	Measure 3	39.4				
Foreband	Measure 1	7.4		2.8*	3.8*	
counter drive	Measure 2	9.8			1.0	1.816
	Measure 3	12				

Vol, () Issue, ()

SN : 2636-3925	(online)
----------------	----------

	_				
Backhand counter drive	Measure 1	5.6	2.3*	3.0*	
	Measure 2	7.2		0.7	1.258
	Measure 3	8.8			
Forehand Loop	Measure 1	5.6	2.8*	5.7*	
	Measure 2	7.6		2.8*	2.233
	Measure 3	11.6			
Backhand Loop	Measure 1	4.6	2.3	4.8*	
	Measure 2	6.4		2.6*	2.589
	Measure 3	10.2			

Table (7) indicates that there are statistically significant differences at the level of significance (0.05) between the averages of the measurements of the pre, tracer and post research sample. In all variables in favor of the mean of the post measurement.

Discussion:

It is evident from the results of Table statistically (6) that there are significant differences at the level of significance between the measurements of the pre, tracer, and post research sample in the physical and skills variables, which are: (Performance Muscular power, Endurance, Flexibility, Agility, coordination, Motor Speed, Reaction Speed, Precision, Static Balance, Dynamic Balance Forehand counter drive, Backhand counter drive, Forehand Loop, Backhand Loop) of the sample under study.

To clarify the significance of the differences between these researcher measurements. the

calculated the lowest meaning difference using the LSD test to determine the significance of the differences between these Table (7)measurements. as indicates that there are statistically significant differences at the level of significance (0.05) between the averages of the measurements of the pre, tracer and post research sample In the physical and skills variables in favor of the mean of the Post measurement.

The researcher attributes these incident differences to the construction of the training program using core stability exercises that were applied during the special preparation period and the preparation for competitions on table tennis players for the sample

under study, which gives a positive indication of improvement in the level of physical and skills variables of the sample under study.

It is evident from Table (7) that showing there is statistically significant differences between the (pre, tracer, and post) measurements for the post measurement.

This is supported by **Chabut** (2009) that good and regular training of the core area leads to the cooperation between all the muscles in it and to perform the movements effectively and with more attractive force. (4)

This result is consistent with the results of the study of Cissik, JM.(2002)(5), Samson (2005)(20), Willardson (2007)(24),**Kibler** (2006)(11),Sata (2009)(19),Mohamed hamed (2013)(14), Ihab (2013)(10) Sameh & Sami(2014)(18), Mohamed Jamal 2016)(13), Adel Mohamed ((2017)(1) indicate that Core stability exercises programs lead to an increase and improvement in Dynamic Balance, Physical and skill level.

Through the above ... the researcher believes that the significance of the differences

Website://jat.journals.ekb.eg/

Email: Jatpess@phed.usc.edu.eg

occurring between the averages of the research sample measurements is the subject of the research sample for the proposed core stability exercises program under consideration.

And which relied in its design on the scientific rules and foundations to develop and improve the level of physical and skill variables under study.

This result verifies the validity of what was stated in the hypothesis, which states that "there are statistically significant differences between the averages of the pre-, tracer- and post-measurements in the level of some physical and skill variables under study in favor of the post-measurement."

Conclusions:

According to the goals and nature of this study, and within the sample of the research and the methodology applied therein, as per the data collected by the researcher and the results of statistical analysis, the researcher reached the following conclusions:

1- The Core Stability exercises program is effective in the

improvement of Dynamic Balance for table tennis players.

2- The Core Stability exercises program is effective in the improvement of Physical

Reference

Adel Ramdan (2017): The effect of Core stability exercises on some physical elements and the level of performance of defensive foot movements for junior leagues, Journal of Comprehensive Education, p. 2, Faculty of Physical Education for Girls, Zagazig University. **Abdul Rahman Abdul Hamid** Zaher (2000): Physiology of jumping and jumping competitions, Al-Kitab Center for Publishing, Cairo. Ali Hasoona (2012): The effect of a program of stability exercises for the central part of the body on some health variables for football players, unpublished Ph.D. thesis, Faculty of Physical Education for Boys, Helwan University.

Variables for table tennis players.

3- The Core Stability exercises program is effective in the improvement of some skills variables for table tennis players.

Chabut (2009):Core Strength

for Dummies, Wiley Publishing,

inc,U.S.A,

Cissik, JM.(2002):Programming abdominal training, part one. Strength Cond J 24: 9–15, 2002 **Cissik, J.M. (2011):**The role of core training in athletic performance, injury prevention, and injury treatment, strength and conditioning journal, 33(1), 10-15.

Eleen Wadeaa Farag, Salwa

EZZ Alden (2002):The

reference in table tennis",

Monshaat al-Maaref, Alexandria.

Essam

Abdulkhalek(2005):Sports

training (theories - applications),

12th edition, Monshaat al-

Maaref, Alexandria.

Ewis ALgibali (2000):Athletic Training (Theory and Practice),

G.M.S, Cairo.

Ihab Adb AlFatah Shehata

(2013):, "Effect Of Core

Stability Exercise on Some

Physical Abilities Strength and

Death of For Hand and Back

Hand Ground Strokes for The

Tennis Players", The 4

International Conference on

Sport and Exercise Since 26-29

March, Bangkok, Thailand.

Kilber WB, Press J, Sciascia A (**2006**):The role of core stability in athletic function. Sports Med.; 36(3), 189-198

Matt Smith, William Naty (2006):International Table Tennis, Human Kinetics, United States of America, 2006.

Mohamed Gamal Eldin Mohamed (2016):The effect of using some core stability exercises on improving the accuracy of jumping shooting during playing situations and some elements of physical fitness for basketball juniors, Scientific Journal of Physical Education and Sports Science, p. 77, Faculty of Physical Education for Boys, Helwan University.

Mohamed hamed fahmy (2013)):The effect of core stability exercises on the development of some elements of physical fitness for female basketball players, Scientific Journal of Physical Education and Sports Science, p. 67, Faculty of Physical Education for Boys, Helwan University.

Mohamed Sobhi Hasanin(2001):MeasurementandEvaluation in Physical Education,Part One, 4th Edition, Dar Al-FikrAl-Arabi, Cairo.

Mohamed Sobhi Hasanin(2004):MeasurementandEvaluation in Physical Education,Part One, 5th Edition, Dar Al-FikrAl-Arabi, Cairo.

Rischard Son C, Hodges P, Hides J (2004):The Rapeutic Exercise for Lumbopelvic Stabilization a, motor Control Approach for The Treatment and Prevention of Low Back pain 2nd ed. London: Church Living Stone,

ISSN : 2636-3925 (online)

Vol, ()

Issue, ()

sciences January-2022

Sameh Sh. Tantawi, Sami AbdelSalam ker (2014):The

Effect of Core Stability Training on Some Physical Abilities and The Effectiveness of Attack Performance for the practitioners of Kumite" The Assiut Journal of Sports Science and Arts 221-239.

Sata, K motha, M., (2009):Does Core Strength Training in fluence Running Kinetics, Lower Extremity Stability and Soon Performance In Running Strength Cond Res, 23, 133- 140 Samson, M.K (2005):The Effects of a Five-week core stabilization- Training Program on Dynamic Balance in Tennis Athletes Master's Thesis, West Virginia University Stanton, R, Reburn. P, R., & Humphries, B, (2004):The Effect of Shortterm Swisball Training on Core Stability and Reuning Economy J. Strength Cond Res. 18 (2).

Tarek Ebrahim

(2013):Developing the speed and accuracy of some offensive and defensive skills for table tennis juniors under 14 years old in Sharkia Governorate, unpublished Ph.D. thesis, Faculty of Physical Education for Boys, Zagazig University. The English table tennis Association (2001):Table Tennis, A.& C. Black Ltd., London. Willardson, Jeffrey M. (2007):Core Stability For Athletes (7/7/2008) Phd., Csis, This paper was Presented as Part Of The NSCA Hot Topicceries, All Infromation Containted Herein Is Copy Of The NSCA.

