IMPACT OF LEAVES AND FLOWER FROM ALFALFA AND DANDELION TO IMPROVE LIVER FUNCTION AND PREPARING SOME FOOD PRODUCTS

By

Hoda ELnabawy Elbasyouny

Supervision

Prof.Dr. Hamed Mohamed Emara Professor of Nutrition and Food Science, Faculty of Specific Education, Damietta University. Dr.Ghada Mosad Elseedy Assistant Professor of Nutrition and Food Science,

Faculty of Specific Education, Damietta University.

Dr. Ola Talaat Sahlol

Assistant Professor of Nutrition and Food Science, Department of Home Economics, Faculty of

Specific Education, Damietta University.

Research Journal Specific Education

Faculty of Specific Education Mansoura University

ISSUE NO. 65, JANUARY , 2022

مجلة بحوث التربية النوعية - جامعة المنصورة العدد الخامس والستون - يناير ٢٠٢٢ — Impact of leaves and flower from Alfalfa and Dandelion to Improve Liver Function

IMPACT OF LEAVES AND FLOWER FROM ALFALFA AND DANDELION TO IMPROVE LIVER FUNCTION AND PREPARING SOME FOOD PRODUCTS

Hoda ELnabawy Elbasyouny

Prof.Dr. Hamed Mohamed Emara*

Dr.Ghada Mosad Elseedy**

Dr. Ola Talaat Sahlol***

Abstract

Alfalfa and dandelion are a rich source of natural antioxidants. Therefore, this study was carried out to identify the effect of eating flowers and leaves from alfalfa and dandelion to improve liver function for rats and using them to make some foods products, such as pan bread and tea. Then sensory properties of these products were evaluated through trained arbitrators. Biochemical analysis and histopathological properties were investigated using sixty four male rats which were randomly divided into two main groups the first group: control negative group (8 rats) fed on a basal diet, while the second group :56 rats were fed on a basal diet and they were injected subcutaneous by CCl₄, in paraffin oil (viv 4ml/kg) to induce fibrosis in liver. Then divided to 7 subgroups .Subgroup (1): fed on a basal diet as a positive control group. Subgroup (2): fed on a basal diet containing 25g alfalfa leaves. Subgroup (3): fed on a basal diet containing 25g alfalfa flowers. Subgroup (4): fed on a basal diet containing 25g dandelion leaves. Subgroup (5): fed on a basal diet containing 25g dandelion flowers. Subgroup (6): fed on a basal diet containing 25g mixed leaves of alfalfa and dandelion. Subgroup (7): fed on a basal diet containing 25g mixed flowers of alfalfa and dandelion.

Assistant Professor of Nutrition and Food Science, Department of Home Economics, Faculty of Specific Education, Damietta University.

^{*} Professor of Nutrition and Food Science, Faculty of Specific Education, Department of Home Economics, acting dean of Faculty Specific Education previously, Damietta University.

^{***}Assistant Professor of Nutrition and Food Science, Department of Home Economics, Faculty of Specific Education, Damietta University.

The obtained results showed that the chemical composition of alfalfa and dandelion contain high percent of protein, fiber and antioxidant. and the obtained results showed significant decrease the treated groups in ALT, AST, total cholesterol, triglyceride, LDL, blood urea, Creatinine ,random blood sugar and MDA. Also increase the treated groups in HDL, GSH ,SOD and Catalase. Generally, the results of the sensory evaluation demonstrated that ,the pan bread and tea were acceptable. The study recommends the using of alfalfa and dandelion (leaves and flower) as food additives for their nutritional and healthy benefits.

Keywords: Alfalfa leaves and flower - dandelion leaves and flower - liver enzymes- kidney function-antioxidant enzymes.

INTRODUCTION :

Liver is a very important organ with a lot of functions for our bodies to have a perfect health level, then what we eat determines our level of liver health or disease. Plants food is an essential part of the human diet and comprises various compounds which are closely related to liver health , Thus food plants selection can provide nutritional and medicinal support for liver disease (**Guan and He, 2015**).

Liver fibrosis, occurs as a compensatory response to the process of tissue repair in a wide range of chronic liver injures and inflammations (**Cordero and Huch., 2018**). fibrosis is an essential part of the assessment and management of patients with chronic liver disease (**Joseph , 2020**).

Alfalfa is considered one of the most important genera of the leguminosae family, Its flowers have a sweet and mild licorice flavor and are traditionally used garnish or ingredient in salads, soups, entrees, desserts, and drinks worldwide (**Sabudak and Guler ,2009**). it's not used only to improve appearance of meals but also for their nutritive value (**Kelley** *et al* ., 2002).

The phytochemical analysis of Alfalfa (*Trifolium alixandrinum*) showed the presence of proteins, fiber, carbohydrates, saponins, lignin, phenolic phytoestrogens, flavones and iso flavonoids phenolic compounds. The previous pharmacological investigation showed that the plant possessed

antioxidant, antidiabetic, immunological, and many other pharmacological effects (Al-, Snafi ,2021).

Dandelion have been used as folk medicines in China, India, and Russia for the treatment of chronic liver diseases (Yarnell and Abascal ,2009).

Biochemical analysis of dandelion (*Taraxacum officinale*) compound found higher polyphenols in the leaves and flowers than in the other parts. Dandelion leaves and flowers consist of carbohydrates, carotenoids, fatty acids, fiber, minerals, sugars, choline vitamins, mucilage, and pectin (Wirngo *et al.*, 2016).

The leaves and flowers of the dandelion contain coumarin and many flavonoids and important chemical components such as organic acids, inulin, vitamins A, B, C, and D (**Sharifi** *et al.*, **2018**).

Recently, it was found that alfalfa and dandelion extract fight free radicals and attenuate inflammatory cells activations, and decreased collagen deposition (chemical by-products known to damage DNA). Health care providers clinically use dandelion to promote liver detoxification (Al-Malki *et al.*, 2013 and Hamza *et al.*, 2020).

Hence, there has been more and more interests in developing and using natural, effective, safe, and multiple biological antioxidants to replace synthetic antioxidants in many industries, such as natural plant polyphenol compounds (**Lopes** *et al* ., **2016**).

Furthermore, Mentioned that oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and non-alcoholic steatohepatitis. (Jiang and Török, 2014).

The current study aims to identify the impact of leaves and flowers of alfalfa and dandelion and preparing some food products.

MATERIALS AND METHODS:

Materials:

- 1- Flowers and leaves of alfalfa(*Trifolium alixandrinum*) and dandelion(*Taraxacum officinale*): were harvest from a local farmairo, Egypt.
- 2- Sixty four males albino rats (Sprague Dawley rats) weighting between (150-200 g) were used throughout the study from Faculty of medicine, Al-Mansoura University, Cairo, Egypt.
- **3-**CCl₄ from Romil (Romil Chemicals, England), from Faculty of Medicine, Al- Mansourah University, Cairo, Egypt.
- 4- Chemicals and kits were obtained from El-Gomhoryia Company , Cairo , Egypt .

Methods:

Leaves and flowers preparation :

- Alfalfa and dandelion were harvested fresh at the beginning of every experiment, then dry it in the natural way by exposing it to sun light according to (**Rubin, 2004**).

Experimental design:

Male albino rats Sprague Dawley Strain (64 rats) weighting (150: 200 g) was kept in individual stainless steel cages underhygienic conditions and fed one week on basal diet for adaptation. The experiment on rats were carried out according to institutional Animal Ethical Committee according to (**Reeves** *et al.*, **1993**).

After that period ,animals were randomly divided into two main groups as follows:

The first main group (8 rats): were fed on a basal diet (as a control negative group).

The second main group (56 rats): positive control were treated with CCL_4 , in paraffin oil (viv 4ml/kg) by a single subcutaneous injection to induce fibrosis in liver accordind to (Hubner *et al.*, 1965, Dashti *et al.*, 1989 and Nakano *et al.*, 1996). After injection, AST, ALT and enzymes

activity were determined in second main group to insure the induction (**Delire** *et al*, **2015**). The rats in the second main group were divided to seven subgroups (n=8).

- Subgroup (1): fed on a basal diet positive control group.
- **Subgroup (2):** fed on a basal diet containing 25 g alfalfa leaves per 100 g diet.
- **Subgroup (3):** fed on a basal diet containing 25 g alfalfa flowers per 100 g diet.
- **Subgroup (4):** fed on a basal diet containing 25 g dandelion leaves per 100 g diet.
- **Subgroup (5):** fed on a basal diet containing 25 g dandelion flowers per 100 g diet.
- **Subgroup (6):**fed on a basal diet containing 25 g of mixed leaves of Alfalfa and Dandelion per 100 g diet.
- **Subgroup (7):** fed on a basal diet containing 25 g of mixed flowers of Alfalfa and Dandelion per 100 g diet.

Impact of leaves and flower from Alfalfa and Dandelion to Improve Liver Function

Composition of food products

Pan bread prepared according to (A.O.A.C, 2002).

Table (1): Ingredients of food products

Pan bread	
Standard	Made from wheat flour (200 g) water (110 g), dry yeast (5 g),
	sugar (10 g), skim milk powder (4 g), and com oil (10 g).
Dried alfalfa leaves	Made from adding 50 g from dried alfalfa leaves per (200 g) of
	wheat flours , water (110 g), dry yeast (5 g), sugar (10 g), skim
	milk powder (4 g), and com oil (10 g)
Dried alfalfa flowers	Made from adding 50 g from dried alfalfa flowers per (200 g) of
	wheat flours , water (110 g), dry yeast (5 g), sugar (10 g), skim
	milk powder (4 g), and com oil (10 g)
Dried dandelion leaves	Made from adding 50 g from dried dandelion leaves per (200 g) of
	wheat flours , water (110 g), dry yeast (5 g), sugar (10 g), skim
	milk powder (4 g), and com oil (10 g)
Dried dandelion	Made from adding 50 g from dried dandelion flowers per (200 g)
flowers	of wheat flours , water (110 g), dry yeast (5 g), sugar (10 g), skim
	milk powder (4 g), and com oil (10 g)
Dried alfalfa and	Made from adding 50 g from Dried alfalfa and dandelion leaves
dandelion leaves	per (200 g) of wheat flours , water (110 g), dry yeast (5 g), sugar
	(10 g), skim milk powder (4 g), and com oil (10 g)
Dried alfalfa and	Made from adding 50 g from Dried alfalfa and dandelion flowers
dandelion flowers	per (200 g) of wheat flours , water (110 g), dry yeast (5 g), sugar
	(10 g), skim milk powder (4 g), and com oil (10 g)

Biological Analysis of blood serum:

At the end of experiment period(28 days), the rats were fasted overnight then the rats were anaesthetized and sacrificed, and blood samples were collected from the aorta. The blood samples were centrifuged for 10 minutes at 3000 rpm to separate the serum. The serum was carefully separated into dry clean Wasserman tubes by using a pasteur pipette and kept frozen until analysis at 20^ec , Also ,Liver and Kidney were removed

from each rat, cleaned from adhesive matter and weighed then stored in formalin solution 10% according to method mentioned by according to the method described by (**Drury and Wallington, 1980**).

Determination of aspartate amine transaminase and alanine amine transaminases activities were based on the method described by (**Reitman and Frankel, 1957 and Bergmeyer and Graßl, 1983**).

Determination of lipid profile: total cholesterol was determined according to the method described by (Allain *et al.*, 1974). Triglyceride were determined according to the method described by (Fossati and principe, 1982). High density lipoprotein-cholesterol was determine according to the method described by (Burstein, 1970). Low Density Lipoprotein-Cholesterol was determined according to the method described by (Friedwald *et al.*, 1972).

Determination of kidney functional : Urea nitrogen was determined according to the method described by (**Patton and Crouch, 1977**) . Creatinine was determined according to the method described by (**Bohmer, 1971**).

Determination of glucose was determined in the bloodaccording to the method described by (**Trinder, 1969**).

Determination of antioxidant :Catalase was determined in the serum according to the method described by (Aebi, 1974). Superoxide dismutase determined in the serum according to the method described by(Nishikimi *et al.*, 1972).). Glutathione were determined in the serum according to the method described by (Beutler,(1963) and Malondialdehyde was determined by (Draper and Hadley, 1990).

Sensory evaluation:

The products supplemented with the alfalfa and dandelion and their combination were evaluated for color, odor, texture, taste, and overall acceptability by twenty people including (12) nutritionists stuff in the college of specific education, damietta university. The evaluation was carried out according to the method of (A.A.C.C, 2002).

Histopathological Examination

Dead animals were dissected and the abdominal cavity was exposed. The liver was irrigated several times by saline via a syringe introduced through thoracid to wash blood. The liver was dissected and put into 10% formalin solution and used for the preparation of 6 μ m thick paraffin embedded slices for histopathological examination according (sheehan and hrapchak,1980).

Statistical analysis:

The obtained data were statistically analyzed using SPSS. The results were expressed as mean \pm standard deviation "SD." and tested for significance using one way analysis of variance "ANOVA" test to compare among groups of numerical (parametric) data followed by post-hoc tukey. P value ≤ 0.05 was considered statistically significant, according to (Armitage and Berry,1987).

Results and Discussion

Data in Tables(2) showed that Protein, Carbohydrates, Fats, Ash, Calcium and Sodium in alfalfa leaves were higher than flowers with (29.6, 29.4, 0.9, 5.2, 2.54 and 2.4) (g/100 g, based on dry weight) respectively. On the other side, Iron, Manganese and Zinc concentrations were higher in alfalfa flowers than alfalfa leaves with (15.2, 5.2, and 3.9) respectively. Also the results added that Protein, Fibers, Carbohydrates, Fats, Ash, Phosphorus and Potassium in dandelion leaves were higher than flowers with (24.4, 37.4, 28.7, 0.7, 9.4, 0.67 and 5.41) (g/100 g, based on dry weight) respectively.

In this regard(**Butkutė** *et al* ., 2016) said that Chemical composition of alfalfa flowers (Ash, Calcium, Phosphorus, Magnesium and Potassium) were (7.15,.71,.41,.31and 2.4) (g/100 g, based on dry weight) respectively. On the other hand (Apostol *et al.*, 2017) found that alfalfa leaves (carbohydrates, Ash, Calcium, Phosphorus, Magnesium and Potassium) were (57.1, 9.67, 2.4, 2.1, 0.54 and 3.1) (mg/100 g, based on dry weight) respectively. Also (Al-Snafi, 2021) mentioned that Iron, Zinc in

alfalfa flowers were (12.3,4.2) and in alfalfa leaves were (13.4,3.1) (g/100 g, based on dry weight) respectively.

	-	Alfalfa		Dandelio	n
Nutrient	Unit	Leaves	Flowers	Leaves	Flowers
Moisture	g/100gm	0.07	0.05	0.10	0.9
protein	g/100gm	29.6	28.6	24.4	23.9
Fibers	g/100gm	35.4	34.8	37.4	35.9
Carbohydrates	g/100gm	29.4	28.8	28.7	28.4
Fats	g/100gm	0.9	0.5	0.7	0.4
Ash	g/100gm	5.2	4.6	9.4	8.5
Calcium	g/100gm	2.54	1.1	0.19	0.23
Phosphorus	g/100gm	0.39	0.41	0.67	0.04
Magnesium	g/100gm	0.48	0.42	0.0004	0.0005
Potassium	g/100gm	2.27	2.34	5.41	0.58
Sodium	mg/100gm	2.4	0.23	0.082	0.12
Copper	mg/100gm	1	1.2	0.7	0.5
Iron	mg/100gm	18	15.2	23	25.7
Manganese	mg/100gm	4.2	5.2	3.4	4.8
Zinc	mg/100gm	2.8	3.9	2.1	0.7
Vitamin A	IU/100gm	13268	15875	9161	10248
Vitamin E	mg/100mg	8.2	7.3	3.7	4.6
total antioxidant	mg/100mg	2430	3780	۲۱۰۰	٣٤٠٠

Table (2) showed the different Units of Nutrient in dried alfalfa, dandelion :

Results in the table (3) revealed that treating groups of rats which were suffering from liver fibroses diseases lead to decrease significant in serum of (ALT +AST) (U/L) enzyme as compared to the positive control groups . Treating group of rats which suffering from liver fibroses diseases with (alfalfa and dandelion flowers 25%) recording the best result in ALT because this group showed significant decrease as compared to other treated groups .

This results are in agreement with (**Park** *et al.*, **2010** and **Fortea** *et al.*, **2018**) showed that heap toprotective effects of dandelion against hepatotoxicity induced by several chemicals, This led to a significant decrease in alanine transaminase (**ALT**) after ingestion with CCl_4 .

Table (3): Effect of alfalfa leaves, alfalfa flowers , dandelion leaves, dandelionflowers and their combination on liver enzymes of rats suffering fromliver fibrosis diseases .

Parameters	ALT	AST
Groups	(U/L)	(U/L)
(-)Control	21.61 ± 2.01^{f}	$29.96 \pm 3.91^{\text{ f}}$
(+)Control	89.78±3.90 ^a	85.58±4.78 ^a
Alf. leaves 25%	63.89±5.82 ^b	66.60±24.33 ^b
Alf. flowers 25%	40.40±2.69 ^d	54.88±3.52 ^{bc}
Dand. leaves 25%	58.00±4.38 ^b	62.84±3.92 °
Dand. flowers 25%	47.44±1.78 ^{cd}	50.82±4.8 ^b
Mix(Alf. + Dand. leaves)	49.84±3.75 °	55.57±2.53 ^d
Mix(Alf. + Dand.flowers)	32.50±1.13 ^e	38.99±3.2 °

Alf. (alfalfa) , Dand. (dandelion)

Values are expressed as mean \pm SD (standard deviation) .

P:Probability *:significance <0.05

Data in the table (4) showed that the mean value of serum cholesterol in all liver disease group which were treated were decrease Total serum cholesterol (mg/dl) and serum triglyceride significantly ($p \le 0.05$) as compared to positive control group. on the other hand treating group of rats which suffering from liver fibroses diseases with alfalfa flowers 25% and alfalfa and dandelion flowers 25% recording the best result in total serum cholesterol and serum triglyceride because this group showed significant decrease as compared to other treated groups.

The mean value of HDL-c in all liver treated group were increased significantly ($p \le 0.05$) as compared to positive control group . treating group of rats which suffering from liver fibroses diseases with (alfalfa and dandelion leaves 25%) and (alfalfa and dandelion flowers 25%) recording the best result in HDL-c because this group showed significant increase as compared to other treated groups. On the other side ,The mean value of LDL-C increased significantly ($p \le 0.05$) in the positive control group

(groups of rats suffering from liver fibrosis diseases as compared to the negative control group (healthy group).

This results are in agreement with (Farsani *et al* .,2016) who said that, Alfalfa leaves and flower led to a significantly decreased in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), very low-density lipoprotein (VLDL), glucose

In this regard (**Hamza** *et al* ., 2020) evaluated the effects of whole plant powder of dandelion (*Taraxacum officinale*) on liver fibrosis. and the Results showed improve in the liver histology as evidenced by histopathological scoring with hematoxylin-eosin staining. In this respect (**Al-Dosari**, 2012 and Mahboubi and Mahboubi, 2020) reported that Pretreatment with alfalfa for three weeks prior to administration of CCl₄ reduced levels of LDL, VLDL and reduced oxidative stress.

Table (4): Effect of alfalfa leaves, alfalfa flowers, dandelion leaves, dandelion flowers and their combination on lipid profile of rats suffering from liver fibrosis diseases.

Parameters	cholesterol	Triglyceride	HDL	LDL
Groups	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)
(-)Control	$59.40 \pm 4.91^{\text{f}}$	$42.00 \pm 4.67^{\mathrm{f}}$	48.8 ± 2.88^{a}	20.20±1.33 ^g
(+)Control	142.6±9.22 ^a	114.00±6.30 ^a	20.7±1.25 ^e	84.80 ± 9.42^{a}
Alf. leaves 25%	120.3±7.33 bc	97.00±4.70 ^b	$30.5{\pm}1.63^{d}$	54.4±6.89 ^b
Alf. flowers 25%	83.4 ± 8.22^{d}	72.00±4.33 ^d	34.9±2.38 °	37.2±1.44 ^e
Dand. leaves 25%	109.8±8.11 ^{cd}	91.00±9.56 ^{bc}	$33.6{\pm}1.75^{d}$	48.20±2.33 ^c
Dand. flowers 25%	101.4 ± 7.22^{d}	86.00±8.78 °	$35.4{\pm}2.06^{\circ}$	44.30±2.31 ^{cd}
Mix(Alf.+ Dand. leaves)	111.7±6.33 °	90.00±5.30 ^b	38.12±1.88 ^{cd}	51.30±6.2 ^b
Mix(Alf.+ Dand. flowers)	71.2±6.30 ^e	56.00±4.60 ^e	42.20±1.78 ^b	$29.20 \pm 1.78^{\mathrm{f}}$

Alf. (alfalfa) , Dand. (dandelion)

Values are expressed as mean \pm SD (standard deviation).

P:Probability *:significance <0.05

data in table (5) showed that injected rats with ccl_4 led to significant increase in serum urea nitrogen and serum creatinine, as compared to non-injected rats.

Treating group of rats which suffering from liver fibroses diseases with (dandelion flowers 25% , alfalfa and dandelion flowers 25%) recording the best result in urea nitrogen (46.90 \pm 3.47 mg/dl , 44.65 \pm 2.20 mg/dl) respectively. on the other hand treating group of rats which suffering from liver fibroses diseases with (alfalfa and dandelion flowers 25%) recording the best result in serum Creatinine (0.45 \pm 0.033 mg/dl) because this group showed significant decrease as compared to other treated groups .

The mean value of serum glucose in Injected rats with ccl_4 increased as compared to non-injected rats. The mean values were $(110.05\pm10.32 \text{ mg/dl}, 87.03\pm9.25 \text{ mg/dl})$ respectively. On the other hand treating group of rats which suffering from liver fibroses diseases with (alfalfa and dandelion flowers 25%) recording the best result in serum glucose (92.76±8.40 mg/dl) because this group showed significant decrease as compared to other treated groups.

More recently, (Ahsan *et al.*, 2009 and Baliga *et al.*, 2013) noted that taking the plant powder (flowers, leaves, and roots) orally dried (0.50 g / kg wt) for seven consecutive days protected rats from CCL_4 -induced hepatotoxicity. When compared to the CCL_4 group alone.

Moreover, (**Farsani** *et al* ., 2016) noted that Mice treated with alfalfa showed significantly lower levels of blood glucose. In this regard (**Mahboubi and Mahboubi ,2020**) added ,After taking the dandelion powder, blood glucose was monitored before and during the treatment periods. The results showed that dandelion leaf and root powder significantly reduced the blood glucose levels compared with CCL_4 group.

In this respect (Adewole *et al.*, 2007 and Hismiogullari *et al.*, 2015) found that Injected rats with ccl_4 to induced acute damage in the liver induced significant increase in serum uric acid, urea nitrogen and creatinine, as compared to the negative control group.

(**Rana** *et al.*, **2010**) added, evidence has also found that alfalfa contains phenols and flavonoids, has antioxidant activity, and has an effective role in lowering creatinine levels. In this regard, dandelion is frequently used to preventor treat various liver diseases due to its formula rich in beneficial phytochemicals with a pronounced effect against cirrhosis (Martinez *et al.*, **2015 and Pfingstgraf** *et al.*, **2021**).

Table (5) :Effect of alfalfa leaves, alfalfa flowers, dandelion leaves, dandelion flowers and their combination on kidney functions and glucose of rats suffering from liver fibrosis diseases

	Urea(mg/dl)	Creatinine(mg/dl)	Glucose(mg/dl)
(-)Control	42.25±2.32 ^d	0.40±0.02 ^e	87.03±9.25 ^d
(+)Control	71.38±4.59 ^a	0.81±.035 ^a	110.05±10.32 ^a
Alf. leaves 25%	61.76±3.93 ^b	0.64±.052 ^b	95.35±6.15 ^{bc}
Alf. flowers 25%	58.86±3.07 ^b	0.58±0.03 ^{cd}	94.84±8.03 ^{bc}
Dand. leaves 25%	52.61±2.81 ^{bc}	$0.55 \pm .046^{\circ}$	97.43±6.36 ^b
Dand. flowers 25%	46.90±3.47 °	$0.52 \pm .046^{d}$	94.92±6.52 °
Mix(Alf. + Dand. leaves)	47.14±2.82 °	0.50 ± 0.06^{d}	93.43±5.57 ^{bc}
Mix(Alf. + Dand. flowers)	44.65±2.20 ^c	$0.45 \pm 0.033^{\text{ f}}$	92.76±8.40 ^c

Alf. (alfalfa) , Dand. (dandelion)

Data expressed as mean ±SD,

Different letters indicate significance in means (significance ≤ 0.05)

Data presented in table (6) showed The mean values of GSH, SOD, catalase and MDA in **CCL**₄ groups it was decreased significantly (p< 0.05) (2.28±.22 NM/ml, 13.98 and 492.51 NM/ml/min) respectively, as compared to the healthy group with ($5.41\pm.43$ NM/ml, 34.10 ± 1.52 and 2463.49±212.88 NM/ml/min) respectively. On the other hand, all tested groups showed significant increase (p< 0.05) in these antioxidant enzymes, as compared to the positive control group. Among the alfalfa flowers 25% and (alfalfa and dandelion flowers 25%) showed the best effect on activity of glutathione, super oxide dismutase and catalase. On the other side the

mean values of malondial dehyde in $\rm CCl_4$ group increased significantly (p<0.05) (7.05±.24 NM/mL) , as compared to the healthy group with (4.00±.15 NM/ml). On the other hand, all tested groups showed significant decrease (p<0.05) in MDA , as compared to the positive control group. Among the (alfalfa and dandelion flowers 25%) showed the best effect on MDA , because this group showed significant decrease as compared to other treated groups .

Coincide with that of (**Chen** *et al* ., 2020) showed that alfalfa increased total antioxidant capacity (**T-AOC**) and glutathione peroxidase (**GSH-PX**) level of three treated groups against the normal control group (**NC**) fed with basal diet.

Also **,(Dal Bosco** *et al* **, 2015)** added ,Afalfa flavonoids have been usually used as an additive added in animal feed to promote the antioxidant activity of serum and liver, meat quality, growth, and production performance . Regarding (**Jing** *et al.*, **2015**) reported that the flavonoids derived from alfalfa had exhibited very strong antioxidant activity.

(Hamza *et al* ., 2020) evaluated the effects of whole plant powder of dandelion on liver fibrosis. and the results showed improve in the liver histology, dandelion also have a great effect on fibrosis and inflammation induced by CCl_4 . It is also frequently used in many nutritional products and supplements (Pfingstgraf *et al* ., 2021).

Also, (Chen *et al* ., 2020) confirmed that alfalfa extract decreased malondialdehyde (MDA) by: 18.27%. Compared with the NC. On the other hand (Hamza *et al* ., 2020) evaluated the effects of whole plant powder of dandelion (Taraxacum officinale) on liver fibrosis.

Table (6): Effect of alfalfa leaves, alfalfa flowers , dandelion leaves , dandelionflowers and their combination on Antioxidant enzymes of ratssuffering from liver fibrosis diseases .

	Serum GSH (NM/ml)	Serum SOD (inhibition %)	Serum Catalase (NM/ml/min)	Serum MDA (NM/ml)
(-)Control	5.41±.43 ^a	34.10±1.52 ^a	2463.49±212.88 ^a	4.00±.15 ^e
(+)Control	2.28±.22 ^d	$13.98{\pm}1.00^{d}$	$492.51{\pm}19.57^{\rm \ f}$	7.05±.24 ^a
Alf. leaves 25%	4.026±.086 ^c	21.73±1.21 ^{bc}	1150.94 ± 88.42^{d}	6.06±.31 ^{bc}
Alf. flowers 25%	4.76±.30 ^b	22.98±.16 ^b	1314.14±50.86 ^b	5.21±.12 ^c
Dand. leaves 25%	3.89±.27 ^d	19.34±.84 ^c	1066.65±83.75 ^e	6.1±.46 ^{bc}
Dand. flowers 25%	4.24±.09 ^c	21.43±1.57 ^{bcd}	1145.99±91.71 ^d	5.69±.20 ^{cd}
Mix(Alf.+ Dand. leaves)	$4.215 \pm .64^{b}$	20.8±1.76 ^c	1140.30±22.76 ^d	5.66±.24 ^c
Mix(Alf.+ Dand. flowers)	4.8±.38 ^{bc}	22.9±1.8 ^b	1250.44±127.49 ^c	4.81±.23 ^d

Alf. (alfalfa) , Dand. (dandelion)

Data expressed as mean ±SD.

Different letters indicate significance in means (significance ≤0.05)

Data in table (7) showed the sensory evaluation to roasted pan bread, results showed the highest score of color , odor, texture, taste and over all Acceptability was recorded for the roasted pan bead fortified with dandelion flowers 25%).

Groups	Ce	Color Odor			Texture			Taste			Over all acceptability			Total				
	Mean	±	SD	Mean	±	SD	Mean	±	SD	Mean	±	SD	Mean	±	SD	Mean	±	SD
Standard	19.50 ^a	±	0.69	19.35 ^a	±	0.88	18.95 ^a	±	1.15	18.89 ^a	±	0.95	19.55 ^a	±	0.60	96.24 ^a	±	3.23
Alf. Leaves 25%	18.38 ^{bd}	±	1.06	17.74 ^d	±	1.99	18.34 ^{ab}	±	0.87	18.08 ^{bc}	±	1.17	18.48 ^b	±	0.91	91.01 ^b	±	3.58
Alf. Flowers 25%	18.44 ^{bd}	±	0.87	17.98 ^{bcd}	±	1.59	18.40 ^{ab}	±	0.94	18.31 ^{abc}	±	1.26	18.73 ^{bc}	±	1.14	91.85 ^{bc}	±	4.11
Dand. Leaves 25%	18.20 ^{bcd}	±	0.71	18.10 ^{bcd}	±	1.41	18.08 ^b	±	0.98	18.14 ^{bc}	±	1.12	19.00 ^{abc}	±	0.56	91.52 ^{bc}	±	3.31
Dand. Flowers 25%	18.57 ^d	±	1.19	18.80 ^e	±	0.85	18.40 ^{ab}	±	1.06	18.71 ^{ac}	±	1.17	19.13 ^{ac}	±	0.76	93.60°	±	3.65
Mix (Alf. +Dand. Leaves)	17.70 ^{bc}	±	1.08	18.13 ^{bcd}	±	1.07	18.20 ^b	±	1.01	18.19 ^{abc}	±	0.94	18.60b ^c	±	0.94	90.82 ^{bc}	±	3.35
Mix (Alf. +Dand. Flowers)	17.85 ^b	±	1.09	17.93 ^b	±	1.08	17.80 ^b	±	1.11	17.95 ^b	±	1.42	18.50 ^b	±	1.36	90.03 ^b	±	4.95
F	7	.25		3.1	76		2.	41		1.	79			3.55		6	5.27	
Sig.	0.	001		0.0	02		0.	.03		0.1	05		0	.003	3	0.	.001	

 Table (7): Sensory evaluation of pan bread fortified with different levels of alfalfa
 , dandelion and their combination.

Histopathological examination of liver:

Microscopically, a section of a normal rat liver (H&E x200) showed the normal histological structure of the hepatic lobule (photo. 1). In contrast, the liver section of positive control rats (CCl₄ model of cirrhosis) showed a foamy vacuole of hepatocytes located primarily around the center and extending as a central septa to encircle the portal regions of photo. 2.. While the herbal diet groups (photo. 3, 4, 5, 6) show similar characteristics to those of the CCL_4 positive control groups photo. 2 with little improvement observed. A greater improvement was observed in group 7 and 8 (photo 7, 8) presented as slight portal vein congestion, mild activation of kupfer cells and partial restoration of hepatic function characteristics.

In this respect, (Li *et al.*, 2015) indicated that CCL_4 causes acute hepatotoxicity and also causes oxidative injury, and that the liver protective effects of (alfalfa and dandelion) may be due to inhibition of lipid peroxidation and increased antioxidant activity.

Furthermore ,(**Al-Dosari ,2012**) reported that the histopathological examination of the livers also showed that the alfalfa extract reduced the incidence of liver lesions induced by CCl₄. The *in vitro* antioxidant

assessment of alfalfa extract on DPPH and carotene-linoleic assays demonstrated a moderate antioxidant potential.

According (Hamza *et al* .,2020) declared that dandelion inhibited the development of CCL_4 -induced hepatic fibrosis. Dandelion's antifibrosis effects can be attributed to its ability to search for free radicals and reduce inflammatory cell activation. Tri-color partitions were made by H&E. CCL_4 caused acute liver damage.

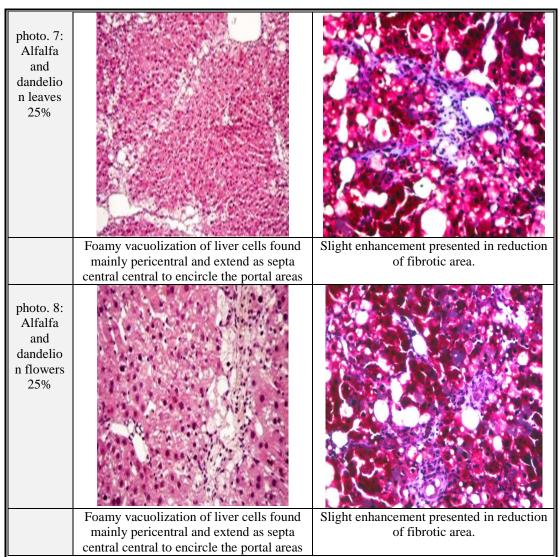

	H&E	MTC
photo. 1: (control normal group)		
	Section of a liver of a normal rat (H&E x200) showing no pathological changes.	Section of a liver of a normal rat (MTC x200) showing no positive stain for fibrosis.
photo. 2: (positive control group)		
	Foamy vacuolization of liver cells found mainly pericentral and extend as septa central central to encircle the portal areas	Hight area of positively stained fibrotic areas.
	(1131)	

photo. 3: Alfalfa leaves 25%.		
	Foamy vacuolization of liver cells found	Hight area of positively stained fibrotic
	mainly pericentral and extend as septa	areas
	central central to encircle the portal areas	
photo. 4: Alfalfa flowers 25%.		
	Foamy vacuolization of liver cells found	Hight area of positively stained fibrotic
	mainly pericentral and extend as septa central central to encircle the portal areas	areas

- Impact of leaves and flower from Alfalfa and Dandelion to Improve Liver Function

Conclusion:

The current study found that the intake of leaves and flower from alfalfa and dandelion effectively reduces liver enzymes, cholesterol, triglycerides, urea, creatinine and random sugar. Also, the flowers of alfalfa and dandelion have susceptibility, according to the sensory evaluation of all products, to histopathological studies: the results of the study reported that alfalfa and dandelion have good effects on the liver.

REFERENCE

 Ahsan, R.; Islam, K. M.; Musaddik, A. & Haque, E. (2009): Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride induced hepatotoxicity in albino rats. Global Journal of Pharmacology, 3(3), 116-122 A.A.C.C. (2002): Approved Method of American Association of Cereal Chemists, published by American Association of Cereal Chemists, Ins. St. Method 54-21, Minnesota, USA. A.O.A.C. (2002): American Association of Cereal Chemists, methods 54- 21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 against carbon tetrachloride induced hepatotoxicity in albino rats. Global Journal of Pharmacology, 3(3), 116-122 A.A.C.C. (2002): Approved Method of American Association of Cereal Chemists, published by American Association of Cereal Chemists, Ins. St. Method 54-21, Minnesota, USA. A.O.A.C. (2002): American Association of Cereal Chemists, methods 54- 21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 Journal of Pharmacology, 3(3), 116-122 A.A.C.C. (2002): Approved Method of American Association of Cereal Chemists, published by American Association of Cereal Chemists, Ins. St. Method 54-21, Minnesota, USA. A.O.A.C. (2002): American Association of Cereal Chemists, methods 54- 21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 A.A.C.C. (2002): Approved Method of American Association of Cereal Chemists, published by American Association of Cereal Chemists, Ins. St. Method 54-21, Minnesota, USA. A.O.A.C. (2002): American Association of Cereal Chemists, methods 54- 21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 Chemists, published by American Association of Cereal Chemists, Ins. St. Method 54-21, Minnesota, USA. 3 A.O.A.C. (2002): American Association of Cereal Chemists, methods 54-21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. 4 Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 Method 54-21, Minnesota, USA. 3 A.O.A.C. (2002): American Association of Cereal Chemists, methods 54-21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. 4 Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 A.O.A.C. (2002): American Association of Cereal Chemists, methods 54- 21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 21, In: Approved Methods of The American Association of Cereal Chemist, The Association, St. Pull, MN., USA. 4 Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 The Association, St. Pull, MN., USA. 4 Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 Adewole, S.; Salako, A.; Doherty, O. & Naicker, T. (2007): Effect of melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 melatonin on carbon tetrachloride-induced kidney injury in Wistar rats. African Journal of Biomedical Research, 10(2). 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 rats. African Journal of Biomedical Research, 10(2). 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 5 Aebi, H. (1974): Catalase. In Methods of enzymatic analysis (pp. 673-684). Academic press. 6 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 Academic press. Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 Al-Dosari, M. S. (2012): In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
 journal of Chinese medicine, 40(04), 779-793. 7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
7 Allain, C. C.; Poon, L. S.; Chan, C. S.; Richmond, W. F. P. C. & Fu, P.
C. (1974): Enzymatic determination of total serum cholesterol. Clinical
chemistry, 20(4), 470-475.
8 Al-Malki, A. L. & Abo-Golayel, M. K. (2013): Hepatoprotective efficacy
of chicory alone or combined with dandelion leaves against induced liver
damage. Life Science Journal, 10(4), 140-157.
9 Al-Snafi, A. E. (2021): Medicinal plants alkaloids, as promising
therapeutics-A review (part 1). IOSR Journal of Pharmacy, 11(2), 51-67.
10 Apostol, L.; Iorga, S.; Mosoiu, C.; Racovita, R. C.; Niculae, O. M. &
Vlasceanu, G. (2017): Alfalfa concentrate–a rich source of nutrients for use
in food products. Journal of International Scientific Publications, 5, 66-73.
11 Baliga, M. S.; Shivashankara, A. R.; Azmidah, A.; Sunitha, V. & Palatty,
P. L. (2013): Gastrointestinal and hepatoprotective effects of Ocimum
sanctum L. Syn (holy basil or tulsi): validation of the ethnomedicinal
bservation. Bioactive Food as Dietary Interventions for Liver and

— Impact of leaves and flower from Alfalfa and Dandelion to Improve Liver Function

	Gastrointestinal Disease: Bioactive Foods in Chronic Disease States, 325.
12	Bergmeyer, H. U. & Graßl, M. (1983): Methods of Enzymatic Analysis,
14	3rd edn., vol. 2. Verlag Chemie, Weinheim, 267-268.
13	Beutler, E. (1963): Improved method for the determination of blood
	glutathione. J. lab. clin. Med., 61, 882-888.
14	Bohmer, H.B.U.M. (1971): Micro- determination of creatinine.
	Clin.Chem.Acta, 32:81-85
15	Burstein, M. (1970): HDL cholesterol determination after separation high
	density lipoprotein. LipidRes, 11, 583.
16	Butkutė, B.; Lemežienė, N.; Dagilytė, A.; Cesevičienė, J.; Benetis, R.;
	Mikaliūnienė, J. & Rodovičius, H. (2016): Mineral element and total
	phenolic composition and antioxidantcapacity of seeds and aerial plant parts
	of perennial legumes. Communications in soilscience and plant
	analysis, 47(sup1), 36-45.
17	Chen, S.; Li, X.; Liu, X.; Wang, N.; An, Q.; Ye, X. M. & Wang, W. J.
	(2020): Investigation of chemical composition, antioxidant activity, and the
	effects of alfalfa flavonoids on growth performance. Oxidative medicine and
	cellular longevity .
18	Cordero-E, L. & Huch, M. (2018): The balancing act of the liver: tissue
	regeneration versus fibrosis. The Journal of clinical investigation, 128(1),
	85-96
19	Dal Bosco, A.; Castellini, C.; Martino, M.; Mattioli, S.; Marconi, O.;
	Sileoni, V.&Benincasa, P. (2015): The effect of dietary alfalfa and flax
	sprouts on rabbit meat antioxidant content, lipid oxidation and fatty acid
•	composition. Meat science, 106, 31-37.
20	Dashti, H.; Jeppsson, B.;Hägerstrand, I.; Hultberg, B.; Srinivas,
	U.;Abdulla, M.and Bengmark, S. (1989). Thioacetamide-and carbon
	tetrachloride-induced liver cirrhosis. European surgical research, 21(2), 83-
21	91. Dalina P. Stänkel P. & Jackney I. (2015): Animal models for fibratio
21	Delire, B., Stärkel, P., & Leclercq, I. (2015): Animal models for fibrotic
	liver diseases: what we have, what we need, and what is under development Journal of clinical and translational hepatology 3(1) 53
22	development. Journal of clinical and translational hepatology, 3(1), 53. Draper W. & Hadley M. (1990): Indirect determination of oxygen free
	Draper, W. & Hadley, M. (1990): Indirect determination of oxygen free radical. Methods Enzymol, 186, 421-431.
23	
43	Drury, R. A. & Wallington, E. A. (1980): Carton's. Histological

	Technique. 5thed Oxford Univ.
24	Farsani, M. K.; Amraie, E.; Kavian, P. &Keshvari, M. (2016): Effects of
	aqueous extract of alfalfa on hyperglycemia and dyslipidemia in alloxan-
	induced diabetic Wistar rats. Interventional Medicine and Applied
	Science, 8(3), 103-108.
25	Fortea, J. I.; Fernández-Mena, C.; Puerto, M.; Ripoll, C.; Almagro, J.;
	Bañares, J.& Vaquero, J. (2018): Comparison of two protocols of carbon
	tetrachloride-induced cirrhosis in rats-Improving yield and
	reproducibility. Scientific reports, 8(1), 1-10
26	Fossati, P. & Prencipe, L. (1982): Serum triglycerides determined
	colorimetrically with an enzyme that produces hydrogen peroxide. Clinical
	chemistry, 28(10), 2077-2080.
27	Guan, Y. S. & He, Q. (2015): Plants consumption and liver
	health. Evidence-Based Complementary and Alternative Medicine, 2015.
28	Hamza, A. A.; Mohamed, M. G.; Lashin, F. M. & Amin, A. (2020):
20	Dandelion prevents liver fibrosis, inflammatory response, and oxidative
	stress in rats. The Journal of Basic and Applied Zoology, 81(1), 1-13.
29	Hismiogullari, A. A.; Hismiogullari, S. E.;Karaca, O.; Sunay, F. B.;
2)	Paksoy, S.; Can, M. & Yavuz, O. (2015): The protective effect of
	curcumin administration on carbon tetrachloride (CCl 4)-induced
	nephrotoxicity in rats. Pharmacological Reports, 67(3), 410-416.
30	Hübner, G. (1965): Ultrastructural liver damage caused by direct action of
00	carbon tetrachloride in vivo and in vitro. Virchows Archiv fur pathologische
	Anatomie und Physiologie und fur klinische Medizin, 339(3), 187-197.
31	Jiang, J. X. &Török, N. J. (2014): NADPH oxidases in chronic liver
	diseases. Advances in hepatology.
32	Jing, C. L.; Dong, X. F. & Tong, J. M. (2015): Optimization of ultrasonic-
	assisted extraction of flavonoid compounds and antioxidants from alfalfa
	using response surface method. Molecules, 20(9), 15550-15571.
33	Joseph, J. (2020): Serum Marker Panels for Predicting Liver Fibrosis–An
	Update. The Clinical Biochemist Reviews, 41(2), 67.
24	* · · · · · · · · · · · · · · · · · · ·
34	Kelley, K. M.; Behe, B. K.; Biernbaum, J. A. &Poff, K. L. (2002):
	Combinations of colors and species of containerized edible flowers: Effect
	on consumer preferences. HortScience, 37(1), 218-221.

= Impact of leaves and flower from Alfalfa and Dandelion to Improve Liver Function

35	Li, C.; Yi, L. T.; Geng, D.; Han, Y. Y. & Weng, L. J. (2015):
	Hepatoprotective effect of ethanol extract from Berchemia lineate against
	CCl4-induced acute hepatotoxicity in mice. Pharmaceutical biology, 53(5),
	767-772.
36	Lopes, A.; Rodrigues, M. J.; Pereira, C.; Oliveira, M.; Barreira, L.;
	Varela, J. & Custodio, L. (2016): Natural products from extreme marine
	environments: searching for potential industrial uses within extremophile
	plants. Industrial crops and products, 94, 299-307.
37	Mahboubi, M. & Mahboubi, M. (2020): Hepatoprotection by dandelion
	(Taraxacum officinale) and mechanisms. Asian Pacific Journal of Tropical
	Biomedicine, 10(1), 1.
38	Martinez, M.; Poirrier, P.; Chamy, R.; Prüfer, D.; Schulze-Gronover,
	C.; Jorquera, L. & Ruiz, G. (2015): Taraxacum officinale and related
	species—An ethnopharmacological review and its potential as a commercial
	medicinal plant. Journal of Ethnopharmacology, 169, 244- 262.
39	Nakano, A., Kanda, T., & Abe, H. (1996): Liver and Bone: Bone changes
	and mineral metabolism disorders in rats with experimental liver
	cirrhosis\$. Journal of gastroenterology and hepatology, 11(12), 1143-1154
40	Nishikimi, M.; Rao, N. A., & Yagi, K. (1972): The occurrence of
	superoxide anion in the reaction of reduced phenazine methosulfate and
	molecular oxygen. Biochemical and biophysical research
	communications, 46(2), 849-854.
41	Park, C. M.; Cha, Y. S.; Youn, H. J.; Cho, C. W. & Song, Y. S. (2010):
	Amelioration of oxidative stress by dandelion extract through CYP2E1
	suppression against acute liver injury induced by carbon tetrachloride in
	sprague-dawley rats. Phytotherapy Research, 24(9), 1347-1353.
42	Patton. C.J. and Crouch, S.R. (1977): Enzymatic colorimetric
12	meiroddetermination urea in serum Anal. Chem. 49:464
43	Pfingstgraf, I. O.; Taulescu, M.; Pop, R. M.; Orăsan, R.; Vlase, L.;
	Uifalean, A. &Pârvu, A. E. (2021): Protective Effects of Taraxacum
	officinale L.(Dandelion) Root Extract in Experimental Acute on Chronic
47	Liver Failure. Antioxidants, 10(4), 504.
45	Rana, M. G.; Katbamna, R. V.; Padhya, A. A.; Dudhrejiya, A. D.;
	Jivani, N. P. & Sheth, N. R. (2010): In vitro antioxidant and free radical
	scavenging studies of alcoholic extract of Medicago sativa L. Romanian

	Journal of Biology-Plant Biology, 55(1), 15-22.
46	Reeves, P. G.; Nielsen, F. H. & Fahey Jr. G. C. (1993): AIN-93 purified
	diets for laboratory rodents: final report of the American Institute of
	Nutrition ad hoc writing committee on the reformulation of the AIN-76A
	rodent diet
47	Reitman, S. & Frankel, S. (1957): A colorimetric method for the
	determination of serum glutamicoxalacetic and glutamic pyruvic
	transaminases. American journal of clinical pathology, 28(1), 56-63.
48	Rubin, M. (2004): Guide pratique de phytothérapie et d'aromathérapie.
	Ellipses.
49	Sabudak, T. &Guler, N. (2009): Trifolium La review on its
	phytochemical and pharmacological profile. Phytotherapy Research: An
	International Journal Devoted to Pharmacological and Toxicological
	Evaluation of Natural Product Derivatives, 23(3), 439-446.
50	Sharifi-Rad, M.; Roberts, T. H.; Matthews, K. R.; Bezerra, C. F.,
	Morais-Braga, M. F. B. & Coutinho, H. D (2018): Ethnobotany of the
	genus Taraxacum—Phytochemicals and antimicrobial activity. Phytotherapy
	Research, 32(11), 2131-2145.
51	Sheehan, D. C. &Hrapchak, B. B. (1980): Theory and practice of
	histotechnology. Mosby.
52	Trinder, P. (1969): Determination of blood glucose using 4-amino
	phenazone as oxygen acceptor. Journal of clinical pathology, 22(2), 246.
53	Wirngo, F. E.; Lambert, M. N., & Jeppesen, P. B. (2016): The
	physiological effects of dandelion (Taraxacum officinale) in type 2
	diabetes. The review of diabetic studies: RDS, 13(2-3), 113.
54	Yarnell, E., & Abascal, K. (2009): Dandelion (Taraxacum officinale and T.
	mongolicum) . Integrative Medicine, 8(2), 35-38.

1139

Impact of leaves and flower from Alfalfa and Dandelion to Improve Liver Function

تأثير أوراق البرسيم والهندباء على تحسين وظائف الكبد وتحضير بعض المنتجات الغذائية

الملخص

البرسيم والهندباء مصدر غنى بمضادات الأكسدة الطبيعية. لذلك أجريت هذه الدراسة للتعرف على تأثير تناول أوراق وأزهار البرسيم والهندباء لتحسين وظائف الكبد في الفئران واستخدامهم في صناعة بعض المنتجات، مثل الخبز والشاي ، وتم تقييم الخصائص الحسية لهذه المنتجات من خلال محكمين مدربين. تم دراسة التحليل الكيمائى والخصائص النسيجية المرضية باستخدام أربعة وستون فأر ذكر تم تقسيمهم عشوائيا إلى مجموعتين رئيسيتين ، المجموعة الرئيسية الأولى: ٨ جرذان تم تغذيتها على النظام الغذائي الأساسي كمجموعة ضابطة سالبة ، والمجموعة الرئيسية الثانية: ٥٦ فأر تم تغذيتها على النظام الغذائي الأساسي و تم حقنها تحت الجلد بواسطة (CCL₄) في زيت البارافين (٤ مل /كجم) للحث على التليف في الكبد ، تم تقسيم المجموعة الرئيسية الثانية الى سبع مجموعات فرعية. المجموعة الفرعية(١) تتغذى على نظام غذائي أساسي كمجموعة ضابطة إيجابية ،المجموعات الفرعية (٧:٢) تتغذي على نظام غذائي أساسي يحتوي على ٢٥ جم من أوراق البرسيم ، ٢٥ جم من زهور البرسيم، ٢٥ جم من أوراق الهندباء، ٢٥ جم من زهور الهندباء، ٢٥ جم من أوراق مختلطة من البرسيم والهندباء و ٢٥ جم من زهور مختلطة من البرسيم والهندباء على التوالي. أظهرت النتائج التي تم الحصول عليها أن التركيب الكيمائي للبرسيم والهندباء يحتوي على نسبة عالية من البروتين والالياف و مضادات الأكسدة وأظهرت النتائج التى تم الحصول عليها انخفاضا معنويا في نسب إنزيمات الكبد(AST -ALT)- الكوليسترول الكلى - الدهون الثلاثية – البروتينات منخفضة الكثافة – اليوريا – الكرياتينين – سكر الدم العشوائي والمالونداهايد(MDA) في المجموعات المعالجة. وتم أيضًا زيادة معنوية في نسب البروتين الدهني عالى الكثافة – الجلوتاثيون (GSH) – ديسموتاز فوق أكسيد (SOD) وإلكاتاليز(CAT) في المجموعات المعالجة. وعموما أظهرت نتائج التقييم الحسى ان الخبز والشاي المدعم بأوراق وزهور البرسيم والهندباء كانت مقبولة. وتوصى الدراسة باستخدام مستخلصات البرسيم والهندباء كمضافات غذائية لفوائدها الغذائية والصحية.

الكلمات المفتاحية : أوراق و أزهار البرسيم –أوراق و أزهار الهندباء – إنزيمات الكبد- وظائف الكلى- مضادات الأكسدة الأنزيمية .