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Abstract 
      

The main concern in the present research work is to define the basic requirements study of many 
perturbations forces that affect ground tracks of Molniya satellite orbits. 

In this we are going to design a mathematical model to calculate the footprint of any satellite taking 
into account the effect of disturbing forces (oblatness and solar radiation pressure) in order to get the 
most accurate sub-satellite point, matlab language is used to design program to calculate the 
mathematical models of footprint satellites with numerical application of some different Molniya 
satellites orbit.  
Key Words: Artificial satellites, Kozai's method, oblateness, solar radiation pressure, Ground Track, 
Longitude, Latitude. 

 
1. Introduction  
 

Orbit computations of artificial satellites 
become one of the most important problems at 
present time. As far as the computation 
techniques are concerned the applications of the 
special perturbation methods to the equations of 
motion. These perturbations make a drift for the 
orbital elements of satellite. 

Two factors influence the ground track that 
due to Earth's rotation include the altitude of the 
satellite, in turn determines the satellite's 
angular velocity, and the latitude at which the 
satellite is located, determines the component of 
the Earth's rotation applicable at that point. If 
the ground track is known that would have been 
there had the earth been static, modification to 
this track at any given point in the satellite orbit 
would depend on the satellite altitude at that 
point and also on the latitude of that point. 

Some previous work which dealing with 
orbital perturbations. Cook (1962) used the 
Lagrange’s planetary equations to obtain 
expressions for the variation of the orbital 
elements during one revolution of the satellite 
and for the rate of variation of the same 
elements. Kozai's (1962) studied the problem of 
secular perturbations of asteroids with high 
inclination and eccentricity. Sehnal (1975) 
discussed the direct solar radiation pressure, as 
one of the non-gravitational forces, from all its 
different aspects.            Blitzer (1995) study the 
perturbed orbit under Earth’s gravitational 

forces and solar radiation pressure.  Baron 
(2010) studied the effects of the solar radiation 
pressure and the attraction of the sun and the 
moon at high Earth orbit satellite has been 
investigated. Saad (2010) study the joint effects 
of direct solar radiation pressure and the 
gravitation of the Earth on high-altitude Earth 
satellites.  Wesam Taleb (2011) studied the 
perturbations (oblateness and solar radiation 
pressure [SRP]) that effects on the artificial 
satellites orbit and with more altitudes and 
inclinations.  Abbas (2012) the effects of solar 
radiation pressure at medium Earth orbit 
satellite.  
2. Equations of Motion with Perturbations 
     Knowledge of orbital motion is essential for 
a full understanding of space operations. Motion 
through space can be visualized using the laws 
described by Johannes Kepler and understood 
using the laws described by Sir Isaac Newton.  
     A satellite, under the influence of a perfect 
inverse square force field law, would have a set 
of constant orbital elements (a, e, I, M, Ω, ω).  
The general form of the equation of motion in a 
relative inertial coordinate system is given by  

Fr
r

r
  3


,   (2.1)  

where r  is the position vector of the satellite,  
is gravitational constant and F


 is the resultant 

vector of all the perturbing.  F


 may consist, in 
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out study, of the following types of perturbation 
forces (Rowa, 2002):  

- Gravitational potential,  
- Solar radiation pressure.  

      
2.1. The Gauss Form of Lagrange’s 
Equations  
      

In some cases it is useful to formulate the 
disturbing accelerations directly at the satellite 
in componential form, instead of using partial 
derivatives of the disturbing potential in the 
elements. The formulas of Lagrange’s 
Equations are also less suitable for numerical 

treatment. An appropriate alternative form was 
developed by Gauss.  

According to figure (2.1) the perturbing 
forces at the satellite are resolved into three 
mutually perpendicular components (K1 , K2 , 
K3) (Günter, 2003). 
Where 
 K1 : Perpendicular to the orbital plane, 

positive toward the North Pole,  
 K2 : Perpendicular to the radius vector in the 

orbital plane, positive in the direction of 
increasing longitude,  

 K3 : In the direction of the radius vector, 
positive in the direction of increasing radial 
distance, and since  
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The corresponding perturbed equations are:  
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where is   = true anomaly; 21 e  and   u .  
 
 
 
 
 
 
 
Figure: (2.1) Satellite Coordinate System (R, S, W). 
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Noting that in the literature the symbols R, S, W 
are also used instead of K1 , K2 ,K3 .  
 
3. Non-spherical gravity potential 

The earth is not the point gravitational 
source assumed in Newton’s gravitational law, 
in fact both its shape and mass distribution lead 
to non-inverse square law effects on an orbiting 

satellite.  An accurate model of the earth can be 
obtained through the use of a series of spherical 
harmonics which effectively represent a 
gravitational body as a series of mass centers, 
some more dominant than others, the most 
dominant term being that of a perfectly uniform 
sphere the gravitational potential of the earth 
can be written as: (Wesam, 2011)  
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The harmonic coefficients Cnm , Snm are 
integrals of the mass and describe the mass 
distribution within the central body, ae the 
equatorial radius and Pnm called associated 
Legendre functions or Legendre polynomials.  

 The first term rGM /  describes the 
potential of a homogeneous sphere and thus 
refers to Keplerian motion consequently it is 

also named the Keplerian term.  The remaining 
expressions within the double-summation are 
due to the disturbing potential R, with the origin 
of the coordinate system transferred to the 
center of mass of the primary, the terms with n 
= 1 and m = 0, 1 become zero, hence (Günter, 
2003)  
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With m = 0 the coefficient are named Zonal 
harmonics and rotationally symmetric about the 
pole and have n zero crossings from pole to 
pole. Note that Sn0 = 0 the zonal coefficients are 
often represented by J’s, Jn = – Cn0.  

To apply the planetary equations to the non-
central part of the field, write the gravity 
potential function as substitution of the 
complete disturbing function R into equations 
(3.2) generally has little practical value.  The 
general approach is to divide the perturbations 
to the orbital elements into secular 
perturbations, long period perturbations, and 
short period perturbations.  The secular 
variations result from averaging the equations of 
motion over one orbital period by assuming 
constant, mean values of the elements over that 
time.  Recall the variation of parameter (Ω, ω 
and M) will change linearly with time (Tolson, 
2005).  

The oblateness perturbations, namely the 
rotation of the nodal and apsidal lines caused by 

the second order zonal harmonic, C20 and does 
not produce secular perturbations in the 
elements I, a, and e.  However, C20 gives rise to 
secular variations of the elements, ω, Ω, and M 
because the numerical value of C20 exceeds all 
other potential coefficients by a factor of 103.  
These variations can be used as reference 
elements, they represent a secularly preceding 
Kepler-ellipse with the elements (a, e, I, M, Ω, 
ω) (Günter, 2003).  

 

4. Solution of perturbation equation (Kozai's 
method) 

In 1959 Kozai's basic theory was used 
Lagrange's variation of parameters equations 
(VOP equations) and solved them using the 
averaging technique.  Notice the similarity to 
expressions for the semi-major axis and mean 
motion, as well as to the first-order 
approximation for the mean anomaly.  The 
elements of the orbit under perturbations can be 
expressed as (Vallado, 1997):  

tt SR  
sec0 ,     (4.1.1) 

tt SR   sec0 ,     (4.1.2) 

tMtMMM SR  
sec0 ,     (4.1.3) 

where (M0, Ω0 and ω0) are the initial value; and 
the suffixes (sec, SR) are the oblateness 
perturbations and solar radiation pressure.  

 
4.1 Perturbations caused by the zonal 
coefficients Jn  

15
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In order to estimate the effect of Earth’s 
gravity field on particular satellite orbits, it is 
often sufficient to determine the accelerations 
caused by the first four zonal harmonics; we can 
obtain an expression for the secular effects on 

the mean anomaly, the longitude of the 
ascending node, and argument of perigee 
(Vallado, 1997).  
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4.2. The perturbing acceleration of Solar-
Radiation Pressure  

Solar-radiation pressure is a non-
conservative perturbation, but it becomes 
important at higher altitudes.  One of the more 
difficult aspects of analyzing solar radiation is 
accurately modeling and predicting the solar 
cycles and variations.  During periods of intense 
solar storms, this effect may be much larger 
than all the other perturbations (depending on 
the altitude); at times of low activity, the effect 
may be negligible.  A lot of literature describes 

the effects of solar-radiation pressure on orbits, 
including theoretical studies and analyses of 
observational data.  Blitzer (1959) extracted the 
following equations from the work by Cook 
(1962) he assumed that the disturbing 
acceleration, FSR, is given by  
 ACPF RSRSR  ,  (4.3)  

The perturbing acceleration of an Earth 
satellite due to solar-radiation-pressure effects 
can be computed by means of the following 
equations (Chobotov, 2002):  
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where Fr , Fs and Fw are components of acceleration along the satellite orbit radius vector (see Fig. 2.1), 
perpendicular to Fr in the orbital plane, and along the orbit normal, since  = 23.5° denotes the obliquity 
of the ecliptic,  the ecliptic longitude of the sun, and argument of latitude.  

The force components approach directly relates the perturbing force components to the rate of the 
orbit elements.  The general form of equations of variation (the rates of the six classical elements) can be 
derived through the concept of perturbed variations are given by (Chobotov, 2002):  
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5. Satellite Ground Track 
     A ground track is the projection of the satellite's orbit on to the surface of the Earth.  We can determine 
the latitude and longitude of satellite (, ) from the following equations:  

 =  – G. Sideral Time,     and   =  – ,    (5.1)  

where    
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and f is the flatting of the Earth.  
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     Also,  
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6. Results and Conclusion 
     A computer program has been developed to 
solve the equations of orbital motion of two 
body problems with perturbations due to the 
gravitational potential and solar radiation 
pressure by using previous algorithms and 
Matlab code.  
     We compute the variation of latitude and 
longitude of satellites using for example 
(Molniya 1-93) satellite.  
 
6.1. Algorithm 
     This algorithm to determine the position and 
velocity from two line orbital elements (TLE) 
and plot the ground track with/without 
perturbations of satellites.  
 
Input:  
1. TLE of satellite: (text file). 
2. Set R = 6378.137 km, µ = 398600.4481 
km2/sec2,  
         J2 = 0.00108263, J4 = -0.00000161.  
 
Computational algorithm:  

1. Read the initial values Tow Line 
Element (TLE) for satellites then 
determine the six orbital elements and 
compute eccentric anomaly.  

2. Calculate the position and velocity 
coordinates from Eccentric anomaly by 
solving Kepler’s equations.  

3. Calculate Greenwich sidereal time.  
4. Add perturbation forces to orbital 

elements and repeat compute the 
position and velocity vectors.  

5. Calculate longitude and latitude from 
the position vector and local sidereal 
time.  

6. Repeat this sequence from step (1) to 
step (5) and used the results for 
drawing the ground track of satellite.  

7. Algorithm is complete.  
 
6.2 MOLNIYA1-93 
            Table (6.1) shows Two-line elements 
initial values of six orbital elements 
(http//:www.Celestrack.com) and table (6.2) 
shows a comparison between longitude and 
latitude with/without perturbations at many 
numbers of revolutions.  

Figures (6.1, 6.2 and 6.3) illustrates the effect of perturbation on the ground track of this satellite at 
revolutions numbers (100, 1000 and1500). 

Table (6.1): Two-line elements and six orbital elements for Molniya1-93 satellite. 
MOLNIYA 1-93 
1 28163U 04005A   14002.31575069 -.00000472  
00000-0  00000+0 0  2796 
2 28163  64.5468  98.8698 7242893 248.2772  
24.7697  2.00616822 72337 
The initial values for six orbital elements:  
(a): Semi major axis  26555.666741608 km 
(e): Eccentricity  0.7242893 
(i): Inclination  064.5468 degree 
(Ω): Longitude of ascending 098.8600 degree  

18
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node  
(ω): Argument of perigee  248.2772 degree  
(M): Mean anomaly  024.7697 degree  
General satellite data from TLE 
Launched 02/01/2004  
(T): Time of period  11.96 hour  
      Time at Epoch  07:34:40.8  

 
Table (6.2): Comparison between with/without perturbations forces for Molniya1-93. 

Time Rev.  
No.  

Longitude (λ) Latitude () 
Without 

Per. J2 
J2 + 

Solar 
Without 

Per. J2 
J2 + 

Solar 
2-1-2014 
7:34:41 1 243.365 243.365 243.365 0.0384 0.0384 0.0384 

20-2-2014  
16:00:31 100 69.9152         63.3502 63.1108         3.49257 3.03863 3.03155   
8-9-2014  
1:15:02 500 94.7649         61.6785         60.4714         3.49257     4.26666 1.1685 

17-5-2015  
6:53:10 1000 124.079         57.8302         55.4131         6.55293 1.97443     1.90255 

22-1-2016  
12:31:18 1500 154.24         54.8152         51.1875         9.29076 2.4256     2.31737 

 
 
 
 
 
 
 

 
 

Figure (6.1): Ground track of Molniya1-93 satellite at one hundred rev. 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure (6.2): Ground track of Molniya1-93 satellite at one thousand rev. 
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Figure (6.3): Ground track of Molniya1-93 satellite at one thousand and half rev.
6.4. Conclusions:  

In this study, the mathematical model was 
tested to compute change in the six orbital 
elements for artificial satellite due to effect of 
the gravitation of the Earth and solar radiation 
pressure on the orbits of high altitude satellites 
(Molniya satellites) included (the zonal 
harmonics of the geopotential effects up to J4 
and solar radiation pressure) to compute the 
position and velocity.  
     From tables and figures we can conclude 
that:  

- The influence of perturbation forces after 
short period can't be noticed; but after long 
period for example one hundred revaluations 
the effect of zonal harmonic is simple and 
effect of solar radiation is tiny.  

- After five hundred revolutions the zonal 
harmonic's becomes more effect.  

- In more one thousand periods we found that 
solar radiation pressure have important roles 
for getting accurate results. These results 
come out of working on the high satellite 
orbits.  

- This work can be easily modified when we 
take the full effect of the Earth's 
gravitational field (zonal and Tesseral parts) 
and consider other forces, for example, drag 
on a charged satellite, Luni-solar gravity and 
meteorite collisions hence the accuracy of 
our results depend on the used forces to get 
more accurate foot print satellites. 
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