KINGDOM OF SAUDI ARABIA MINISTRY OF EDUCATION
 KING ABDULAZIZ UNIVERSITY
 FACULTY OF SCIENCE
 MATHEMATICS DEPARTEMENT

AN INTRODUCTION TO INFINITE SERIES

Search by the student
Ali Alshehri

Under the supervision of Dr/ Mohammed AlGhamdi

First Semester 2015-2016

1. INFINITE SERIES

1.1 INTRODUCTION TO INFINITE SERIES:

Perhaps the most widely used technique in the physicist's toolbox is the use of infinite series (i.e. sums consisting formally of an infinite number of terms) to represent functions, to bring them to forms facilitating further analysis, or even as a prelude to numerical evaluation. The acquisition of skills in creating and manipulating series expansions is therefore an absolutely essential part of the training of one who seeks competence in the mathematical methods of physics. An important part of this skill set is the ability to recognize the functions represented by commonly encountered expansions, and it is also of importance to understand issues related to the convergence of infinite series.

1.2. FUNDAMENTAL CONCEPTS

The usual way of assigning a meaning to the sum of an infinite number of terms is by introducing the notion of partial sums. If we have an infinite sequence of terms $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, .$. , we defined the i - th partial sum as

$$
\begin{equation*}
S_{i}=\sum_{n=1}^{i} u_{n} \tag{i}
\end{equation*}
$$

This is a finite summation and offers no difficulties. If the partial sums S_{i} converge to a finite limi as $i \rightarrow \infty$

الجمعية المصرية للقراءة والمعرفة

$$
\begin{equation*}
\lim _{i \rightarrow \infty} S_{i}=S \tag{ii}
\end{equation*}
$$

Examples:
(1) $\sum_{n=1}^{\infty} n=1+2+3+4+\cdots$
(2) $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$

1.3 CONVERGENT AND DIVERGENT SERIES

The infinite series $\sum_{n=1}^{i} u_{n}$ is said to be convergent and to have the value S. Not
define the infinite series as equal to S and that a necessary condition for convergence to
a limit is that $\lim _{i \rightarrow \infty} u_{n}$
$=0$, This conditon, however, is not sufficient to guarantee convergence.

Sometimes it is convenient to apply the condition in (ii) in a form called the Cauchy criterion, $\forall \varepsilon>0, \exists N \in \kappa$, s.t. $\left|s_{j}-s_{i}\right|<$

الجمعية المصرية للقراءة والمعرفة
$\varepsilon, \forall i, j>N$. This means that the partial sum must cluster together as we move far out in the sequence.

Some series diverge, meaning that the, sequence of partial sums
approaches $\pm \infty$; others may have partial sums that oscillate between two values, as for example

$$
\sum_{n=1}^{\infty} u_{n}=1-1+1-1+1-\cdots-(-1)^{n}+\cdots
$$

This series does not converge to a limit, and can be called oscillatory, Often the terms divergent is extended to include oscillatory series as well. It is important to be able to determine whether, or under what conditions, a series we would like to use is convergent.

Examples:

(1) $\quad \sum_{n=1}^{\infty}(-1)^{n}$ divergent.
(2) $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ convergent.

الجمعية المصريـة للقر اعة و المعرفة

(3) $\sum_{n=1}^{\infty} 1$ divergent.
(4) $\quad \sum_{n=1}^{\infty} \frac{1}{2^{n}+5 n+6}$ divergent.

1.4 THE GEOMETRIC SERIES

The geometric series, starting with $u_{0}=1$ and with a ratio of successive terms $\mathrm{r}=\frac{u_{n+1}}{u_{n}}$, has the form
$1+\mathrm{r}+r^{2}+r^{3}+\ldots \ldots \ldots+r^{n-1}+\ldots \ldots$.
Its n - th partial sum S_{n} (that of the first n terms) is

$$
S_{n}=\frac{1-r^{n}}{1-r}
$$

Restricting attention to $|r|<1$, so that for large n, r^{n} approaches zero, S_{n} possesses the limit

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-r}
$$

Showing that for $|r|<1$, the geometric series converges. It clearly diverges (or is oscillatory) for $|r| \geq 1$, as the individual terms do not then approach zero at large n.
Examples:
(1) $\sum_{n=0}^{\infty} \frac{5}{2^{n}}, \quad r=\frac{1}{2} \prec 1$ Convergent

الجمعية المصرية للقراءة والمعرفة عضو الجمعية الدولية للمعرفة ILA

(2) $\sum_{n=0}^{\infty}$
$(3)^{2 n}(4)^{1-n}, \quad r=\frac{9}{4} \geq 1$ divergent
(3) $\sum_{n=0}^{\infty} x^{n}$, if $|r|=|x|<1$ convergent

$$
\text { if }|r|=|x| \geq 1 \text { divergent }, S=\frac{1}{1-x}
$$

* THE HARMONIC SERIES

We consider the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\ldots
$$

The terms approach zero for large n, i. e. $\lim _{n \rightarrow \infty} \frac{1}{n}$

$$
=0, \text { but this is not sufficient }
$$

to guarantee convergence. If we group the terms (without changing their order)as

$$
1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{16}\right)+\ldots
$$

each pair of parentheses encloses p terms of the form

$$
\frac{1}{p+1}+\frac{1}{p+2}+\ldots+\frac{1}{p+p}>\frac{p}{2 p}=\frac{1}{2}
$$

Forming partial sums by adding the parenthetical groups one by one, we obtain

الجمعية المصرية للقر اعة والمعرفة عضو الجمعية الدولية للمعرفة ILA

$$
s_{1}=1, s_{2}=\frac{3}{2}, \quad s_{3} \succ \frac{4}{2}, \quad s_{4} \succ \frac{5}{2}, \ldots \ldots s_{n} \succ \frac{n+1}{2}
$$

This show that $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and so $\left\{s_{n}\right\}$ is divergent.
Therefore the harmonic series diverges.

1.5 COMPARISON TEST

In the comparison tests the idea is to compare a given series with a series that is known to be convergent or divergent.

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(i) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is convergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

Example:

$$
\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}
$$

$$
\begin{gathered}
a_{n}=\frac{5}{2 n^{2}+4 n+3}<b_{n}=\frac{5}{2 n^{2}} \\
\sum b_{n}=\sum \frac{5}{2 n^{2}}, \text { convergent. So, } \sum a_{n} \text { convergent }
\end{gathered}
$$

1.6 THE LIMIT COMPARISON TEST

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where c is a finite number $c>0$, then either

الجمعية المصرية للقراءة والمعرفة
both series converge or both diverge.
Example:
$\sum_{n=1}^{\infty} \frac{5}{2^{n}-1}$
$a_{n}=\frac{1}{2^{n}-1} \quad, \quad$ take $\quad b_{n}=\frac{1}{2^{n}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1>0, \quad \sum b_{n}=\sum\left(\frac{1}{2}\right)^{n} \text { convergence }
$$

So, $\sum a_{n}$ is also convergence.

TEST FOE DIVERGENCE

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or If $\lim _{n \rightarrow \infty} a_{n}$ $\neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Examples:
(1) $\sum_{n=1}^{\infty} \frac{1}{n}$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
But as before $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. (Harmonic series).
(2) $\sum_{n=1}^{\infty} \frac{n}{n+1}$ divergent,
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1} \neq 0$

1.7 ALTERNATING SERIES

An alternating series is a series whose terms are alternately positive and negative.

* Alternating series test:

If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} \quad b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-\cdots b_{n}$
>0 satisfies
(i) $b_{n+1} \leq b_{n}$ for all n
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$

Then the series is convergent.
Example:
$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+1}=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\cdots$
(i) $a_{n}=\frac{1}{n}, a_{n}+1 \prec a_{n}$
(ii) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
$\therefore \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is convergent.

* ABSOLUTE AND CONDITIONAL CONVERGENCE

An infinite series is absolutely convergent if the absolute values of its terms form a convergent series. If it converges, but not absolutely, it is termed conditionally convergent.

If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.
Example:
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
$\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
It is absolutely convergent and convergent.

* RATIO TEST

An alternate statement of the ratio test is in the form of a limit:
If

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\left\{\begin{array}{c}
<\mathrm{I}, \text { then } \sum_{n=1}^{\infty} a_{n} \text { is convergent } \\
>\text { or }=\infty, \text { then } \sum_{n=1}^{\infty} a_{n} \text { is divergent } \\
=\text { I, indeterminate } .
\end{array}\right.
$$

Example:
$\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e>1
$$

So, divergent.

* THE ROOT TEST
(i)If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(ii)If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$

$$
=\infty \text { then the series } \sum_{n=1}^{\infty} a_{n} \text { is divergent. }
$$

الجمعية المصرية للقراءة والمعرفة عضو الجمعية الدولية للمعرفة ILA
(iii)If $\lim \sqrt[n]{\left|a_{n}\right|}=1$, the Root test is inconclusive.

$$
n \rightarrow \infty
$$

Example:
$\sum_{n=1}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}$
$\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left[\left(\frac{2 n+3}{3 n+2}\right)^{n}\right]^{\frac{1}{n}}=\frac{2}{3}<1$
$\therefore \sum_{n=1}^{\infty} a_{n}$ convergent.

* THE INTEGRAL TEST

Suppose f is continuous, positive, decreasing function on $[1, \infty)$
and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and
only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent.
In other words:
(i)if $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.

الجمعية المصرية للقر اعة والمعرفة
(ii)if $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Example:
$a_{n} \frac{1}{n^{2}+1} \quad$, take $f(x)=\frac{1}{x^{2}+1}$
$\int_{1}^{\infty} f(x) d x=\frac{\pi}{4}$ convergent
So, $\sum_{n=1}^{\infty} a_{n}$ is convergent.

* p-SERIES

The $\mathrm{p}-$ series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if p
>1 and divergent if $p \leq 1$.
Examples:
(1) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad p=2>1$, convergent.
(2) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}, \quad p=\frac{1}{5}<1$, divergent.

2. OPERATIONS ON SERIES THEOREM:

If $\sum a_{n}$ and $\sum b_{n}$ are convergent series, then so are the series
$\sum c_{n}$ (where c is a constant), $\sum\left(a_{n}\right.$

$$
\left.+b_{n}\right) \text { and } \sum\left(a_{n}-b_{n}\right), \text { and }
$$

(i) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
(iii) $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

2.1 POWER SERIES

A power series is a series of the form

الجمعية المصرية للقر اعة والمعرفة عضو الجمعية الدولية للمعرفة ILA

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} \ldots
$$

Where x is a variable and the c_{n} 's are constants called the coefficients of the series.

The sum of the series is a function

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} \ldots+c_{n} x^{n}+\ldots
$$

Whose domain is the set of all x for which the series converges.
Notice that f resembles a polynomial. The only difference is that f has infinitely many terms.

If we take $c_{n}=1$ for all n, the power series becomes the geometric series.

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3} \ldots+x^{n}+\cdots
$$

Which converges when $-1<x<1$ and diverges when $|a| \geq 1$.
More generally, a series of the form

الجمعية المصرية للقراءة والمعرفة عضو الجمعية الدولية للمعرفة ILA

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c_{n}(x-a)^{n} \\
& =c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2} \\
& +c_{3}(x-a)^{4} \ldots
\end{aligned}
$$

is called a power series in $(x-a)$ or a power series centered at a or a power series about a.

2.2 THEOREM:

For a given power series $\sum_{n=0}^{\infty} c_{n}(x$ $-a)^{n}$, there are only three possibilities:
(i) The series converges only when $x=a$.
(ii) The series converges for all x.
(iii) There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$. (The number R is called the radius of convergence of the power series).

$$
a-R<x<a+R
$$

الجمعية المصرية للقراءة والمعرفة

2.3 REPRESENTATIONS OF FUNCRIONS AS POWER

SERIES

We know from Geometric series that

$$
\begin{gathered}
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3} \ldots \quad|x|<1 \\
\text { when } a=1 \text { and } r=x \\
\frac{a}{1-x}=\frac{1}{1-x}
\end{gathered}
$$

If we take $f(x)=\frac{1}{1-x}$, we can write

$$
f(x)=\frac{1}{1-x}=1+x+x^{2}+\ldots,|x|<1
$$

This called representation of $f(x)$ as power series.

3. TAYLOR AND MACLAURIN SERIES

3.1 THEOREM:

If f has a power series representation (expansion) at a, that is,

الجمعية المصرية للقراءة والمعرفة عضو الجمعية الدولية للمعرفة ILA

$$
\text { if } \quad f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then its coefficients are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

Substituting this formula for c_{n} back into the series, we see that if f has a power series expansion at a, then it must be of the following form:

$$
\begin{aligned}
c_{n} & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \quad(*) \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots
\end{aligned}
$$

The series in Equation (*) is called the Taylor series of the function f at a

For the special case $a=0$, the Taylor series becomes

الجمعية المصرية للقر اعة والمعرفة

$$
\begin{aligned}
f(x)= & \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \\
& =f(0)+\frac{f^{\prime}(a)}{1!} x+\frac{f^{\prime \prime}(a)}{2!} x^{2}+\ldots
\end{aligned}
$$

This case arises frequently enough that it is given the special name Maclaurin series.

3.2 SOME IMPORTANT SERIES

There are a few series that arises so often all physicists should recognize them.

Here is a short list that is worth committing in memory.
(i) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{2}}{3!}+\ldots-\infty<x<\infty$
(ii) $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

$$
=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots-\infty<x<\infty
$$

الجمعبة المصربة للقر اءة والمعرفة عضو الجمعية الدولية للمعرفة ILA

$$
\begin{aligned}
\text { (iii) } \begin{aligned}
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots-\infty<x<\infty \\
\text { (iv) } \sinh (x) & =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \\
& =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots-\infty<x<\infty \\
\text { (v) } \cosh (x) & =\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots-\infty \\
& <x<\infty \\
\text { (vi) } \frac{1}{1-x} & =\sum_{n=0}^{\infty} 1+x+x^{2}+x^{3}+x^{4}+\ldots-1 \leq x \\
& <1
\end{aligned}
\end{aligned}
$$

الجمعية المصرية للقراءة والمعرفة
(vii) $\operatorname{In}(1+x)$

$$
\begin{aligned}
&=\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{n}}{n!}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots-1 \\
&<x \leq 1 \\
& \text { (viii) }(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}=\sum_{n=0}^{\infty} \frac{(p-n+1)_{n}}{n!} x^{n}-1 \\
&<x<1
\end{aligned}
$$

3.3 THE BINOMIAL SERIES

If k is any real number $|x|<1$, then

$$
\begin{aligned}
(1+x)^{k}= & \sum_{n=0}^{\infty}\binom{k}{n} x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2} \\
& +\frac{k(k-1)(k-2)}{3!} x^{3}+\ldots
\end{aligned}
$$

The binomial series always converges when $|x|<1$.

3.4 EXAMPLE:

Find the Maclaurin series for $f(x)=(1+x)^{k}$, where k is any

real number

الجمعية المصرية للقراءة والمعرفة

Solution:

$f(x)=(1+x)^{k}$	$f(0)=1$		
$f^{\prime}(x)=k(1+x)^{k-1}$	$f^{\prime}(0)=k$		
$f^{\prime \prime}(x)=k(k-1)(1+x)^{k-2}$	$f^{\prime \prime}(0)=k(k-1)$		
$f^{\prime \prime \prime}(x)=k(k-1)(k-2)(1$	$f^{\prime \prime \prime}(0)=k(k-1)(k-2)$		
$+x)^{k-3}$			
$f^{(n)}(x)=k(k-1) \ldots(k-n$			
$+1)(1+x)^{k-n}$		\quad	$f^{(n)}(0)=k(k-1) \ldots(k$
:---:			
$-n+1)$			

Therefore the Maclaurin series of $f(x)=(1+x)^{k}$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}= & \sum_{n=0}^{\infty} \frac{k(k-1) \ldots(k-n+1)}{n!} x^{n} \\
& =\sum_{n=0}^{\infty}\binom{k}{n} x^{n}
\end{aligned}
$$

This if the binomial series.

الجمعية المصرية للقراءة والمعرفة

REFERENCES

- Stewart, J. (2008)Calculus Early Transcendental, Belmont, Brooks / Cole.
- On - line chapter, Infinite Series, Elsevier Press.

