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Abstract: This paper presents the effects of eccentricity on fluid flow in small (less than 0.3), 

medium (0.3-0.6) and large (0.6-0.8) radii ratios. The Couette-Poiseuille flow, in concentric 

and eccentric annuli with a rotating inner pipe, is investigated. Effects of eccentricity (0.0, 

0.15, 0.30, 0.45, 0.6, 0.75 and 0.90) on the flow structure, velocity distribution and pressure 

drop are investigated at radii ratios of 0.2, 0.4, 0.6 and 0.8 for Reynolds number from 9780 to 

288623 and Taylor number from 0 to 4.39×10
7
. The results demonstrate that the pressure drop 

decreases significantly with increasing eccentricity, at radius ratio 0.8. But, the effect of 

eccentricity on the pressure drop is negligible at radius ratios lower than 0.6. As wide annuli 

are less sensitive to the rotation of the inner cylinder than the narrow annuli, Taylor vortices 

were not established under the investigated parameters as a result of dominated axial velocity 

over tangential velocity in the considered range of parameters. The effect of eccentricity on 

the velocity becomes more influential as the radii ratio increases (small annuli) and vice versa. 

Furthermore, the effect of eccentricity is more influential on the axial and tangential velocity 

distributions, in the small space of the eccentric annulus. Axial velocity decreases while 

tangential velocity increases as the eccentricity increased. 
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Nomenclature 
E distance between the two pipes centers 

P pressure (Pa) 

R radial distance 

R1 radius of inner pipe, m 

R2 radius of outer pipe, m 

Re Reynolds number based on the free-stream conditions and hydraulic diameter 

S the space between the outer and inner cylinders 

u axial velocity, m/s 

Ub bulk velocity, m/s 
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v y-velocity (m/s) 

w z-velocity (m/s) 

W tangential velocity, m/s 

x x-coordinate 

y y-coordinate 

z z-coordinate 

ε eccentricity = e/(R1-R2) 

η radius ratio = R1/R2 

p pressure drop (Pa) 

  dynamic viscosity (Pa.s) 

  fluid density (kg/m
3
) 

ω rotational speed (rpm) 

  

  

Abbreviations  

CFD Computational Fluid Dynamics 

DNS Direct Numerical Simulation 

LES Large Eddy Simulation 

RANS Reynolds Averaged Navier-Stokes 

 

 

Introduction 
Fluid flow in the annular space between two circular cylinders, where the inner one is rotated 

and the outer one is stationary, is encountered in a massive number of equipment and industrial 

applications. Narrow annular space exists in the clearance between stator and rotor of an electric 

motor or gas turbines or in the peripheral clearance of twin-screw pumps and many other 

applications. On the other hand, wide annular space takes place in numerous industrial 

applications including rotating heat exchangers, mixers and oil-well drilling (borehole and drill 

pipe). The radii ratios between the inner and outer circular cylinders characterize the annuli as 

small values are for wide annuli and larger values are for narrow annuli. Eccentricity between 

inner and outer cylinders creates eccentric annuli that may behave differently from concentric 

annuli. Therefore, understanding the flow of fluid in concentric and eccentric annuli is essential 

in order to predict the fluid flow and pressure drop in such annuli. 

 

Due to the importance and wide applications of the topic, the previous work included a massive 

number of papers in Taylor-Couette flow and Taylor-Couette-Poiseuille flow. Work related to 

concentric rotating heat exchangers includes that presented by Abou-Ziyan et al. [1] for heat 

transfer and pressure drop in concentric annular wide channel with inner plain or finned pipe 

under stationary and rotating conditions in Couette–Poiseuille flow. The results proved that at a 

Reynolds number (Re = 1.5x   ), the wide annular channel with inner pipe of helical fin spacing 

75 mm that rotates at 400 rpm enhances Nusselt number (Nu) by a factor of 7.5 and also boosts 

the ratio of heat exchange to pumping power by a factor of 7.6, compared to the case for plain 

stationary pipe.  

  

Pressure drop along with axial and tangential velocity profiles of both concentric and eccentric 

annulus, either stationary or rotated, received attention in literature. Adebayo and Rona [2] 
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computationally investigated the force and pressure distribution in the annular space (η=0.5 and 

0.44) between the two cylinders. The variation of the tangential velocity along the entire annulus 

is likely to lead to a significant axial variation in pressure distribution. Dumont et al. [3] 

investigated experimentally the appearance of hydrodynamic instabilities in the space between 

two coaxial cylinders with radius ratio (0.615) and aspect ratio (24). Moser et al. [4] investigated 

experimentally the combination of spatial tagging methods and a snapshot FLASH imaging 

sequence on the spiral flow in a concentric annuli (η=0.5)  with rotating inner cylinder (ω=55 

rpm), aspect ratio )16( and Reynolds number from 0 to 11.6. Tagged images of the spiral 

Poiseuille flow verified that the cells in this flow propagate at a higher velocity than the mean 

axial flow. In addition, intermittent cell formation was observed as the axial flow was increased. 

Rehme [5] investigated experimentally fully developed turbulent flow through three stationary 

concentric annuli (η=0.02, 0.04 and 0.1) for a Reynolds-number range from 2 x     to 2 x    ). 

The results showed that the position of zero shear stress is not coincident with the position of 

maximum velocity. Wein et al. [6] investigated numerically laminar, isothermal and axial flow in 

a stationary annulus and obtained velocity and viscosity profiles. 

 

Ait-Moussa et al. [7] studied numerically flow in the annular region between rotating concentric 

cylinders to determine the combined effects of the co - and counter-rotation of the outer cylinder 

and the radius ratio on the system response. Chung and Sung [8] studied numerically, using large 

eddy simulation (LES), the turbulent flow in a concentric annulus with inner wall rotation at 

Reynolds number = 8900. The main emphasis of this work was on the destabilization of the near-

wall turbulent structures due to rotation of the inner wall. Wereley and Lueptow [9] studied 

experimentally the flow in the space (η=0.83) between an inner rotating cylinder concentric with 

an outer stationary cylinder with an imposed pressure-driven axial flow using particle image 

velocimetry (PIV) in a meridional space of the annulus.  

  

Bicalho et al. [10] investigated experimentally and numerically the pressure drop and velocity 

profiles through partially obstructed concentric and eccentric annuli, with and without inner tube 

rotation. Rotation of the inner tube results in more uniform flow distributions in the annulus, 

preventing flow stagnation in the smaller sector. Therefore, in the case of a partially blocked 

annulus with eccentricity, increasing the drill pipe rotation can improve the cuttings transport and 

prevent drill pipe entrapment. Hamd [11] studied numerically the effect of rotational speed, of 0, 

50, 100, 150, 200, and 250 rpm, with axial Reynolds number 200 based on bulk axial velocity 

with radius ratio 0.5 on the pressure gradient. Pressure gradient increases, with increasing the 

angular speed at eccentricity ε = 0.2 and 0.4. But the pressure gradient at ε = 0.2 was greater than 

that of ε = 0.4 along the considered range of rotational speed (0 to 250) rpm. Neto et al.[12] 

investigated numerically turbulent flows in concentric and eccentric annuli with and without 

rotating inner cylinder. The simulated results of axial and tangential velocities show a good 

agreement with the experimental data. As compared with other turbulence models, the 

simulations with the standard Reynolds stress model presented a slightly better prediction for 

most of the responses studied. Nakashima and Caetano [13] presented a review of correlations 

used for pressure drop calculation in narrow annular clearances with rotation of the inner 

cylinder. Based on these reviews, a new general correlation is proposed to calculate pressure 

drop through such clearances. For the non-rotating cases, the eccentricity will cause a reduction 

in pressure drop and an increase in axial flow. When the inner cylinder rotates, the influence of 

eccentricity is similar to that found in static cases if narrow channels are considered. Escudier et 

al. [14] studied numerically and experimentally fully developed laminar flow of a Newtonian 

liquid through an eccentric annulus with combined bulk axial flow and inner cylinder rotation. 
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Rotation of the inner cylinder is found to have a strong influence on the axial velocity 

distribution, leading to two maxima in the case of a highly accented inner cylinder at high 

rotation speeds. Nouri and Whitelaw [15] investigated experimentally velocity components of a 

Newtonian and a weakly elastic shear-thinning non-Newtonian fluid in an annulus with an 

eccentricity of 0.5, a radius ratio of 0.5. The results show that the rotation had similar effects on 

the Newtonian and non-Newtonian fluids, with a more uniform axial flow across the annulus and 

the maximum tangential velocities in the narrowest space in both cases. 

 

The survey of the published work in the open literature revealed that the effect of eccentricity on 

fluid flow and pressure drop in annuli of various radii ratio under fully turbulent flow conditions 

was not covered. Therefore, the present work addresses the influence of various eccentricities 

(0.0-0.9) and radii ratios (0.2-0.8) on fluid flow and pressure drop in both stationary and rotated 

inner pipe.  

 

Problem Formulation and Numerical Modeling 
The geometry of the numerical model includes annulus configuration, and exit section along with 

the boundary conditions, is shown in Fig. 1. The parameters of the three-dimensional model are 

listed in Table 5. The working fluid flowing in the annular region is air. The air viscosity 

(μ=1.83x10
-5

,
 
Pa.s) and density (ρ =1.003, kg/m

3
). The numerical solution is carried out by 

solving the governing equations of mass, momentum and energy under the following 

assumptions; the flow is incompressible, steady and turbulent, fluid properties are constant.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1   Model parameters 

Parameter Symbol Value 

Inner cylinder radius, m    0.025 

Outer cylinder radius, m     vary 

Cylinder length, m L 1.6 

Rotational speed of inner cylinder, rpm n 0-400 

 

Mathematical Modeling 
Consider an annular between two circular cylinders filled with air. The internal wall of the 

annular space (inner cylinder) is assumed to be at constant surface temperature, and the external 

wall (outer cylinder) is adiabatic. Fluid flow and heat transfer in an annulus can be described 

mathematically using the three dimensional governing conservations summarized as 

conservation of mass, conservation of momentum, and conservation of energy. The equations 

solved in each computational cell are Navier-Stokes equations as follows:  

Figure 1. The numerical domain 
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Conservation of mass (continuity equation): 
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where   ,       are the velocity components in r,    and z directions, respectively. In addition, 

p,    and   are the fluid pressure, density, and dynamic viscosity, respectively. The governing 

equations (1) through (4) have been applied in the computational domain of the physical model. 

Turbulence is accounted for by time-averaging the above mentioned equations to produce the 

Reynolds Averaged Navier-Stokes (RANS) equations and to solve for the additional terms that 

generate using this process; a turbulence model has to be implemented. 

 

Numerical Modeling  

The present work is conducted using 3D computational fluid dynamics (CFD) model that 

incorporates k- SST turbulence model. The computational grid is illustrated in Fig. 2. A mesh 

sensitivity analysis is performed and a mesh size of 822,000 Cells demonstrates adequacy as 

listed in Table 2. In addition, the CFD model is validated against experimental results of Nouri 

and Whitelaw [15] and the numerical results of Neto et al. [12] as shown in Fig. 3. Where a 

reasonable agreement for normalized tangential (Fig. 3.a) and axial velocity (Fig. 3.b) 

distributions are obtained. Moreover, the computed axial velocity contours agree well with those 

reported by Neto et al. [12] as shown in Fig. 4. 

 

Table 2. Predicted pressure drop, P for the tested numerical grids 

No of Cells 454250 584415 822150 1089375 

Δp (Pa) 18.16 17.93 17.85 17.84 

% Error in Δp 1.79 0.50 0.06 0.00 
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Figure 2. Eccentric computational grid 

 

 

 

 

Figure 3. Validation of the numerical results  

(a) normalized tangential velocity (b) normalized axial velocity 

 

 

(a) Neto et al. [12] (b) Present Work 

Figure 4. Axial velocity contours (m/s) at ε=0.5 and ω=300 rpm 
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Results and Discussion 
  Flow structures 
Turbulent structures of the flow are shown in Fig. 5. The iso-values of the Q-criterion -positive 

second invariant of velocity gradient tensor- which is used for detecting vortex for radii ratio η = 

0.2, 0.6 and 0.8 at eccentricity ε = 0.9 are presented in Fig. 5. The main flow is dominated by the 

axial Poiseuille flow, which can be attributed to the low value of the tangential velocity relative 

to the axial velocity. Thus, Taylor vortices do not formed in the annulus space due to small 

rotation effect.  

  

 

 

 

 

 

 

 

 

                         (a)                                                   (b)                                                (c) 

 

Simulated Velocity Profiles 
Figure 6 shows a section of an eccentric annular space where the eccentricity splits the annulus 

into a largest space (P1) and a smallest space (P2). The results are taken for the spaces P1 and P2 

at z =1.5 m for a fully developed turbulent flow (Reynolds number between 9780 and 288623) 

under stationary and rotating conditions (Taylor number from 0 to 4.39×10
7
). The simulations 

were carried out for annulus with radii ratios () from 0.2 to 0.8 with eccentricity (ε) from 0 to 

0.9 (ε = e/R2-R1), with e the distance between the centers of the inner and outer pipes and R1 and 

R2 the inner and outer radii, respectively. 

The axial velocities are nearly in the range of (1.076Ub) to (1.433Ub) in the larger annular space 

(P1) for all radii ratios at all eccentricities. In the narrow space (P2) the axial velocity is reduced 

to approximately (0.07 Ub), because the resistance to flow is increased as the space between the 

two pipes decreases. For the case of the directional drilling operation in well drilling, the low 

velocity in the narrow part causes particle settling leading to a cuttings bed formation. The same 

tendency was verified in Neto et al. [12].  

In the case of concentric annulus, the axial and tangential velocity profiles are the same in spaces 

(P1 and P2) as they are equal when the eccentricity is zero. Fig. 7a shows the axial velocity and 

Fig. 7b shows the tangential velocity where both are normalized by the bulk velocity while the 

outer cylinder is stationary and the inner cylinder rotates at 200 rpm. Fig. 7a shows that the 

maximum normalized axial velocity has the largest value at η=0.8, medium value at η=0.6 and 

smallest value at η=0.2. Thus, the axial velocity profile for small radii ratio (wide annular space) 

shows more like a flat distribution than the profile for large radii ratio (narrow annular space) 

that shows a point of maximum value at r/s=0.5. On the other hand, Fig. 7b shows that the 

tangential velocities at all radii ratios are equal to unity at the rotating inner cylinder (ω=200 rpm 

and r/s=1) and equal to zero at the outer cylinder (ω=0 rpm and r/s=0). Fig. 7b shows that the 

Figure 5. Iso-values of Q-criterion for various radii ratios with eccentricity ε=0.9 

(a) η=0.2, (b) η=0.6, (c) η=0.8)  
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normalized tangential velocity at η=0.2 (wide annulus) is almost zero in the annulus space up to 

r/s of about 0.7 as it starts to increase and reach 1.0 at the inner cylinder radius (r/s=1). Thus, 

wide annular channels are less sensitive to the rotation of the inner cylinder than the narrow 

annular channels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Eccentric annular space with spaces P1 & P2 

 

(a) (b) 

Figure 7. Simulated velocity profiles normalized by bulk velocity (Ub) in concentric annulus at 

ω=200 rpm: (a) axial velocity (b) tangential velocity  

The normalized axial and tangential velocity profiles in the eccentric annulus of spaces P1 and 

P2, where P1 is the largest space and P2 is the smallest space in the annulus, for radii ratio of 0.2, 

0.6 and 0.8 are shown in Figs. 8, 9 and 10, respectively. The axial and tangential velocity at 

η=0.2 in the widest space (P1) are nearly the same (Figs. 8a and 8b) as in the concentric case 

(Fig. 7a and b). This indicates the negligible effect of the eccentricity on the velocity profiles for 

small radii ratio due to the less sensitivity of the wide space in the rotation of the inner cylinder 

as discussed before. On the other hand, at the smallest space (P2) the effect of eccentricity is 

more evident on the axial and tangential velocity distributions as presented in Figs. 8c and 8d. 

Clearly, as the eccentricity increases, the annulus space P2 becomes smaller. Therefore, 

resistance to axial flow increases and the sensitivity of the space to inner cylinder rotation 

increases. As a result, axial velocity decreases (Fig. 8c) while tangential velocity increases (Fig 

8d) as the eccentricity increased. 
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Similar trends to those discussed for η=0.2 (Fig. 8) are existing for η=0.6 (Fig. 9) and η=0.8 (Fig. 

10) except that the effect of eccentricity becomes more significant at η=0.6 and 0.8. Figs. 9a and 

9b show that the axial velocity of the wide space P1 is larger than that of the small space P2. 

This is due to increasing resistance to the flow in the small space. As the eccentricity increases, 

the space P1 increases and the space P2 decreases. Thus, while axial velocity, at =0.9, is the 

highest at space P1 (Fig. 9a) it becomes the lowest at space P2 (Fig. 9b). On the other hand, the 

tangential velocity reflects the sensitivity of the annulus to the rotation of the inner cylinder. As 

explained before as the annular space increases the sensitivity decreases and vice versa. Thus, as 

the eccentricity increases, the tangential velocity decreases in space P1 and increases in space P2 

(Figs. 9c and 9d).  

 

  

(a) Normalized axial velocity at P1 (b) Normalized tangential velocity at P1 

 

 

  

(c) Normalized axial velocity at P2 (d) Normalized tangential velocity at P2 

 

Figure 8. Simulated velocity profiles normalized by bulk velocity (Ub) in eccentric annulus at 

η=0.2  and ω=200 rpm: (a and b) at space P1, (c and d) at space P2 
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(a) Normalized axial velocity at P1 (b) Normalized axial velocity at P2 

 

 

 

 

 

 

(c) Normalized tangential velocity at P1 (d) Normalized tangential velocity at P2 

 

 

Figure 9 Simulated velocity profiles normalized by bulk velocity (Ub) in eccentric annulus at 

η=0.6 and ω=200 rpm: (a and b) axial velocity , (c and d) tangential velocity 

 

 

 

 

 



Paper: ASAT-17-109-PP  

 

11/16 

 

 

 

  

Figure 10. Simulated velocity profiles normalized by bulk velocity (Ub) in eccentric annulus at 

η=0.8 and ω=200 rpm: (a and b) axial velocity, (c and d) tangential velocity  

 

In addition to the normalized axial and tangential velocity distributions shown in Figs. 7-10, 

Figs. 11 and 12 show the axial velocity contours for ω=0 and 200 rpm, respectively. These 

contours are taken at z =1.5m when the flow becomes fully developed for radii ratios of 0.2, 0.6 

and 0.8 and eccentricity of 0.0, 0.3, 0.6 and 0.9. It is indicated that the effect of eccentricity on 

the velocity contours becomes more influential as the radii ratio increases while the eccentricity 

remains constant. Also, the effect of eccentricity increases as the eccentricity () increases. 

However, comparing the axial velocity contours at ω=0rpm and the corresponding ones at 

ω=200rpm indicates similar contours in both cases. This is because the large bulk velocity (Ub 

=14.87 m/s) dominates both cases as the tangential velocity at ω=200 rpm has a small effect on 

the axial velocity contours.  

 

(a) Normalized axial velocity at P1 

(c) Normalized tangential velocity at P1 

(b) Normalized axial velocity at P2 

(d) Normalized tangential velocity at P2 
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Figure 11. Axial velocity contours at ω= 0 rpm for eccentricities of 0.0, 0.3, 0.60 and 0.90  
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Figure 12. Axial velocity contours at ω=200 rpm for eccentricities of 0.0, 0.3, 0.60 and 0.90  
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 Pressure drop 
Pressure drop is an important factor in applications which include fluid flow as it controls the 

pumping power required to drive the system. This in turn determines the running cost of the 

system. The variations of pressure drop versus eccentricity for annuli of various radii ratios 

rotating at 200, 300 and 400 rpm are illustrated in Figs. 13a, 13b and 13c, respectively. The 

trends of pressure drop in eccentricity are similar under all rotational speeds or bulk velocities. 

However, the pressure drop increases substantially with increasing either the speed or the bulk 

velocity. It is obvious that the effect of eccentricity on the pressure drop depends on the radii 

ratio. It is negligible for radius ratios of 0.2 and 0.4 and mild for a radius ratio of 0.6. But, the 

pressure drop is decreased significantly as the eccentricity increases at a radius ratio of 0.8 

(narrow annulus space). However, the magnitude of the pressure drop increases substantially 

with increasing the radius ratio (narrow space) at the same eccentricity. The pressure drop at a 

radius ratio of 0.8 is greater than that at a radius ratio of 0.2 by more than an order of magnitude. 

The ratio between the pressure drops at both radii ratios is dependent on the rotational speeds and 

the axial velocity.  

 

 

 

  

Fig. 13. Effect of η and ε on pressure drop (Δp): (a) ω=200 rpm &Ub=14.87 m/s,  

(b) ω=300 rpm &Ub=19.7 m/s, (c) ω=400 rpm &Ub=26.33 m/s 

 
 

Conclusions 
The fluid flow and pressure drop for concentric and eccentric annuli of various radii ratios are 

investigated for different eccentricities under stationary and rotating inner pipe using 3D CFD 

model. The present work is validated in terms of axial and tangential velocity profiles in an 

eccentric annulus (ε= 0.5) for a fully developed turbulent flow while the inner cylinder rotates at 

ω=300 rpm. Close agreement is established with experimental and numerical data reported in the 

literature. Based on the reported results, the following conclusions may be drawn: 

 The main flow is dominated by the axial Poiseuille flow and Taylor vortices do not form 

in the annuli of radii ratios from 0.2 to 0.8 with eccentricity of 0.9 under fully developed 

turbulent flow when the inner cylinder rotates at 200-400 rpm.  

 
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a
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 The axial velocities are nearly in the range of 1.076-1.433Ub in the wider annular space 

(P1) of the eccentric annulus for all radii ratios at all eccentricities.  

 The axial velocity in the narrower space (P2) of the eccentric annulus is significantly 

lower (0.07Ub) than that in the wide space of the annulus. 

 Wide annular channels (small radii ratio) are less sensitive to the rotation of the inner 

cylinder than the narrow annular channels (large radii ratio). Thus, the effect of 

eccentricity on the velocity becomes more influential as the radii ratio increases (small 

annular space) and vice versa. 

 The effect of eccentricity is more influential on the axial and tangential velocity 

distributions, in the small space (P2) of the eccentric annulus. Axial velocity decreases 

while tangential velocity increases as the eccentricity increased. 

 The large effect of bulk velocity (Ub =14.87 m/s) dominates the small effect of tangential 

velocity at ω=200 rpm.  Thus, similar axial velocity contours resulted at ω=0 and 

200rpm. 

 The pressure drop increases significantly as either the rotational speed or the bulk fluid 

velocity increases. The pressure drop at a radius ratio of 0.8 is greater than that at a radius 

ratio of 0.2 by more than an order of magnitude.  

 The eccentricity effect on the pressure drop is insignificant for radius ratios of 0.2, 0.4 

and 0.6. Nevertheless, the pressure drop decreases significantly as the eccentricity 

increases at radius ratio 0.8.  

 

 

 

References 
[1]   Abou-Ziyan, H.Z., Helali, A.H.B., and Selim, M.Y.E.  “Enhancement of forced 

convection in wide cylindrical annular channel using rotating inner pipe with interrupted 

helical fins,” ”, International Journal of Heat and Mass Transfer, ” 2016, pp. 996–1007.  

[2]   Adebayo, D.S. and Rona, A.  “The Three-Dimensional Velocity Distribution of Wide 

Gap Taylor-Couette Flow Modelled by CFD,” ”, International Journal of Rotating 

Machinery, ” 2016, pp. 1–11.  

[3]   Dumont, E., Fayolle, F., Sobolík, V., and Legrand, J.  “Wall shear rate in the Taylor-

Couette-Poiseuille flow at low axial Reynolds number,” ”, International Journal of Heat 

and Mass Transfer, ” 2001, pp. 679–689.  

[4]   Moser, K.W., Raguin, L.G., Harris, A. et al.  “Visualization of Taylor-Couette and spiral 

Poiseuille flows using a snapshot FLASH spatial tagging sequence,” ”, Magnetic 

Resonance Imaging, ” 2000, pp. 199–207.  

[5]   Rehme, B.K.  “Turbulent flow in smooth concentric annuli with small radius ratios,” ”, J . 

Fluid Mech, ” 1974, pp. 263–287.  

[6]   Wein, O., Nebřenský, J., and Wichterle, K.  “Non-Newtonian flow in annuli,” ”, 

Rheologica Acta, ” 1970, pp. 278–282.  

[7]   Ait-Moussa, N., Poncet, S., and Ghezal, A.  “Numerical Simulations of Co- and Counter-

Taylor-Couette Flows: Influence of the Cavity Radius Ratio on the Appearance of Taylor 



Paper: ASAT-17-109-PP  

 

16/16 

Vortices,” ”, American Journal of Fluid Dynamics, ” 2015, pp. 17–22.  

[8]   Chung, S.Y. and Sung, H.J.  “Large-eddy simulation of turbulent flow in a concentric 

annulus with rotation of an inner cylinder,” ”, International Journal of Heat and Fluid 

Flow, ” 2005, pp. 191–203.  

[9]   Wereley, S.T. and Lueptow, R.M.  “Velocity field for Taylor – Couette flow with an axial 

flow,” ”, Physics of Fluids, ” 1999, pp. 3637–3649.  

[10]   Bicalho, I.C., dos Santos, D.B.L., Ataíde, C.H., and Duarte, C.R.  “Fluid-dynamic 

behavior of flow in partially obstructed concentric and eccentric annuli with orbital 

motion,” ”, Journal of Petroleum Science and Engineering, ” 2016, pp. 202–213.  

[11]   Hamd, R.F.  “Effect of Angular Velocity of Inner Cylinder on Laminar Flow through 

Eccentric Annular Cross Section Pipe,” ”, Asian Transactions on Engineering, ” 2013,.  

[12]   Neto, J.L.V., Martins, A.L., Neto, A.S., Ataíde, C.H., and Barrozo, M.A.S.  “CFD applied 

to turbulent flows in concentric and eccentric annuli with inner shaft rotation,” ”, 

Canadian Journal of Chemical Engineering, ” 2011, pp. 636–646.  

[13]   Nakashima, C.Y. and Caetano, E.F.  “Calculation Of Pressure Drop In Narrow Rotating 

Annular Clearances,” ”, Engenharia Térmica (Thermal Engineering), ” 2008, pp. 27–34.  

[14]   Escudier, M.P., Gouldson, I.W., Oliveira, P.J., and Pinho, F.T.  “Effects of inner cylinder 

rotation on laminar flow of a Newtonian fluid through an eccentric annulus,” ”, 

International Journal of Heat and Fluid Flow, ” 2000, pp. 92–103.  

[15]   Nouri, J. and Whitelaw, J.  “Flow of Newtonian and Non- Newtonian Fluids in a 

Concentric Annuius With Rotation of the inner Cylinder,” ”, International Journal of Heat 

and Fluid Flow, ” 1997, pp. 236–246.  

 


