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Solution of Heat Transfer Problem for Thick Walled Automatic 

Weapon Barrel Subjected to Continuous Firing 
 

{M. Ghanem*, O. Abdelsalam†, S. Guirgis‡ and M. S. Aboel Khair§}**   

 

Abstract: In this paper, analytical solution of time-dependent heat diffusion equation in 

cylindrical coordinate is derived and solved mathematically for calculating the temperature 

distribution in thick walled weapon barrel subjected to successive heating and cooling 

convections and radiations due to continuous firing. The analytical solution has been validated 

by two numerical models: One is executed by MATLAB to simulate the temperature 

distribution due to burst fining adopting same assumptions used in analytical model. On other 

hand, Finite Element model is developed in the environment of ANSYS to solve the problem 

studying the weight of these assumptions. The results reflect the effect of heat accumulation 

and the cooling period between two sequential rounds. The temperature-time curves calculated 

on both inner and outer surfaces of the barrel show good agreement between the analytical and 

the numerical MATLAB models. However remarkable difference between the F.E.M and the 

analytical model is presented and discussed. 

 

Keywords: Automatic weapons, heat accumulation, thick walled barrels, burst firing, transient 

thermal. 

 

Nomenclature  
k Thermal conductivity  [W/m k]  T Temperature [k] 
C Specific heat [J/kg k] ρ Density [kg/ m3] 
α Thermal diffusivity [m2/s] q̇ Heat generated from barrel 

Q Heat transfer energy [j] t Time [s] 

hgas 
Gases convection coefficient [W/
m2 k] 

h∞ Ambient convection coefficient 

[W/m2 k] 
Tgas Gases temperature [k] T∞ Ambient temperature [k] 

𝐴 Area [m2] r Radius [m] 
Ri Inner radius [m] Ro Outer radius [m] 
ε Emissivity of the barrel surface σ Stefan–Boltzmann constant 

To Initial temperature of barrel [k] 𝑣𝑝 Projectile velocity [m
𝑠⁄ ] 

𝑝 Pressure of gases [pa] 𝜓 Relative burnt mass of propellant 

𝑝𝑀 Pressure of gases at muzzle [pa] 𝑏 Exponent of AAPG 

�̅� Mean velocity of gases [m
𝑠⁄ ] ρ̅ Mean pressure of gases [pa] 

 NuD Nusselt number  RaD Rayleigh number 
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k∞ Ambient thermal conductivity  
[W/m k]  

hg
̅̅ ̅ Average gases convection 

coefficient [W/m2 k] 
D outer diameter of the barrel [m] 𝐶, 𝑛 Constants which depend on  RaD 

Yo, Y1 Second type Bessel function of 

degree zero and degree one 

respectively 

Jo, J1 First type Bessel function of degree 

zero and degree one respectively 

tEA Time of additional action period [s] Tgas
̅̅ ̅̅ ̅ Average gases temperature [k] 

 

 

1. Introduction  
Barrel bore surface receives large amount of heat resulting from combustion of ammunition 

propellants and friction between the projectile jacket and the barrel bore. Before another round 

is fired, the barrel has a very short time to cool down. Nevertheless, there is amount of heat 

doesn’t transfer by means of convection or radiation to the environment that leads to increase 

of the temperature through the thickness of barrel wall when firing in bursts. 

During continuous firing, the gases flow “characterize by high temperature and high pressure” 

looks like thermal pulses. At the same time, the gun tube is cooled by the air around its outer 

surface and at the inner surface when the projectile leaves the barrel and before the next round, 

but combined convection heat transfer coefficient associated with natural cooling is limited. 

Which leads to heat accumulates and causes the barrel to reach a high temperature which should 

be limited by the so called “cock-off temperature” which is the temperature at which the 

cartridge is pre-ignited before complete locking of the breech system due to high temperature. 

Consequently, the effect of the thermal pulses is rapid heating and cooling to the barrel wall. 

This phenomenon led to a dramatic change in temperature of the gun barrel wall, [1]. 

Accordingly, dynamic temperature difference effect is produced, namely, thermal shock.  

The inner surface of the barrel lining is a brittle electroplating chromium layer, it is liable to 

cracks and crack extension under the action of repeated thermal shocks, in turn, and lead to the 

inner surface of the barrel is destroyed. The research by B. Lawton [2] shows that the thermal 

effect is the internal cause of the chrome layer cracking, and the process of the projectile 

engraving in the grooves of the barrel rifle is the external cause of the chrome layer cracking. 

Repeated thermal effect will make the barrel bore geometry shape change. This may lead to a 

decrease the muzzle velocity, projectile stability, the firing accuracy and the tactical technical 

performance of the machine gun declining, [3]. 

Various mathematical methods are available for solving heat conduction in a composite 

medium, including Laplace transform method, [4, 5], orthogonal expansion technique[6-8], 

Green’s function approach, [9], line heat-source method, [10, 11] and integral transform 

technique, [12] … etc. Recently, rapid advances of computers and software have generated 

growing interest in solving more general problems in multilayered materials, together with 

various complexities, for example, involving the one-dimensional [13] or two-dimensional n-

layer materials [14], time-dependent boundary conditions [15]. In this paper, the solution of the 

1-D diffusion equation with time-dependent boundary conditions is solved analytically using 

algebra text box, but using some assumptions and the solution is verified using two numerical 

solutions one with MATLAB toolbox with the same assumptions used in analytic solution and 

the other with ANSYS with real boundary conditions. 

 

 

2. Governing Equations 
 

The general heat diffusion equation is, [16]:  
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For constant thermal conductivity (k) in three dimensions: 

 

 ⟹
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
+

q̇

k
=

1

α

∂T
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            , α =

k

Cρ
 (2) 

 

The cylindrical coordinates r, φ and z are used to represent the gun barrel. The gun barrel is 

centered along the z-axis with the projectile base at  z = 0  at time t = 0. Denoting r = Ri and 

r = Ro as the inner and outer radii of the barrel, respectively, thus the barrel temperature 

distribution T(r, φ, z) is represented as follows: 

 

 ⟹
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂φ2
+

∂2T
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1

α

∂T
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 (3) 

 

According to Newton’s law of cooling, [16]  

 

 
∂Q

∂t
= hgas𝐴(T − Tgas) (4) 

 

From continuity at the boundary, we equate the rate of heat transfer from the gas to the surface 

with the rate of heat transfer from surface to the barrel volume: 

 

 
1

𝐴

∂Q

∂t
= k

∂T

∂r
 (5) 

 

On the inner surface of the barrel, there is convective radiative heat transfer between the gas 

and the barrel wall. Thus 

 

 k |
∂T

∂r
|

r=Ri

= hgas(T − Tgas) + εσ(T4 − Tgas
4) (6) 

 

Similarly, the outer surface is represented as cooling is also represented by both convection and 

radiation: 

 

 k |
∂T

∂r
|

r=Ro

= h∞(T∞ − T) + εσ(T∞
4 − T4) (7) 

 

The initial condition at time t =0 defines the temperature throughout the barrel to be equal to 

the ambient temperature for first round: 

 
 T(r, t)t=0 = To (8) 

 

2.1. Analytical Model 

To solve the system of differential equations (3), (6), (7), the function of the heat transfer 

coefficient must be first obtained at each surface (hgas , h∞) and temperatures of the bore gases 

and of the ambient air (Tgas , T∞). 
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2.1.1.  Internal wall boundary condition 

According to equation (6), the expressions of gases temperature (Tgas) and convection 

coefficient of gases (hgas) are needed to be determined as inputs to solve the differential 

equations of the system, the internal ballistics solution according to Charbonier Sugot’s model 

is used to determine the different internal ballistics parameters of namely, projectile 

velocity (𝑣𝑝) , gases pressure (𝑝), gas temperature (Tgas) and the percentage of propellant 

burned (𝜓), all as functions of time. However, the interior ballistics calculation ends once the 

projectile leaves the barrel. After this point, Bravin’s law is used to calculate the gases pressure 

inside the barrel bore as it decays back to the ambient pressure due to discharge of gases: 

 p = 𝑝𝑀𝑒−𝐴𝑡 (9) 

Gases temperature (Tgas)  is assumed to decay exponentially with the same rate as the pressure 

in this period as in equation (9) and as shown in Fig. 1. 

 

 
Fig. 1. Temperature of hot gases history 

 

On the other hand, and according to the empirical equation, [17], the convection coefficient of 

gases (hgas)is determined.  

 hgas = h∞ + 𝜆𝑛�̅�C𝑝�̅� 
(10) 

 𝜆𝑛 = [13.2 + 4 log(200Ri)]−2 

 

In order to estimate mean gases velocity (𝑣 ̅), assume the velocity of gases at the projectile base 

is equal to the projectile velocity (�̅� = 𝑣𝑝), and the velocity of gases at the breech is equal to 

the breech velocity (�̅� = 𝑣𝐵 = 0), under this assumption the value of mean gases velocity (𝑣 ̅) 

is expressed as (𝑣 ̅ = 0.5 ∗ 𝑣𝑝) , mean gases density (ρ̅) is calculated by dividing the mass of 

propellant burnt by the volume from the breech to the projectile base and assumed to decay 

exponentially after the projectile leaves the barrel as assumed for the temperature, and as shown 

in Fig. 2. 

 

2.1.2. External wall boundary condition 

The conditions at the outer wall are very stable in comparison to the inner wall, so the air 

temperature is held constant at 300 [K]. The heat transfer coefficient (h∞) at the outer wall is 

calculated from the definition of the average Nusselt number ( NuD), around the circumference 

of the barrel, which is proportional to the Rayleigh number ( RaD) , the heat transfer coefficient 

is calculated as [18]: 

 

 h∞ =
k∞

𝐷
 NuD =

k∞𝐶

2Ro
 RaD

𝑛 (11) 

   

Where C and n 
are constants and  taken to be C = 0.48 and n = 0.25 for the 

case of a long horizontal cylinder, [18] as shown in Fig. 3. 
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Fig. 2. Convection Coefficient of hot gases 

 

 
Fig. 3. Ambient convection Coefficient 

 

 

2.2. Analytic solution of transient temperature on the barrel thickness 
As the solution of this system is very difficult, the cycle is divide to two stages, first stage ends 

by end of Additional Action Period of powder Gases (AAPG) “the time between the projectile 

leaves the barrel and the complete discharge of powder gases”, and the second stage ends by 

end of function cycle of the weapon and just before firing the next round “cooling time at the 

inner surface of the barrel”. To simplify this system the following assumptions have been 

considered:  

• No heat generated from the element. 

• One dimension, Heat transferred in radial direction only. 

• We neglect the effect of cooling on the outer surface of the barrel, as the process is very 

rapid and its effect is small. 
o The coefficient of convection of gases on first stage is function of time for simplification 

use average value ( hg
̅̅ ̅) “by calculate the area under the curve, as shown in Fig. 4. 

o The temperature of gases on first stage is function of time for simplification use average 

value ( Tgas
̅̅ ̅̅ ̅) “by calculate the area under the curve, as shown in Fig. 5. 
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Fig. 4. Real and average convection coefficient of hot gases 

 

 
Fig. 5. Real gases temperature and average gases temperature 

 

 

2.2.1. Solution of 1st stage 

After using mentioned assumptions the system will be as follows: 

 

 
∂2T

∂r2
+

1

r

∂T

∂r
=

1

α

∂T

∂t
      , 0 ≤ t ≤ tEA 

(12) 

  

The boundary conditions are: 
k |

∂T

∂r
|

r=Ri

= hg
̅̅ ̅(T − Tgas

̅̅ ̅̅ ̅) 

k |
∂T

∂r
|

r=Ro

= 0 

  

And the initial condition is: T(r, t)t=0 = To 

   

Denoting  θ = T − Tgas
̅̅ ̅̅ ̅  

 
∂2θ

∂r2
+

1

r

∂θ

∂r
=

1

α

∂θ

∂t
 (13) 

   

The boundary conditions become: 
k |

∂θ

∂r
|

r=Ri

= hg
̅̅ ̅θ 

k |
∂θ

∂r
|

r=Ro

= 0 
(14) 

  

And the initial condition becomes: 

 
θ(r, t)t=0 = To − Tgas

̅̅ ̅̅ ̅ 
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The Partial Differential Equation (PDE) is solved analytically by multiply 2 Ordinary 

Differential Equations (ODE) one as  f(r)  and other as  f(t) .  "let   θ(r, t) = θ(r)θ(t)" 

 

⟹
∂θ

∂r
= θ(t)

dθ(r)

dr
   ,

∂2θ

∂r2
= θ(t)

d2θ(r)

dr2
   ,

∂θ

∂t
= θ(r)

dθ(t)

dt
 

 

Substitute into heat diffusion equation (13): 

 

⟹ θ(t)
d2θ(r)

dr2
+

1

r
 θ(t)

dθ(r)

dr
=  

1

α
θ(r)

dθ(t)

dt
 

 

By using separation of variables method: 

 

⟹    
1

θ(r)
(

d2θ(r)

dr2
+

1

r

dθ(r)

dr
) =  

1

αθ(t)

dθ(t)

dt
=  −λ2 

∴
d2θ(r)

dr2
+

1

r

dθ(r)

dr
+  λ2θ(r) = 0 ,

dθ(t)

dt
+  αλ2θ(t) = 0 

 

 

r – Problem: 

 

∵
d2θ(r)

dr2
+

1

r

dθ(r)

dr
+ λ2θ(r) = 0 

⟹ r2
d2θ(r)

dr2
+ r

dθ(r)

dr
+  λ2θ(r) = 0 

 

From Bessel’s function, [19]: 

 

 ⟹ θ(r) = AJo(λr) + BYo(λr) (15) 

 

t – Problem: 

 
dθ(t)

dt
+  αλ2θ(t) = 0 

 ⟹  θ(t) = Ce−αλ2t (16) 

 

Then the solutions of the differential equations are: 

 

 θ(r, t) = θ(r)θ(t) = [CJo(λr) + DYo(λr)]e−αλ2t (17) 

 

At Boundary Conditions: 

a) k |
∂θ

∂r
|

r=Ri

= hgθ 

[−λCJ1(λRi) − λDY1(λRi)]e−αλ2t =
hg
̅̅ ̅

k
[CJ0(λRi) + DY0(λRi)]e−αλ2t 
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∴ [−λCJ1(λRi) − λDY1(λRi)] =
hg
̅̅ ̅

k
[CJ0(λRi) + DY0(λRi)] 

⟹ C (
hg
̅̅ ̅

k
J0(λRi) + λJ1(λRi)) + D (

hg
̅̅ ̅

k
Y0(λRi) + λY1(λRi)) = 0 (18) 

b) k |
∂θ

∂r
|

r=Ro

= 0 

 

[−λCJ1(λRo) − λDY1(λRo)]e−αλ2t = 0 

⟹  D = −C
J1(λRo)

Y1(λRo)
 (19) 

Substitute from equation (19) into equation (18): 

 

C [(
hg
̅̅ ̅

k
J0(λRi) + λJ1(λRi)) −

J1(λRo)

Y1(λRo)
(

hg
̅̅ ̅

k
Y0(λRi) + λY1(λRi))] = 0 

⟹ C = 0 OR 
[(

hg
̅̅ ̅

k
J0(λRi) + λJ1(λRi)) −

J1(λRo)

Y1(λRo)
(

hg
̅̅ ̅

k
Y0(λRi) + λY1(λRi))] = 0 

As  C = 0 , Refused as the function diverges at zero [7]. 

 ⟹ Res = [(
hg
̅̅ ̅

k
J0(λRi) + λJ1(λRi)) −

J1(λRo)

Y1(λRo)
(

hg
̅̅ ̅

k
Y0(λRi) + λY1(λRi))] = 0 (20) 

 

The roots of equation (20) are determined numerically as shown in Fig. 6. 

 
Fig. 6. plot curve for equation (20) 

 

From initial conditions Ci at each λi can be determined. 

θ(r, 0) = To − Tgas
̅̅ ̅̅ ̅ & θ(r, 0) = ∑ CiJo(λir) + DiYo(λir)

∞

i=1

= To − Tgas
̅̅ ̅̅ ̅ 

(21) 

θ(r, 0) = ∑ Ci (Jo(λir) −
J1(λRo)

Y1(λRo)
Yo(λir))

∞

i=1

= To − Tgas
̅̅ ̅̅ ̅ 

 



Paper: ASAT-17-137-TH 

 

9/14 

Bessel functions are orthogonal when they are multiplied by the weighting function “r”. 

Therefore, each side of the above equation is multiplied by the product of the ith Eigen function 

and “r” and then integrated between the two homogenous boundaries, from r = Ri to  r = Ro. 

As usual, only theith term in the series remains: 

 

Ci ∫ (Jo(λir) −
J1(λirout)

Y1(λirout)
Yo(λir))

2

rdr
Ro

Ri

= (To − Tgas) ∫ (Jo(λir) −
J1(λirout)

Y1(λirout)
Yo(λir)) rdr

Ro

Ri

 

Ci = (To − Tgas
̅̅ ̅̅ ̅)

∫ (Jo(λir) −
J1(λirout)
Y1(λirout)

Yo(λir)) rdr
Ro

Ri

∫ (Jo(λir) −
J1(λirout)
Y1(λirout)

Yo(λir))

2

rdr
Ro

Ri

 ⇒ Ci = (To − Tgas
̅̅ ̅̅ ̅)

I1

I2

 

Using MATLAB toolbox to get Ci and solve first stage, after solution the temperature time 

curve on the inner surface on this stage are as shown in Fig. 7. 

 
Fig. 7. Temperature Time curve for first stage at inner surface of barrel 

 
 

2.2.2. Solution of second stage: 

Solution of this stage looks like the solution mentioned in section (2.2.1) but by assuming  

 
θ = T − T∞ 

 

The solution of this stage is shown in Fig. 8. 

 

 
Fig. 8. Temperature time curve for second stage at inner surface of barrel 

 

The solution of first round is shown in Fig. 9,  
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Fig. 9. Temperature time curve for first round at inner surface of barrel 

 

 

3. Numerical solution of transient temperature distribution through the barrel 

thickness 
 

3.1. Using MATLAB 
 

The solution of differential equations (13), (14), Error! Reference source not found., Error! 

Reference source not found. is performed via MATLAB built-in numerical differential 

equation solver, pdepe for solving initial-boundary value problem of one dimensional 

parabolic PDEs. This solver allows many user-options such as the desired precision, time step 

size…., etc. 

pdepe toolbox adopts random time step during calculations. To increase precision calculations 

between rounds, the maximum step size is set to be 0.001 millisecond. The thickness of the 

barrel wall is divided into 25 equi-spaced points. 

The time interval of the function cycle which is 100 milliseconds is divided into two stages 

where there a different time step is adopted in each stage. The first stage period is the first 5 

milliseconds of the cycle ended by the end of additional action period where the convection 

coefficient varies rapidly; and the second stage for the remaining 95 milliseconds where the 

conditions is much calm. So, the solver default time step size is sufficient to optimize 

computational time. 

MATLAB toolbox “pdepe” used to calculate inner temperature and outer temperature at inner 

layer and outer layer respectively for successive 10 rounds, and compared with analytic solution 

by maximum difference between two solutions is less than 6% with respect to analytical 

solution at point of end of function cycle as shown in Fig. 10 and Fig. 11. 

 
Fig. 10. Temperature time curve for 10 rounds at inner surface for analytical solution and 

numerical solution 
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Fig. 11. Temperature time curve for 10 rounds at surface layer for analytical solution and 

numerical solution 

3.2. Using ANSYS 

 

The finite element model of an automatic rifle barrel is constructed in the environment of 

ANSYS 16 WORKBENCH. Using finite element technique based on Galerking weighted 

residual or variational approaches, one may cast the above governing couple thermo-elastic 

differential equations into the finite element form as [20]: 

 [
[𝑚] [0]
[0] [0]

] {
{�̈�}

{�̈�}
} + [

[0] [0]

[𝐶𝑡𝑢] [𝐶𝑡]
] {

{�̇�}

{�̇�}
} + [

[𝐾] [𝐾𝑢𝑡]

[0] [𝐾𝑡]
] {

{𝑢}
{𝑇}

} = {
{𝐹}
{𝑄}

} (22) 

   

Where [m] Is the element mass matrix. 
 {T} Is the temperature vector. 
 [K] Is the element stiffness matrix. 
 {F} Is the element pressure vector. 
 [Ct] Is the element specific heat matrix. 
 [Kut] Is the element thermo-elastic stiffness matrix. 
 [Ctu] Is the element thermo-elastic damping matrix. 
 {Q} Is the thermal flux vector. 

 

The finite element models of the two-layer cylinder subjected to different thermal dynamic 

loads have been constructed.  A coupled-field solid element SOLID226 [20] with capability to 

perform coupled thermo-elastic analysis has been selected to discrete the domain and obtain the 

temperature profile through the thickness of the barrel. The element has brick geometry with 

20 nodes locating on each corner and middle side of the brick. For structural-thermal analysis, 

each node has 4 degrees of freedom (DOF) including three translational elastic displacements 

and temperature. It should be noted that here the transient thermal loads are applied 

symmetrically in radial direction. Thus, only displacement degrees of freedom in radial 

direction and temperature will be extracted, as shown in Fig. 12.  
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Fig. 12. Finite element model for barrel cylinder 

 

Transient thermal module is used to calculate inner temperature and outer temperature at inner 

and outer surfaces, respectively for successive 10 rounds, and compared with analytic solution 

and MATLAB numerical solution. The maximum difference between the two numerical 

solutions is less than 8% with respect to analytical solution at point of end of function cycle as 

shown in Fig. 13 and Fig. 14. 

 
Fig. 13. Temperature time curve for 10 rounds at inner surface for analytical solution and two 

numerical solutions 

 
Fig. 14. Temperature time curve for 10 rounds at outer surface for analytical solution and two 

numerical solutions (has to be changed or start from 300K) 

 

To study the effect of relaxation time between bursts, different regime of fire has been used for 

firing 10 rounds as 3 successive rounds burst then two second relaxation time before the next 

burst. The analytical solution is compared with another numerical solution by ANSYS as shown 

in Fig. 15 and Fig. 16 with maximum difference between two solutions is less than 6% with 

respect to analytical solution at point of end of function cycle 
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Fig. 15. Temperature time curve for 10 rounds each successive 3 rounds there are 2 [s] rests 

inner surface for analytical solution and ANSYS numerical solution 

 

 
Fig. 16. Temperature time curve for 10 rounds each successive 3 rounds there are 2 [s] rests 

outer surface for analytical solution and ANSYS numerical solution 

 (has to be changed or start from 300K)  

 

 

 

4. Conclusion 
In this paper, we derive the diffusion equation with time dependent non-homogeneous boundary 

conditions in one mono-block automatic rifle barrel and verified with numerical solution with 

same assumptions and also with a F.E.M with real change of the convection coefficients with 

time. 

 The temperature difference between the numerical solutions is less than 10% with respect to 

the analytic solution at the end of the function cycle especially for the F.E.M. That declares the 

effect of the using the real time convection coefficients in the finite element model instead of 

the mean convection coefficient in the other two models.  

Also, the relaxation time between bursts has a remarkable effect on the temperature distribution 

through the wall thickness of the barrel as it reduces the temperature of the inner surface by 5% 

and 6% at the outer surface of the barrel at the end of the function cycle after firing ten rounds. 

By this method of solution, if an alternative barrel material is desired, the only new input data 

required for this model would be the thermal properties for that material. Then the barrel 

temperature trends for various firing schedules can be quickly calculated for the new material 

to determine if the material would be an effective replacement. Additionally, depending on the 

strength of the material, there may be a desire to decrease the barrel thickness, which can be 

done quickly in this model by changing the outer radius. On the other hand, these models can 

be used to determine the optimum regime of fire for any gun barrel.  
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