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ABSTRACT 

When N = 1 D = 11 supergravity is compactified on CY threefold to N = 2 D = 5 supergravity, the action of 

the last is given in terms of the geometry of the CY manifold space, namely, in terms of the hypermultiplets. 

There are (zi : i= 1,...,h2,1 )  complex structure moduli in the moduli space of the CY manifold which’s a special 

 manifold with a metric Gij̅ . We solve the field equations of the complex structure moduli with the 

solution of the Einstein field equations to the moduli velocity norm  Gij̅ z
izj̅  in the case of a 3- brane filled 

with  radiation, dust, and energy embedded in the bulk of D = 5 supergravity. We get the time dependence of 

the moduli and the metric. Then we can further deduce the geometry of the moduli space by getting the  

potential that directly relates to the volume of the CY manifold. 
 

Keywords: Supergravity; Cosmology; General relativity; Extra dimensions; Calabi-Yau manifold.  

1. INTRODUCTION 

The compactification of string theory over 

Calabi-Yau manifolds yields two sets of 

parameters [1, 2]. The parameters correspond to 

the structure of Calabi-Yau manifold M as a 

complex manifold and the deformation of the 

 metric of the complex structure space. 

And parameters corresponding to the 

deformation of M as a complex  

manifold 𝑀𝐾 Calabi-Yau 3-folds admit H3 

homolgy group that can be Hodge decomposed 

as: 

𝐻3 =  H3,0 ⊕  H2,1 ⊕ 𝐻1,2 ⊕ 𝐻0,3.             (1) 

So CY 3-folds have a single (3,0) 

cohomology form, where the hodge number 

h(3,0) = dim(H3,0) = 1. We will call the 

holomorphic volume form as , (2,1) forms 

related to 𝑀𝐶, with a Hodge number h2,1 

determines the dimensions of 𝑀𝐶, and (1,2) 

forms related to 𝑀𝐾, with a Hodge number h1,2 

determines the dimensions of 𝑀𝐾 . The 

deformation of M can be done by either the 

deformation of 𝑀𝐶 or the deformation of the 

 form K of 𝑀𝐾 or both. The  form 

is defined by: 

𝐾 = 𝑖 𝑔𝑚𝑛̅  𝑑𝜔𝑚 ∧ 𝑑𝜔𝑛̅.                             (2) 
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The holomorphic coordinates 𝑖, 𝑗̅ =

1, … , 𝑚, where 2 𝑚 is the dimension of the 

manifold. The CY metric is defined by 

𝑔𝑚𝑛̅ =  𝜕𝑚𝜕𝑛̅ 𝜅,                   (3) 

where κ is the K𝑎̈hler potential. This paper is 

devoted to explore the space of the complex 

structure moduli 𝑀𝐶 that is described by the 

(2,1) forms 

𝜒𝑖|𝑚𝑛𝑝̅ =  −Ω𝑚𝑛
𝑟̅  ( 

𝜕𝑔𝑝̅ 𝑟̅

𝜕𝑧𝑖  ) ,           (4) 

where (zi : i= 1,...,h2,1 ) are the parameters or the 

moduli of the complex structure space. Each  

"𝑖 " defines a (2,1) cohomology class. It’s 

important here to declare that zi can be treated 

as complex coordinates that define a  

metric  𝐺𝑖𝑗̅ on 𝑀𝐶 as follows: 

 
      (5) 

where VCY is the CY volume.  Gij̅  is related to 

the K𝑎̈hler potential by 

= ,                           (6) 

that leads to a relation between 𝜅 and the 

volume form 

  ∫ Ω ∧ Ω̅ =  -ie-κ
M

                    (7) 

gives that the K𝑎̈hler potential is related to the 

volume of CY manifold simply by [3, 4] 

Vol (M) = e−κ .                     (8) 

We will consider here the Hodge number 

h2,1 = 1, i.e., we have only one moduli z, a 

single K𝑎̈hler metric component G, and the 

dimension of 𝑀𝐶 is unity. In this work we aim 

to find the time dependence of the scalar 

quantity  𝐺𝑖𝑗̅ 𝑧𝑖𝑧𝑗̅ and then to find: 

• The variation of the moduli z and the  

Kähler   metric G with time. 

• The time dependence of the  Kähler   

potential  𝜅 and the Vol (M). 

Our study is based on D = 5 N = 2 

supergravity where the universe is modeled as a 

3-brane embedded in a 5-dimensional bulk. 

Previously [9] we have found that the moduli’s 

velocity norm 𝐺𝑖𝑗̅ 𝑧𝑖𝑧𝑗̅  correlates to the scale 

factors of the brane universe or the bulk and 

significantly corresponds to our own universe 

cosmological time evolution. We have studied a 

3-brane filled by radiation as our very early 

universe and a brane filled by dust, where the 

Friedmann-like equations have been 

numerically solved for a wide range of the scale 

factors'  initial conditions. In all different cases 

Gij̅ z
izj̅ manifested itself as an agent starts with 

very large values causes an early epoch of rapid 

expansion (inflation) then it decays fastly to 

asymptotic values. Here, we will extend that 

study and add to Einstein’s equations a 

cosmological constant term. We will solve the 

field equations in the case of a  3-brane filled 

by radiation, dust and energy (cosmological 

constant Λ), while we consider the bulk’s 

cosmological constant  Λ̃ vanishes. Then we 

will use these results to explore the non-trivial 

topology of the Calabi-Yau manifold. We use 

the system of units Mp= 1 (Mp= 2.4 x 1018  GeV 

= (8  G) -1/2).  

It’s worthy to mention that there are many 

studies about the geometry of the moduli spaces 

for a Calabi-Yau manifold like [5, 6, 7, 8], 

where at [5] for instance CY 3-fold was 

considered as a quintic threefold in the P4 
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projection space with h2,1 = 101. However, we 

don’t need here to make this assumption. 

So this paper is organized as follows: in 

section 1 we introduce the D = 5 N = 2 

supergravity as the dimensional reduction of 

eleven-dimensional supergravity theory over    

a Calabi-Yau  3-fold M . Then we will solve  

the field equations. In section 2  we will 

simplify the moduli field equations and the  

Kähler  metric equation and show how  they 

can be solved using the solution of the moduli’s 

velocity norm  Gij̅ z
izj̅  . In the same section, 

we will introduce the time dependence of the  

Kähler  metric,  the Kähler  potential, and the 

volume of CY manifold. 

1. D=5 N =2 supergravity and its solution 

The five-dimensional N = 2 supergravity 

theory contains two sets of matter fields; the 

vector multiplets, which we set to zero, and our 

main interest: the hypermultiplets. These are 

composed of the universal hypermultiplet 

(ϕ, σ, ζ0, 𝜁0̃)  ; where 𝜙 is the universal axion, 

and the dilaton is proportional to the volume of 

the underlying Calabi-Yau manifold M. The 

remaining hypermultiplet scalars are 

𝑧𝑖, 𝑧𝑖 ̅, 𝜁𝑖,  𝜁𝑖: 𝑖 = 1, … , ℎ2,1 , where the z’s are 

the complex structure moduli of M, and h2,1 is 

the Hodge number determining the dimensions 

of the manifold 𝑀𝐶 of the Calabi- Yau’s  

complex structure moduli1. The fields 

(𝜁𝑖,  𝜁𝑖: 𝐼 = 0, … , ℎ2,1) are the axions, which 

define a symplectic vector space (see [4] for a 

review and more references). The axions are 

 

1A ‘bar’ over an index denotes complex conjugation 

defined as components of the symplectic 

vector: 

                                              (9) 

such that the symplectic scalar product is 

defined by, for example, 

       (10) 

A transformation in symplectic space can be 

defined by 

 

   (11) 
where d is the spacetime exterior derivative, ⋆  

is the five dimensional Hodge duality operator, 

and 𝐺𝑖𝑗̅   is a special K𝑎̈hler metric on 𝑀𝐶. The 

symplectic basis vectors |𝑉〉, |𝑈𝑖〉 , and their 

complex conjugates are defined by 

   
                                                  

                                                                      (12) 

where 𝜅 is the  Kähler  potential on 𝑀𝐶, ( Z, F ) 

are the periods of the Calabi-Yau’s 

holomorphic volume form, and 

                                                        (13) 

where the derivatives are with respect to the 

moduli ( zi, zi̅ ). In this language, the bosonic 

part of the action is given by: 

𝑆5 =  ∫ [ 𝑅 ⋆ 1 −  
1

2 
𝑑𝜎 ∧⋆ 𝑑𝜎 − 𝐺𝑖𝑗̅𝑑𝑧𝑖

5
∧⋆

𝑑𝑧𝑗̅   +  𝑒𝜎  〈𝑑 |𝚲| ⋆ d〉   −  
1

2
e2σ[dϕ +

 〈|d〉] ∧⋆  [dϕ +  〈|d〉] ].   
                                                             (14)



SAFINAZ SALEM, et al. 

 

68 

 

The usual 𝛿𝑆 = 0  gives the following field 

equations for the hypermultiplets scalar fields: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝑑†
 is the D = 5 adjoint exterior derivative, Δ is the Laplace-de Rahm operator and Γ𝑗𝑘

𝑖  is a 

connection on 𝑀𝐶. The full action is symmetric under the following SUSY transformations: 

                                         (19) 

              (20) 

and: 

 

                      (21) 

where  (𝜓1, 𝜓2) are the two gravitini and (𝜁1
𝐼 , 𝜁2

𝐼) are the hyperini. The quantity Y is defined by: 

                                                                                                (22) 

where 𝑁𝐼𝐽 = 𝐼𝑚 (𝜕𝐼𝐹𝐼) The e’s are the beins of the special  Kähler  metric 𝐺𝑖𝑗̅ , the 's are the five- 

dimensional N = 2 SUSY spinors and the Γ ’s are the usual Dirac matrices. The covariant derivative 

D is defined by the usual , where the ω’s are the spin connections and the hatted indices are frame 

indices in flat tangent space. Finally, the stress tensor is: 

 

(15) 

 

(16) 

(17)   

(18) 
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As our main interest is bosonic configurations that 

preserve some supersymmetry, the stress tensor can be 

simplified by considering the vanishing of the 

supersymmetric variations (20, 21); satisfying the   

BPS condition on the brane. This gives 

 𝑇𝜇𝜈 = 𝐺𝑖𝑗̅ ( 𝜕𝜇 𝑧𝑖   )( 𝜕𝜈  𝑧𝑗̅  ) −
1

2
 𝑔𝜇𝜈  𝐺𝑖𝑗̅ ( 𝜕𝛼 𝑧𝑖  )( 𝜕𝛼 𝑧𝑗̅  ),                             (24) 

as was detailed out in [10]. We would like to 

construct a 3-brane that may be thought of as a 

flat Robertson-Walker universe embedded in  D 

= 5. As such we invoke the metric 

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2(𝑡)(𝑑𝑟2 + 𝑟2 𝑑Ω2) +

 𝑏2(𝑡) 𝑑𝑦2,                                                   (25) 

where 𝑑Ω2 = 𝑑𝜃2 + sin2(𝜃) 𝑑𝜙2, a2 (t) is the 

usual Robertson-Walker scale factor, and b(t)  

is a possible scale factor for the transverse 

dimension y (the bulk). The brane is located at 

y = 0 and we ignore all possible y-dependence 

of the warp factors as well as the 

hypermultiplet bulk fields; effectively only 

studying the brane close to its location. In this 

case, Einstein equations 𝐺𝑀𝑁 +  Λ 𝑔𝑀𝑁 = 𝑇𝑀𝑁 

reduce to the Friedmann-like form: 

 

 

               (26) 

Solving these equations numerically in case  

the total density equals the dust plus radiation 

densities 𝜌 = 𝜌𝑟 + 𝜌𝑚  
1

 𝑎4 +
1

𝑎3 , the total 

pressure equals to the radiation pressure 𝑝 =

𝑝𝑟 =
𝑝𝑟

3
, Λ = 1 (de Sitter space), and   Λ̃ =

0 yields the brane’s, and the bulk’s scale 

factors, and |𝐺𝑖𝑗̅ 𝑧𝑖𝑧𝑗̅|  as functions in time Fig. 

(1). Using suitable fitting functions we get the 

solution of the velocity norm of the complex 

structure moduli given by 

𝐺𝑖𝑗̅ 𝑧𝑖𝑧𝑗̅ (𝑡) ≃ −0.5 (𝑡 + 0.004)−0.9.    (27) 

The brane’s scale factor varies with time 

exponentially a(t) ~ e 0.2 t which means the 

brane- universe undergoes an inflationary 

expansion. While the bulk scale factor is given 

by b(t) ~ 0.06 e 0.87 t. 

 

Fig. (1). The scale factor a is represented by the 

solid curve, b by the grey curve, while 𝐺𝑖𝑗̅ 𝑧𝑖𝑧𝑗̅ is 

shown dashed. Λ = 1, Λ̃ = 0, and for initial 

conditions 𝑎[0] = 𝑎′[0] = 𝑏[0] = 𝑏′[0] = 0. 

 

As seen the solution shows a correlation 

between the scale factors of the brane universe 

and the bulk and the moduli norm  𝐺𝑖𝑗̅ 𝑧𝑖𝑧𝑗̅. 

 

2. Calabi-Yau manifold complex structure 

space 

The field equations of the moduli 
  𝑧𝑖  and   

𝑧𝑗̅ (16) can be simplified using the BPS 

condition [10]: 

 

,  

(28) 
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so that they can be written as 

(Δ 𝑧𝑖) ⋆ 1 +  Γ𝑗𝑘
𝑖  𝑑𝑧𝑗 ∧ ⋆ 𝑑𝑧𝑘 +

 𝐺𝑖𝑗̅ (𝜕𝑗̅ 𝐺𝑙𝑘̅)𝑑𝑧𝑙  ∧⋆ 𝑑𝑧𝑘̅ = 0 ,    

(Δ 𝑧𝑖̅  ) ⋆ 1 + Γ𝑗̅ 𝑘̅
𝑖̅  𝑑𝑧𝑗̅ ∧ ⋆ 𝑑𝑧𝑘̅ +

 𝐺𝑖𝑗̅ (𝜕𝑗 𝐺𝑙𝑘̅)𝑑𝑧𝑙  ∧⋆ 𝑑𝑧𝑘̅ = 0 ,                     (29) 

Dropping the differential forms formulation, we 

get: 

∇2𝑧𝑖 + Γ𝑗𝑘
𝑖  𝜕𝜇 𝑧𝑗 𝜕𝜇 𝑑𝑧𝑘 +

 𝐺𝑖𝑗̅ (𝜕𝑗̅ 𝐺𝑙𝑘̅) 𝜕𝜇𝑑𝑧𝑙  𝜕𝜇𝑑𝑧𝑘̅ = 0 ,  

∇2𝑧𝑖̅   + Γ𝑗̅ 𝑘̅ 
𝑖̅  𝜕𝜇 𝑑𝑧𝑗̅ 𝜕𝜇𝑑𝑧𝑘̅ +

 𝐺𝑖𝑗̅ (𝜕𝑗 𝐺𝑙𝑘̅) 𝜕𝜇𝑧𝑙  𝜕𝜇 𝑑𝑧𝑘̅ = 0 .                  (30) 

The connections or the Christoffel symbols are 

related to the metric by [4]: 

 

Γ𝑗𝑘
𝑖 = 𝐺𝑖𝑝̅ 𝜕𝑗𝐺𝑘𝑝̅ ,    Γ𝑗̅ 𝑘̅ 

𝑖̅ =  𝐺𝑝𝑖̅  𝜕𝑗̅ 𝐺𝑘̅𝑝 ,         (31) 

substitute in (30), we get: 

\∇2𝑧𝑖 +  𝐺𝑖𝑝̅ 𝜕𝑗𝐺𝑘𝑝̅   𝜕𝜇 𝑧𝑗 𝜕𝜇 𝑑𝑧𝑘 +

 𝐺𝑖𝑗̅ (𝜕𝑗̅ 𝐺𝑙𝑘̅) 𝜕𝜇𝑑𝑧𝑙  𝜕𝜇𝑑𝑧𝑘̅ = 0 ,  

∇2𝑧𝑖̅   + 𝐺𝑝𝑖̅  𝜕𝑗̅ 𝐺𝑘̅𝑝  𝜕𝜇 𝑑𝑧𝑗̅ 𝜕𝜇𝑑𝑧𝑘̅ +

 𝐺𝑖𝑗̅ (𝜕𝑗 𝐺𝑙𝑘̅) 𝜕𝜇𝑧𝑙  𝜕𝜇 𝑑𝑧𝑘̅ = 0 .                 (32)  

The moduli are independent of the 3- 

spatial dimensions. And consider the Hodge 

number h2,1 = 1, which means we have only one 

moduli 𝑧, its complex conjugate z* , a single  

Kähler metric component G, and the dimension 

of the moduli space 𝑀𝐶 is unity. So that (32) 

simplify to: 

, 

 (33). 

Also, from the Robertson-Walker like 

metric (25), the moduli field equations: 

,      (34) 

. (35) 

Solving the moduli field equation Equ. (34) 

with Equ. (27), gives the moduli’s variation 

with time: 

𝑧(𝑡) ≃ 𝐶 +  
0.001+0.25 𝑡 

(1+250 𝑡)0.6  .                       (36) 

 For  𝑧̇[0] = 0. C is the integration 

constant. We take 𝑧[0] = 1, and C ~ 1.  Also, 

we have made a further approximation here by 

considering the moduli real. In Fig. (2- left) and 

(2- right) the moduli and the moduli velocity 

are plotted versus time, respectively. The 

K𝑎̈hler  metric can be directly obtained by 

substituting the solution of 𝑧̇  in Equ. (27). In 

Fig. (3left) one component of the metric 𝐺𝑖𝑗̅ 

multiplied by a factor 10−2  is plotted versus 

time. Generally speaking, the K𝑎̈hler potential 

is given by: 

    (37) 

in which the  Kähler  metric Equ. (6) has been 

driven. We will use Equ. (6) to get κ  as a 

function in time. According to our 

approximation, it can be written as: 

𝐺 =  𝜕𝑧 𝜕𝑧∗  𝜅 .                                             (38) 

Let all fields depend on time, it becomes: 

𝐺(𝑡) =  
𝜕

𝜕𝑡
 ( 

1

𝑧̇
 

𝑘̇ 

𝑧̇∗ 
 ).                                      (39) 

Solving for the  Kähler  potential, yields: 

                   (40) 



THE IMPLICATIONS OF N=2 SUPERGRAVITY COSMOLOGY…… 

 

71 

 

 

 

 

 

  

Fig. (2). (Left panel): The moduli is plotted versus time. (Right panel): The moduli velocity is 

plotted versus time for C=1, and in case of radiation, dust and Λ filled brane with  Λ = 1, and Λ̃  =
0 .  

 Fig. (3). (Left panel): One component of the  Kähler  metric multiplied by a factor 10-2  is plotted 

versus time. (Right panel): The modules of the K𝑎̈hler  potential of 𝑀𝐶   is plotted versus time. 

 

Fig. (4). (Left panel): The volume of the Calabi-Yau manifold plotted versus time. The Hodge 

number h2,1 = 1. (Right panel): Numeric and analytic Gij̅ z
izj̅ versus time in solid and dashed lines, 

respectively. The Hodge number h2,1 = 1. 
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Fig. (3- right) shows the absolute value of 

the potential plotted versus time. According to 

Equ. (4) the volume of the CY manifold M can 

be obtained as long as the  Kähler  potential is 

known. Fig. (4- left) shows the volume of the 

Calabi-Yau manifold plotted versus time. As 

seen, it increases with time. For the sake of 

comparison, Fig. (4- right) shows  Gij̅ z
izj̅ 

plotted versus time as it’s obtained directly 

from the numeric solution of the field equations 

(26) without any approximations a long a side 

as it’s obtained when solving Equ. (27) with 

Equ. (36). 

3. CONCLUSION 

Exploring the non-trivial topology of the 

Calabi-Yau manifold is still a highly 

demanding quest in theoretical physics. The 

importance of the Calabi-Yau manifold arises 

from its vital role in the compactification of 

many higher dimensional theories. Like when 

compactifying D = 11 supergravity to N = 2, D 

= 5 supergravity over CY 3-fold. In this work 

we have studied a 3-brane embedded in the 

bulk of  D = 5 supergravity, we have solved  

the Friedmann-like equations in the case of  a 

brane filled with radiation, dust, and energy. 

We have shown that in this case, the time 

evolution of the 3-brane coincides with the time 

evolution of our universe, where the moduli’s 

velocity norm  Gij̅ z
izj̅ strongly correlates to the 

scale factor of the brane universe. That means 

the cosmology of our universe can be 

interpreted only by the effects of the bulk of a 

higher dimensional theory. This explanation 

needs more analysis and initial conditions  to  

be verified which we keep to a further study. 

We then used the solutions to explore the 

complex structure space of the CY manifold. 

Since we knew the time behavior of  Gij̅ z
izj̅, 

we have solved the moduli field equation  to  

get the time dependence of the complex 

structure moduli, the  Kähler  metric, the  

Kähler  potential, and the volume of the Calabi-

Yau manifold. That’s for a Hodge number h2,1 = 

1, which means the dimensions  of MC  are 

unity and there is a single moduli, since zi are 

considered the coordinates that define MC. The 

time dependence of the Kähler  potential is 

negative like the  Kähler  metric. The absolute 

value of the potential increases with time. Also, 

the volume of the CY manifold infinitely 

increases with time which is a deduction that 

the brane- world and the bulk are keeping 

expanding with time. 
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 Calabi-Yauعلى طوبولوجيا نسيج   N=2 , D=5   تطبيقات الجاذبية الفائقة

 ( 1)صلاح  هالة هاشم، (23،)معتز امام ،  (1) صافيناز سالم

 قسم الفيزياء ، كلية العلوم ، جامعة الازهر )فرع بنات( ، القاهرة، مصر .1

 قسم الفيزياء ،  جامعة ساني  بكورتلاند ، نيويورك ، الولايات المتحدة الامريكية. .2

 جامعة زويل للعلوم والتكنولوجيا ، الجيزة ، القاهرة.  .3
 

   الملخص

 

 Calabi-Yauباستتتادان نستتي   N=2 , D=5إلى الجاذبية الفائقة  N=1 , D=11عند تقليل أبعاد الجاذبية الفائقة 

، حرفيا يعتمد علتى حقتتول يميتتة تسمتتتى  Calabi-Yauفإن لاجران  النظرية الجديدة يعتمد تماما على طوبولوجيا نسي  

Moduli      تعرف بأنها احداثيات نسيCalabi-Yau    عند حتتل معتتادلات المجتتال للنظريتتة فإننتتا نستتتطي  إيجتتاد المعقد .

، أي إيجتتاد الستتلوك النمنتتج لتتل  Calabi-Yauم  التتنمن وبالتتتالج إيجتتاد جميتت  اجتتائ  نستتي    Moduliال     سلوك

metric  الااجة به والسلوك النمنج لل   potentiel   الاا  به ويذلك السلوك النمنج لحجتتن النستتي . فتتج ستتذا الستتيا

ندرس يوننا المعروف يسطح ثلاثج الأبعاد ) ميانية ( موجود فتتج نميتتان اماستتج الأبعتتاد. لحتتل معتتادلات المجتتال فإننتتا 

التطتتور اليتتونج  اعتبرنا سذا السطح الثلاثج ملئ بإشعاع ومادة عادية وطاقة تسبب فج تمدد متسارع لهذا السطح تماما مثل

 لعالمنا. 

 


