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ABSTRACT

When N =1 D = 11 supergravity is compactified on CY threefold to N = 2 D = 5 supergravity, the action of
the last is given in terms of the geometry of the CY manifold space, namely, in terms of the hypermultiplets.
Thereare (z': i=1,...,h21) complex structure moduli in the moduli space of the CY manifold which’s a special
Kdhler manifold with a metric Gj; . We solve the field equations of the complex structure moduli with the

solution of the Einstein field equations to the moduli velocity norm Gi]—zizl_ in the case of a 3- brane filled

with radiation, dust, and energy embedded in the bulk of D = 5 supergravity. We get the time dependence of
the moduli and the metric. Then we can further deduce the geometry of the moduli space by getting the K &hler

potential that directly relates to the volume of the CY manifold.
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1. INTRODUCTION

The compactification of string theory over
Calabi-Yau manifolds vyields two sets of
parameters [1, 2]. The parameters correspond to
the structure of Calabi-Yau manifold M as a
complex manifold and the deformation of the
Kéhler metric of the complex structure space.
And parameters corresponding to the
deformation of M as a complex Kdhier
manifold M, Calabi-Yau 3-folds admit H?
homolgy group that can be Hodge decomposed
as:

H3 — H3,0 @ H2,1 @ H1,2 @ H0’3. (1)
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So CY 3-folds have a single (3,0)
cohomology form, where the hodge number
heo = dim(H*%) = 1. We will call the
holomorphic volume form as , (2,1) forms
related to M., with a Hodge number hy:
determines the dimensions of M., and (1,2)
forms related to My, with a Hodge number h;
determines the dimensions of M. The
deformation of M can be done by either the
deformation of M, or the deformation of the
K éhler form K of My or both. The K éhler form
is defined by:

K=igms do™ Ado™. 2)

Journal Homepage: https.//absb.journals.ekb



https://absb.journals.ekb/
mailto:safinaz.salem@azhar.edu.eg

66 SAFINAZ SALEM, et al.

The holomorphic  coordinates i,j =
1,...,m, where 2m is the dimension of the
manifold. The CY metric is defined by

Imn = OmOn K, 3)
where x is the Kdhler potential. This paper is
devoted to explore the space of the complex
structure moduli M, that is described by the

(2,1) forms
7 0gp7
Ximng = —Qmn ( — ), (4)

where (z': i= 1,...,h2,1) are the parameters or the

moduli of the complex structure space. Each
"i "defines a (2,1) cohomology class. It’s
important here to declare that z' can be treated
as complex coordinates that define a Kdhier
metric G;; on M as follows:

c N/ ] 1 mn .rp (¢
Voy Gi(52)(027) = = ]M " g7 (Sgmr) (3gep)

4
(5)
where Vcy is the CY volume. Gj; is related to

the Kdahler potential by
G;p=0; A K, (6)
that leads to a relation between xkand the
volume form
JuQAQ = -ie® (7
gives that the Kdhler potential is related to the
volume of CY manifold simply by [3, 4]

Vol (M) =e7™¥. (8)

We will consider here the Hodge number
h,1 = 1, i.e.,, we have only one moduli z, a
single Kdhler metric component G, and the
dimension of M, is unity. In this work we aim
to find the time dependence of the scalar
quantity G;;z'z’ and then to find:

e The variation of the moduli z and the

Kahler metric G with time.

e The time dependence of the Kaihler
potential x and the Vol (M).

Our study is based on D = 5 N = 2
supergravity where the universe is modeled as a
3-brane embedded in a 5-dimensional bulk.
Previously [9] we have found that the moduli’s
velocity norm G;; z'zJ correlates to the scale
factors of the brane universe or the bulk and
significantly corresponds to our own universe
cosmological time evolution. We have studied a
3-brane filled by radiation as our very early
universe and a brane filled by dust, where the
Friedmann-like  equations  have been
numerically solved for a wide range of the scale
factors' initial conditions. In all different cases
Giy z!z) manifested itself as an agent starts with
very large values causes an early epoch of rapid
expansion (inflation) then it decays fastly to
asymptotic values. Here, we will extend that
study and add to Einstein’s equations a
cosmological constant term. We will solve the
field equations in the case of a 3-brane filled
by radiation, dust and energy (cosmological
constant A), while we consider the bulk’s
cosmological constant A vanishes. Then we
will use these results to explore the non-trivial
topology of the Calabi-Yau manifold. We use
the system of units My= 1 (My= 2.4 x 10®® GeV
= (8 G) ).

It’s worthy to mention that there are many
studies about the geometry of the moduli spaces
for a Calabi-Yau manifold like [5, 6, 7, 8],
where at [5] for instance CY 3-fold was

considered as a quintic threefold in the P*
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projection space with hz; = 101. However, we
don’t need here to make this assumption.

So this paper is organized as follows: in
section 1 we introduce the D = 5 N = 2
supergravity as the dimensional reduction of
eleven-dimensional supergravity theory over
a Calabi-Yau 3-fold M . Then we will solve
the field equations. In section 2 we will
simplify the moduli field equations and the
Kahler metric equation and show how they
can be solved using the solution of the moduli’s

velocity norm Gi]—zizl_ . In the same section,

we will introduce the time dependence of the
Kahler metric, the Kahler potential, and the
volume of CY manifold.
1. D=5 N =2 supergravity and its solution
The five-dimensional N = 2 supergravity
theory contains two sets of matter fields; the
vector multiplets, which we set to zero, and our
main interest: the hypermultiplets. These are
composed of the universal hypermultiplet
($,0,2° ;) ; where ¢ is the universal axion,
and the dilaton is proportional to the volume of
the underlying Calabi-Yau manifold M. The
remaining  hypermultiplet  scalars  are
z4,25, ¢, {i=1,..,hy,, where the 2’s are
the complex structure moduli of M, and hz is
the Hodge number determining the dimensions
of the manifold M, of the Calabi- Yau’s
modulit. The fields

(¢4, {:1=0,..,hy,) are the axions, which

complex  structure

define a symplectic vector space (see [4] for a

review and more references). The axions are

1A ‘bar’ over an index denotes complex conjugation

defined as components of the symplectic

vector:

I
|E>—( ° )
Cr (9)

such that the symplectic scalar product is

defined by, for example,

=77 _7 7l

5}—€€]_€]‘T- (10)
A transformation in symplectic space can be
defined by

(d=| A [xd=) =2 (d= | V)A(V | xdZ) +
2GY (d= | U;)A(Uz; | %dE) — i (dZ /|\ *dZ)

]
|:H
Lt

(11)
where d is the spacetime exterior derivative, *

is the five dimensional Hodge duality operator,
and G;; is a special Kahler metric on M. The
symplectic basis vectors |V),|U;) , and their

complex conjugates are defined by

[ 27 _ e 2!
|V):e? |I/'>:e§ ~
Fr Fy
(12)
where k is the Kahler potential on M, (Z, F)
are the periods of the Calabi-Yau’s
holomorphic volume form, and
. 1
Ui} = [ViV) = [@t +3 ((‘)JC)] V>
_ 1 _
U = |ViV) = [ik+ 5(3;1/0] 4
(13)

where the derivatives are with respect to the
moduli (z!,z"). In this language, the bosonic
part of the action is given by:

Ss = [[[R*1— ~do Axdo — Gyzdz' A
dzl + e’ (dE|A| xdE) — %ez"[dd)+

(E|dE)] Ax [d + (E|dE)] ].
(14)
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The usual S =0 gives the following field

equations for the hypermultiplets scalar fields:

(A0) 1+ (EE] A d=) - ¥ [do + (2| E)| Axldo + 2] = 0 s

‘ S 1
(M)*1+r;.kdzﬂmdzk+§eaewa; (dE|A[xdZ) = 0
A
- - = 7 ]_ T
(Az’)*1+P§,-Cdzm*dz’f+§ef’a”aj (@E|AkdZ) = 0 09
dH e |AdE) — e [dg + (E]d)]|5)} = 0 @D

d [edp+e (2]az)] =0 P

where dt is the D = 5 adjoint exterior derivative, A is the Laplace-de Rahm operator and l“jik is a

connection on M. The full action is symmetric under the following SUSY transformations:

Oc '2_,’)1
66@’2
3eEY
3.£9
and:
8e&
8k

1 .
D61+Z{ie"[d¢+(5|d5)} Yiep, ez{(V|dZ)e

1 g
DEQ 1 {ieo [d(}b -+ (E | dEH Y} €9+ ez <V | dE) €1

(19)
o 1 7 , —_ —_
e2 (V| 0,E) Ve {5 (0,0) %e“ [(Du0) + (E | (9,,,:)]} THeq
o - 1 i
ez (V| 0,=Z)IMe —l—{—(a o)+ =€ [(0,0) + E|Z)E)}T“€
< | H > 2 9\ 9 { ] ( (G ] 1 (20)
e5 el (Uj | 0,E) THe ezi (8,,,2:5") [ey
eTell <U§ | 9,2) ey + egj (9,27) They 1)

where (y1,1)?) are the two gravitini and (¢7, ¢1) are the hyperini. The quantity Y is defined by:
v Z'Npdz7  Z'Nydz”?

ZINp 77 (22)

where N;; = Im (0,F;) The €’s are the beins of the special Kahler metric G;;, the &'s are the five-

dimensional N = 2 SUSY spinors and the I ’s are the usual Dirac matrices. The covariant derivative

D is defined by the usual , where the w’s are the spin connections and the hatted indices are frame

indices in flat tangent space. Finally, the stress tensor is:

T

1 1 _ 1, P oe—
> (040) (0,0) + 30 (0a0) (0°0) + €7 (9,2 A10,Z) = 5¢7 g (0ZI A|0°Z)
Loy iin —a =a —a = 1,5, . = A A
26 [@,0) + (1 0,2 (06) + (| 3,5)] + 7670 [(a) + (] 22N [(9°0) + (2] 0°)

Gy (") (002) + 5o Gy (22') (7). )
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As our main interest is bosonic configurations that0 yields the brane’s, and the bulk’s scale
preserve some supersymmetry, the stress tensor can befactors, and |G;; z'z’| as functions in time Fig.
simplified by considering the vanishing of the(1). Using suitable fitting functions we get the

supersymmetric variations (20, 21); satisfying thesplution of the velocity norm of the complex

BPS condition on the brane. This gives
Ty = Gij (0, 2" )(0,27 ) —

1 . —
2 guv Gij ( aa z* )( aa z) )v (24)

as was detailed out in [10]. We would like to
construct a 3-brane that may be thought of as a
flat Robertson-Walker universe embedded in D
= 5. As such we invoke the metric

ds? = dt? + a?(t)(dr? + r?dQ?) +

b2(t) dy?, (25)
where dQ? = d6? + sin?(0) d¢?, a? (t) is the
usual Robertson-Walker scale factor, and b(t)
is a possible scale factor for the transverse
dimension y (the bulk). The brane is located at
y = 0 and we ignore all possible y-dependence
of the warp factors as well as the
hypermultiplet bulk fields; effectively only
studying the brane close to its location. In this
case, Einstein equations Gyy + A gun = Tun
reduce to the Friedmann-like form:

3 Q) J- oo

3

- . 2 . -
a a b ayv (b .
- - — - — = —rlol]
za+(a) ot 2(3)(};) Gzz'z +p+ A
3 Al
3 _+(_] ]: Gij—zlzf—ﬁ.
a a (26)

Solving these equations numerically in case

the total density equals the dust plus radiation

densities p = p, + ppy, % +-~, the total

; )
pressure equals to the radiation pressure p =

py = %, A =1 (de Sitter space), and A=

structure moduli given by
Gi;z'z7 (t) = —0.5 (t + 0.004)7%°. (27)
The brane’s scale factor varies with time
exponentially a(t) ~ e °2 ' which means the
brane- universe undergoes an inflationary
expansion. While the bulk scale factor is given
by b(t) ~ 0.06 e %87,

4

S,

i

0 1 2 3 4 5 6

Fig. (1). The scale factor a is represented by :che
solid curve, b by the grey curve, while G;; z'z’ is

shown dashed. A=1, A=0, and for initial
conditions a[0] = a’[0] = b[0] = b'[0] = O.

As seen the solution shows a correlation
between the scale factors of the brane universe

and the bulk and the moduli norm G;; z'z’.

2. Calabi-Yau manifold complex structure
space
The field equations of the moduli z and
zJ (16) can be simplified using the BPS
condition [10]:

1 1.
e“(E|j}| *d=) = 5([0 A xdo + 56‘3”[0,’@ +

(E| d=)] A *[do + (Z| d=)] + 2G5dz" A *d=?

(28)
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so that they can be written as

(Azi)*l + jik dz) A dz* +

G (9; G )dz' AxdzF =0,

(Az' )1+ T dzl A% dzF +

GY (9; Gy )dz' Axdz* =0, (29)
Dropping the differential forms formulation, we
get:

V22! + T, 0, 2/ 0" dz* +

G (9; Gg) 9,dz" a*dz* =0,

Vizl + g 6, dzJ atdz* +

GY (9; Gy) 9,2t 9* dzF = 0. (30)

The connections or the Christoffel symbols are
related to the metric by [4]:

=GP 0;Gyy, T = GP' 9,Gyy,  (31)

substitute in (30), we get:

\V2z' + G 0;Gy; 0,2z 0" dz* +

G (9; Gg) 9,dz" a*dz* =0,

V2Zz' + GP' 0, Gy, 0, dz’ 9*dzF +
GY (9; Gy) 9,2t a* dz* =0, (32)

The moduli are independent of the 3-
spatial dimensions. And consider the Hodge
number hy1 =1, which means we have only one
moduli z, its complex conjugate z", a single
Kahler metric component G, and the dimension
of the moduli space M, is unity. So that (32)
simplify to:

I 1 A 22 l < La¥
Z+ E(OZG) 25+ G(dz G)iz* = (),
. 1 -2 1 ..
z* 0.+G*) z* —(0,G)2* =0
+ G (0-G7) 2+ 72 (0:6) (33).

Also, from the Robertson-Walker like

metric (25), the moduli field equations:

z 1 - 32 l : LAk
e + a(azc) ~ + G(az G),-..,‘.‘ — U, (34)
. 1 -2 1 ..
z* 0,+G*) z* —(0,G)22* =0
+ G (0-G7) 2+ 2 (0:6) . (35)

Solving the moduli field equation Equ. (34)
with Equ. (27), gives the moduli’s variation

with time:

0.001+0.25 ¢

z(t) =C+ 14250006 °

(36)

For z[0]=0. C is the integration
constant. We take z[0] =1, and C ~ 1. Also,
we have made a further approximation here by
considering the moduli real. In Fig. (2- left) and
(2- right) the moduli and the moduli velocity
are plotted versus time, respectively. The
Kdhler metric can be directly obtained by
substituting the solution of z in Equ. (27). In
Fig. (3left) one component of the metric G;;
multiplied by a factor 1072 is plotted versus
time. Generally speaking, the Kdhler potential
is given by:

k= In(1+ zz7) =in( 1+ &;z'z7), (37)

in which the Kahler metric Equ. (6) has been
driven. We will use Equ. (6) to get x as a

function in time. According to our

approximation, it can be written as:
G= 0,0, k. (38)

Let all fields depend on time, it becomes:

c=2(15) (39)

Solving for the Kahler potential, yields:

i () = —(0.45t+ 0.008 7). (40)



THE IMPLICATIONS OF N=2 SUPERGRAVITY COSMOLOGY.......

7 z
0.005
1.020
0.004
1.015
0.003
1.010¢
0.002
1.005
1.000 2 4 6 8 10 2 4 6 8 10

Fig. (2). (Left panel): The moduli is plotted versus time. (Right panel): The moduli velocity is
plotted versus time for C=1, and in case of radiation, dust and A filled brane with A =1,and A =
0.
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Fig. (3). (Left panel): One component of the Kihler metric multiplied by a factor 102 is plotted
versus time. (Right panel): The modules of the Kéhler potential of M. is plotted versus time.
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Fig. (4). (Left panel): The volume of the Calabi-Yau manifold plotted versus time. The Hodge
number h,1 = 1. (Right panel): Numeric and analytic G;; z'z’ versus time in solid and dashed lines,

respectively. The Hodge number hy1 = 1.
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Fig. (3- right) shows the absolute value of
the potential plotted versus time. According to
Equ. (4) the volume of the CY manifold M can
be obtained as long as the Kihler potential is
known. Fig. (4- left) shows the volume of the
Calabi-Yau manifold plotted versus time. As
seen, it increases with time. For the sake of
comparison, Fig. (4- right) shows Gj zi7)
plotted versus time as it’s obtained directly
from the numeric solution of the field equations
(26) without any approximations a long a side
as it’s obtained when solving Equ. (27) with

Equ. (36).
3. CONCLUSION

Exploring the non-trivial topology of the
Calabi-Yau
demanding quest in theoretical physics. The

manifold is still a highly

importance of the Calabi-Yau manifold arises
from its vital role in the compactification of
many higher dimensional theories. Like when
compactifying D = 11 supergravity to N = 2, D
= 5 supergravity over CY 3-fold. In this work
we have studied a 3-brane embedded in the
bulk of D = 5 supergravity, we have solved
the Friedmann-like equations in the case of a
brane filled with radiation, dust, and energy.
We have shown that in this case, the time
evolution of the 3-brane coincides with the time
evolution of our universe, where the moduli’s
velocity norm Gj; zi7) strongly correlates to the
scale factor of the brane universe. That means
the cosmology of our universe can be
interpreted only by the effects of the bulk of a
higher dimensional theory. This explanation

needs more analysis and initial conditions to

be verified which we keep to a further study.
We then used the solutions to explore the
complex structure space of the CY manifold.

Since we knew the time behavior of Gi]—zizT,

we have solved the moduli field equation to
get the time dependence of the complex
structure moduli, the Kaihler metric, the
Kahler potential, and the volume of the Calabi-
Yau manifold. That’s for a Hodge number hy 1=
1, which means the dimensions of Mc are
unity and there is a single moduli, since z' are
considered the coordinates that define Mc. The
time dependence of the Kahler potential is
negative like the Kihler metric. The absolute
value of the potential increases with time. Also,
the volume of the CY manifold infinitely
increases with time which is a deduction that
the brane- world and the bulk are keeping

expanding with time.
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