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Abstract 

In this paper, a finite mixture distribution of two-component Topp-Leone 

Rayleigh lifetime model is introduced. Maximum likelihood and Bayes 

estimators are derived for the unknown parameters, mixing proportion, 

reliability and hazard rate functions based on Type II censored samples from the 

mixture distribution. Confidence and credible intervals for the parameters, 

mixing proportion, reliability and hazard rate functions are obtained. Bayesian 

estimation is considered under balanced error loss function. A numerical 

illustration is carried out to investigate the precision of the maximum likelihood 

and Bayes estimates. An application using real data is used to insure the 

simulated results. 
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1.   Introduction 

Topp-Leone (TL) distribution was proposed by Topp and Leone (5); as an 

alternate model failure data. It is a continuous unimodal distribution with 

bounded support; therefore it is appropriate for modeling lifetime of 

distributions with finite support such as limited power supply, 

maintenance/repair resource, or design life of the system.  

The probability density function (pdf) of Topp-Leone distribution is given by 

, .                               (1) 

The cumulative distribution function (cdf) of Topp-Leone distribution is as 

follows: 

                                                               (2)  

where α is a shape parameter and b is a scale parameter, if  is restricted to be in 

(0,1), then the distribution function in (1) is J-shaped distribution. 

 Nadarajah and Kotz (2003) showed that TL distribution have bathtub 

failure rate function with widespread applications in reliability. Some attractive 

reliability properties were provided by Ghitany et al. (2005), such as the 

bathtub-shape hazard rate, decreasing reversed hazard rate, upside-down mean 

residual life, increasing expected inactivity time. Also, Zghoul (2010) studied 

order statistics from TL distribution and provided expressions for moments of 

ordered statistics from TL distribution. Feroze and Aslam (2013) derived 

Bayesian estimation and prediction using a couple of non-informative priors 

under complete and Type II censored samples. Sindhu et al. (2013) obtained 

Bayes estimators for the shape parameter and credible intervals based on 

trimmed samples using different priors. 

Maximum likelihood (ML) and Bayesian estimation of the parameters of 

TL distribution, based on lower record values under symmetric loss function 

were obtained by Li (2016). Also, he derived the empirical Bayes estimators. 
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Bayesian estimation of the shape parameter, under simple and mixture priors 

and different loss functions, is presented by Sultan and Ahmad (2017). [For more 

details on TL distribution see, Zghoul (2011), Genç (2012), Khan and Khan 

(2015) and Bayoud (2015)]. Aryal et al. (2016) introduced the TL generated 

Weibull distribution and derived some structural properties, also they used the 

ML method to obtain the estimators of the parameters. 

 Mixtures of distributions is applied in different areas of survival analysis, 

reliability, economics, medicine, psychology, geology, agriculture, biology and 

atmospheric sciences. In reliability studies, for instance, failure can occur for 

more than one reason, and the failure time distribution for each reason can be 

adequately approximated by a simple density function. Estimation of the 

parameters or functions of the parameters based on finite mixture models when 

the components belong to the same family were discussed by several authors for 

an example Everitt and Hand (1981), Titterington et al. (1985), McLachlan and 

Basford (1988), Lindsay (1995), McLachlan and Krishnan (1997), and 

McLachlan and Peel (2000). Reliability and hazard based on finite mixture 

models was surveyed by AL-Hussaini and Sultan (2001) 

Assuming  is a family of distribution functions. A random variable T is said to 

have a finite mixture distribution if its distribution function F satisfies 

                                                                                                  (3)  

where   are distinct distribution functions of k mixture components or 

populations and the mixing proportions (weights) satisfy , i=1, 2, …, k 

and . 

A heterogeneous population may be described by a finite mixture model with pdf  

                                                                                    (4)  

where  and  are called the ith  components in the finite mixture 

of distributions (3) and probability functions (4), respectively. 

If k=2 in (3) and (4), then a finite mixture distribution of two components can be 

obtained with the cdf, pdf, rf and hrf as given, respectively, below 
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                                                           (5) 

                                                         (6)                                                                                                        

,                                                        (7) 

and 

)(

)(
)(

tR

tf
th            (8) 

The Rayleigh distribution is extremely important in communication engineering. 

For example, the envelope of a narrow band Gaussian random process and the 

amplitude of atmospheric radio noise caused by the radiation due to lightning 

discharges in storms have pdfs of the Rayleigh distribution. Also, it is applied in 

clinical studies dealing with cancer and AIDS patients.   

Some important occurrences of the Rayleigh distribution in various practical 

situations are given by Curelaru and Vod  (1975) as follows: 

 In naval research; to simulate the sea waves. 

 In telecommunications, to describe the signal fluctuations due to 

multipath effects in the line of sight links. 

 In bombing problems; to describe the distribution of distances from 

target to the actual impact points. 

The pdf of the Rayleigh distribution is given by  

 . (9)                                                  

The rest of this paper is organized as follows. Section 2 presents Topp-Leon 

Rayleigh distribution as a composite distribution. The identifiability of the 

mixture Topp-Leone Rayleigh distribution is proved in Section 3. Maximum 

likelihood and Bayes estimators under balanced square error function for the 

parameters, reliability and hazard rate functions are derived in Section 4. In 

Section 6 a numerical illustration is presented.  
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2. Topp-Leone Rayleigh Distribution: 

     Considering b=1 in (2); without any loss of generality, a random variable X is 

distributed as the TL distribution with parameter  denoted by  with a 

cdf  

,    .           (10) 

The corresponding pdf is 

,     .     (11)                                       

 

The rf and the hrf are, respectively, given by 

,                                                       (12)                                                                                    

and 

.                                                    (13)   

A composition of H, given by (10) and a cdf G, with positive support, yields a 

new cdf, given below 

,                           (14) 

On composition of distribution functions, see AL-Hussaini (2012).  

In particular, if G  is Rayleigh distribution; denoted by , with cdf as 

, .      (15)       

Substituting (15)in (14),the cdf for Topp-Leone Rayleigh distribution ) is 

given by 

,        .                 (16) 

The pdf, corresponding to the cdf given in (16), is as follows: 

, 

                                                                                   ,             (17) 
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where  is  a shape parameter and  is a scale parameter.   

The rf and hrf for TLR distribution are, respectively, as : 

,        ,                       (18)                      

and  

        ,         (19)                  

From (19) it is noticed that the TLR distribution has an increasing hazard rate 

and this property means that the TLR distribution is a candidate model for 

lifetime of components that age rapidly with time. 

3. Identifiability of the Mixture Topp-Leone Rayleigh 

Distribution: 

    The identifiability of mixtures must be proved before discussing the problem 

of estimation, testing of hypotheses or classification of random variables, which 

are based on the observations from a mixture. A mixture is identifiable if there 

exists a one to one correspondence between the mixing distributions and the 

resulting mixture.   

For details on the identifiability of mixture distributions, see for example Everitt 

and Hand (1981), AL-Hussaini and Ahmad (1981) and Ahmad and AL-Hussaini 

(1982), Ahmad (1988), Adham (1996), Baharith (1991), among others. The 

identifiability of a mixture of two TLR components will be proved as follows: 

  

Considering a linear combination for two different distributions each of them is 

TLR distribution is given by 

 

where                    

and   is the rf of the ith  TLR( ) distribution. 
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The finite mixture of Topp-Leone Rayleigh (MTLR) distributions is identifiable 

if  and  are linearly independent. That means  then 

. 

If  then , ,  , 

hence 

            , 

             

            , 

                 , 

 

= , 

= , 

= , 

. 

Comparing the coefficients of    on both sides, one can observe that 

 when . 

Therefore  are linearly independent. Then the finite MTLR ( ) 

distribution components are identifiable.  

4. Estimation Using Balanced Square Error Loss 

Function: 

    The squared error loss (SEL) function; as a symmetric loss function, has 

probably been the most popular loss function used in literature.  Although the 

symmetric loss function is relatively easy to handle analytically, in Bayesian 
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inference the use of symmetric loss functions may be inappropriate for wide 

range of applications. This was recognized in the literature, (see, for example, 

Varian (1975), Berger (1980) and (1991)), since a given positive error may 

be serious than a given negative error of the same magnitude or vice versa. 

In practice the real loss function is often not symmetric, overestimation of a 

parameter can lead to more or less severe consequences than underestimation. 

Examples of such cases are food-processing industries, dam construction and 

estimating the reliability function.  

Varian (1975) introduced the linear exponential (LINEX) loss function as an 

asymmetric loss function. Ahmadi et al. (2009) suggested the use of the balanced 

loss (BLS) function; which was originated by Zellner (1994), to be of the form 

,                                   (20)                                                                       

where   is an arbitrary loss function,  is a chosen target estimator of  

and the weight .  

The BLF in (20) specializes to various choices of loss functions such as the 

absolute error loss function, entropy, LINEX and generalized SEL functions. 

If   is substituted in (20), one obtains the Balanced square 

error loss (BSEL) function, given by 

  ,                (21)                         

The estimator  of a function , using BSEL function is given by 

,                                                                     (22)                              

where  is the ML estimator of  and is its Bayes estimator using SEL 

function. The estimator of a function using BSEL function is a mixture of the 

ML estimators of the function and the Bayes estimators using SEL function. 

Other estimators, such as least squares estimators may replace the ML 

estimators. Also, LINEX or Quadratic exponential loss functions could be used 

for , [see AL-Hussaini and Hussein (2011)]. 

The estimators based on BSEL function; having the ML estimators and the 

Bayes estimators based on SEL function, are given by  
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 , 

,   

,                                                                  (23) 

 , 

, 

, 

and 

 . 

 

4.1 Maximum likelihood estimation: 

4.1.1Point estimation: 

Considering that  are r lifetimes out of a Type II censored sample 

of size n from MTLR distribution, then the likelihood function is given by  

 

where  and   are given, respectively, by (9) and (10), also the components 

 and  are defined, respectively, in (6) and (7), the vector 

 and  

 are the ordered lifetimes. 

Hence, one obtains 

 

} 
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.        (25)    

 

The natural logarithm of the likelihood function is 

 

} 

.            (26)          

                                                                                                                                                      

The maximum likelihood (ML) estimators are derived by setting the first partial 

derivatives of    with respect to  and  respectively, to zeros. 

Differentiating with respect to   and , a system of non-linear 

equations are derived and setting to zeros, the ML estimators can be derived 

using Newton-Raphson method. Also, the ML estimators of the rf and the hrf are 

obtained using the invariance of ML estimators based on (7) and (8), 

respectively. 

 

The ML estimators have an asymptotic variance-covariance matrix defined by 

inverting the information matrix. The asymptotic variance-covariance matrix of 

the estimators  and   are obtained depending on the inverse 

asymptotic Fisher information matrix  using the second derivatives of the 

logarithm of the likelihood function. 

The asymptotic Fisher information matrix can be written as follows: 

,                                                            (27)                                                                

where , , ,  and . 
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4.1.2 The Asymptotic confidence intervals: 

 For large sample size, the ML estimators under appropriate regularity 

conditions are consistent and asymptotically unbiased as well as asymptotically 

normally distributed. Therefore, the two sided approximate  

confidence intervals for the ML estimator say,  of a population value  can be 

obtained by  where Z is the th standard 

normal percentile. The two sided approximate   confidence 

intervals for , will be given as follows: 

               i=1, 2, ..,5, 

where   is the standard deviation and  is , rh or hrf 

respectively. 

4.2 Bayesian estimation under square error loss 

function: 

4.2.1Point estimation: 

In this section, Bayes estimators  of a function  for the unknown 

vector of parameters; , of MTLR distribution is considered.  

Assuming that the prior belief of the experimenter is that , 

, , a .  

Suppose that the parameters are independent, then the joint prior density 

function is 

    

                           (28)                                          

 The joint posterior density function can be obtained from (25) and (28) as 
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        (29) 

The marginal posteriors of  can be obtained by integrating the 

joint posterior distribution given by (29) with respect to the other parameters, 

that is the marginal posterior density is given by        

  ,                             (30)                                  

       

Hence, the Bayes estimators under SEL function is given by the mean of the 

posterior distribution, and can be derived as follows: 

,                                          (31)  

where    .                              

The Bayes estimators of the rf and the hrf under SEL function; which are the 

posterior expectations, can be obtained as follows: 

,                                              (32)                                                 

and  

 ,                                              (33) 

where    . 
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Equations (31-33) can be solved numerically to obtain the Bayes estimates of the 

parameters, rf and hrf of the MTLR distribution based on SEL function. 

4.2.2Credible intervals 

The Bayesian analog to the confidence interval is called a credibility interval. In 

general,  is  credibility interval of  if 

                                          (34)                                                        

Using the marginal posterior distribution given by (30), then a  

credibility interval for is where 

                  (35)                                       

and 

                  (36) 

Remarks 

 When r = n all the results obtained for Type II censoring reduce to the 

complete sample case 

 If a mixing proportion is zero (or one) in a finite mixture of two 

components, then the mixture reduces to a single population case. 

 Finite mixtures are more appropriate to represent heterogeneous 

population. 

 

5. Numerical Illustration: 

In this section, Monte Carlo simulation study is conducted to illustrate the 

performance of the presented ML and Bayes estimates on the basis of generated 

data from the MTLR distribution. Absolute biases of the parameters, rf and hrf 

based on Type II censoring are computed. Moreover, confidence and credible 

intervals of the parameters are calculated, all the results are obtained using R 

programming language. 
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a. For given values of  random samples of size n are 

generated from a finite mixture of two TLR components whose pdf is 

given in (6) and (17) observing that if U1 and U2 is uniform distributions 

(0,1), then 

                      

b. The population parameter values of  used in the 

simulation are ( ) and .  

c. For each sample size sort the , such that . 

d. Choose the number of failures to be less than or equal to the sample size.  

e. The number of failures  out of the  observations, 

which are assumed to be known. Hence, one obtains observations from 

the first component of the mixture and from the second component 

(  

f. Repeat all the previous steps N=5000 times where N represents a fixed 

number of simulated samples. 

g. The ML and Bayes averages of , rf and hrf are computed. 

The Bayes averages are obtained under SEL function. An estimator of a 

function using BSEL function is a mixture of the ML and the Bayes 

estimator using the SEL function and the weight .  

h. The estimates of the parameters, rf and hrf under BSEL function are 

displayed in Table 1 for different weights  , where  
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Table 1. Estimates and absolute biases of the parameters, rf and hrf under BSEL 

function  

 

 

”B-SEL" 
    

 

”MLE” 

 

 

1.9998 

0.00002 

2.11234 

0.00004 

2.19653 

0.00015 

2.26987 

0.00020 

2.32781 

0.00023 

2.41212 

0.00380 

 

 

3.00098 

0.00310 

3.18859 

0.00537 

3.27526 

0.00590 

3.29743 

0.00748 

3.41272 

0.00789 

3.52891 

0.00946 

 

 

2.99997 

0.00001 

3.12314 

0.00002 

3.27908 

0.00509 

3.36582 

0.00889 

3.37933 

0.01018 

3.49578 

0.01779 

 

 

4.00975 

0.00161 

4.12130 

0.00042 

4.18964 

0.00074 

4.29103 

0.00223 

4.36941 

0.00484 

4.38573 

0.00845 

 

 

0.40007 

0.00029 

0.42000 

0.00015 

0.43855 

0.00011 

0.44631 

0.00143 

0.45969 

0.00207 

0.46411 

0.00302 

 

 

0.21009 

0.00121 

0.23316 

0.00272 

0.25324 

0.00463 

0.26598 

0.00580 

0.30078 

0.00656 

0.31211 

0.00820 

 

 

2.1101 

0.00019 

2.21579 

0.00186 

2.24387 

0.00437 

2.27796 

0.00682 

2.48956 

0.00834 

2.58632 

0.00859 

 

Concluding Remarks 

 In this article, ML and Bayes estimators; based on Type II censored data, 

are derived for the unknown parameters, reliability and hazard rate 

functions of a finite mixture of two MTLR components. Also, confidence 

and credible intervals are obtained. 

 The estimators are derived under BSEL as an asymmetric loss function 

and is a weighted average for two loss functions; one reflects goodness of 

fit and the other reflects the precision of the estimation. 
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 The BSEL function as an asymmetric loss function is considered a 

compromise between Bayes and non-Bayes estimates. 

 It is noticed that when , one gets the ML estimates, while when 

 one obtains the Bayes estimates under SEL function. 
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