ORIGINAL ARTICLE

Emergence of Fluoroquinolone resistance and carbapenemase plasmids in Enterobacter cloacae isolated from Egyptian Pediatric **Hospital**

¹Aliaa M.A. Ghandour^{*}, ²Safy Hadiya, ³ Rania G. Nasseif, ⁴ Marwa A Sabet, ⁵ Rania M. Bakry, ⁶ Shaban M. Sror, ¹Sherine A. Alv

¹Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt ²Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Egypt

³Women's Health Hospital, Assiut University, Assiut, Egypt

⁴Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt ⁵Department of Oncological Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt ⁶Gastroenterology and Hepatology Unit, Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt

ABSTRACT

Key words: Enterobacter cloacae, PMOR, Carbapenemase, co-existence, Conjugation

*Corresponding Author: Aliaa M.A. Ghandour. Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt. Tel.: +201006199196 aliaaghandour@aun.edu.eg

Background: Enterobacter cloacae cause opportunistic infections that are frequently associated with multidrug resistance (MDR). Co-carriage of plasmid mediated quinolone resistance (PMOR) genes and carbapenemases worsened the problem of resistance. **Objectives:** The current work aimed to detect the frequency of PMOR in E. cloacae as well as the co-carriage of carbapenemase resistance determinants in Egypt. Methodology: Fourteen E. cloacae isolates were collected from children suffered from gastroenteritis admitted at Pediatric Hospital at Assiut University. Identification and antimicrobial susceptibility were done by Vitek-2® system. Detection of PMQR and carbapenemases was done by PCR. Conjugation experiment was performed to test the transmissibility of the resistance determinants. **Results:** PMOR genes were detected in 3/14 (21.4%) of E. cloacae isolates. qnrB and qnrS were detected in 2/14 (14.3%) and 3/14 (21.4%) of the isolates, respectively. Two E. cloacae isolates co-harbored qnrB and qnrS. Neither qnrA, qnrD nor aac (6)-Ib was detected. Carbapenemase genes were detected in 7/14 (50%) E. cloacae isolates; blaNDM-1, blaOXA-48 and blaVIM-2 were detected in 6/14(42.9%), 2/14 (14.3%) and 1/14(7.1%) of E. cloacae isolates respectively. Only one isolate (7.1%) co-harbored blaNDM-1, blaVIM-2 and blaOXA-48 genes. Conclusion: PMQR and carbapenemases determinants are common among E. cloacae isolates in Egypt with the co-existence of multiple resistance determinants in the same isolate. All transmitted determinants suggest their presence on transmissible plasmids.

INTRODUCTION

Enterobacter is a group of gram-negative facultative anaerobic bacilli that can be found widely all over the world¹. ESKAPE (Enterococcus faecium, *Staphylococcus* Klebsiella aureus, pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) is the world's global cause of nosocomial infections^{2,3}. Opportunistic infections caused by E. cloacae and E. aerogenes are usually associated with antibiotic resistance (MDR)^{4,5}.

Mobile genetic elements including virulence and resistance genes are easily acquired by E. cloacae and E. aerogenes, increasing their pathogenicity. Owing to Enterobacter ability to generate AmpC -lactamase, *Enterobacter* are extended spectrum β -lactamase producers and thus are resistant to amoxicillin, ampicillin, cefoxitin and first-generation cephalosporins. Infections due to these microbes are

classically carbapenems treated with and fluoroquinolones (FQs)³. Unfortunately, the upswing in antibiotic resistance among Enterobacteriaceae has made choosing effective treatment regimens more difficult. Consequently, surveillance and resistance investigations became a high priority ⁶.

Fluoroquinolone resistance (FQR) are usually due to mutations in genes coding for topoisomerase IV and DNA gyrase as well as the acquisition of plasmid mediated quinolone resistance (PMQR) genes like qnr, qepA, and aac (6')-Ib-cr^{7,8}. Astonishingly, PMQR has been emerged worldwide, sometimes even in the absence of FQ therapy ⁹. On the other side, carbapenem resistance can be acquired by a variety of mechanisms; the most important is plasmid-mediated carbapenemases, including *bla*-NDM ¹⁰

Numerous studies have stated co-carriage of PMQR and bla-NDM, which further worsened the problem of resistance. With increased carbapenem resistance and simultaneous fluoroquinolone resistance in NDM-1positive *Enterobacteriaceae*, a detailed analysis of this relationship is required ¹¹. Moreover, the wide distribution and ease of dissemination of plasmids through horizontal transmission serves as a global medical problem. Although MDR *Enterobacter* was stated in many geographical places, the prevalence of PMQR determinants in *Enterobacter* sp. in Egypt remains unknown ¹². Accordingly, the current work aimed to evaluate the frequency of PMQR in *E. cloacae* isolated from children suffered from gastroenteritis admitted at Pediatric Hospital at Assiut university and also co-carriage of carbapenemase resistance determinants.

METHODOLOGY

Ethical statement

The Ethical Committee of Faculty of Medicine at Assiut University, Egypt, approved this research in accord with the World Medical Association's code of ethics (Declaration of Helsinki) with IRB local approval number:17300623 dated 11/8/2021.

Isolation and identification of *Enterobacter cloacae*:

This cross-sectional research was conducted on 168 stool swabs collected from children referred to the Pediatric Hospital at Assiut University with gastroenteritis. Swabs were sent to the Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University and inoculated into Luria-Bertani broth (LB) broth (Himedia, India) then subcultured on Macconkey agar ¹³. GN-ID cards of Vitek-2[®] system (biomerieux, France) were used to identify *E. cloacae* isolates¹⁴. The isolates were stored in LB broth and 30 % glycerol then kept frozen at -20°C till use.

Susceptibility testing for antimicrobials:

The antimicrobial susceptibility profile of all E. cloacae isolates was determined using AST-GN204 cards of Vitek-2® system (biomerieux, France). Tested antimicrobials were: Ampicillin, piperacillin/ tazobactam, cefotaxime, imipenem, meropenem, amikacin, fosfomycin, nitrofurantoin, trimethoprim/ sulfamethoxazole, norfloxacin and ciprofloxacin¹⁴ Detection of PMQR and carbapenemase determinants by PCR:

The *qnr* genes as *qnrA*, *qnrB*, *qnrS*, *qnrD* and *aac* (6)-*Ib* and carbapenemases genes as bla_{NDM-1} , bla_{VIM-2} and bla_{OXA-48} were detected by means of conventional polymerase chain reactions (PCR) with specific primers listed in table (1)

Prior to DNA extraction, *Enterobacter* isolates were cultured on LB agar supplemented with nalidixic acid $(20\mu g/ml$ for PMQR enrichment) and with imipenem $(1\mu g/ml)$ for plasmid-mediated carbapenemase enrichment). DNA was extracted by heating bacterial suspensions for 10 minutes at 95°C followed by centrifugation ¹⁵. PCR was performed at a 20 µl volume using PCR master mix (Promega, USA).

Amplification was performed in a thermal cycler T100 gradient system (Bio-Rad, Hercules, CA) using the following protocol; initial denaturation for 5 min at 95°C, 30 cycles of denaturation at 94°C for 30 seconds, annealing for 30 seconds then extension for 20- 40 seconds at 72°C, and a final extension step at 72°C for 7 minutes.

After one hour of electrophoresis at 100 volts on a 2 % agarose gel with added ethidium bromide, amplification products were seen under UV light. A 100-bp DNA ladder (Promega, USA) was used as a marker.

Target	Sequence	Tm	Size band	Reference	
qnrA	5'- ATT TCT CAC GCC AGG ATT TG-3'	54°C	518 bp	(16)	
_	5'-GAT CGG CAA AGG TTA GGT CA-3'		_		
qnrB	5'- GAT CGT GAA AGC CAG AAA GG-3'	55°C	469 bp	(16)	
_	5'- ACG ATG CCT GGT AGT TGT CC-3'				
qnrS	5'- CAA TCA TAC ATA TCG GCA CC-3'	53°C	641 bp	(17)	
	5'- TCA GGA TAA ACA ACA ATA CCC-3'				
qnrD	5'-CGA GAT CAA TTT ACG GGG AAT A-3'	58°C	218 bp	(18)	
	5'-AAC AAG CTG AAG CGC CTG -3'				
acc (6')-Ib	5'-TTG CGA TGC TCT ATG AGT GGC TA-3'	58°C	482 bp	(19)	
	5'- CTC GAA TGC CTG GCG TGT TT-3'				
bla _{NDM-1}	5'-GGT TTG GCG ATC TGG TTT TC-3'	55°C	621 bp	(20)	
	5'-CGG AAT GGC TCA TCA CGA TC-3'				
bla _{VIM-2}	5'- ATG TTC AAA CTT TTG AGT AAG-3'	52°C	801 bp	(21)	
	5'- CTA CTC AAC GAC TGA GCG-3'				
bla _{OXA-48}	5'-GCG TGG TTA AGG ATG AAC AC-3'	55°C	438 bp	(20)	
	5'-CAT CAA GTT CAA CC CAAC CG-3'				

 Table 1: Primers sequences encoding PMQR and carbapenemases genes.

Ghandour et al. / Fluoroquinolone resistance & carbapenemase plasmids in Enterobacter cloacae in Egypt, Volume 31 / No. 2 / April 2022 37-43

Conjugation experiment:

A conjugation experiment was performed on 3 *Enterobacter cloacae* isolates harbouring both PMQR and carbapenemases to test the transmissibility of the resistance determinants ²². The isolates were cultured on LB broth with *E. coli* J53 as the recipient. Transconjugants were selected from colonies on LB agar plates supplemented with sodium azide (200 μ g/ml) for counter selection, and imipenem (0.5 μ g/ml) or ciprofloxacin (2 μ g/ml). PCR was used to detect carbapenemases and PMQR in transconjugants.

RESULTS

Enterobacter cloacae and their antimicrobial susceptibility profile:

The Vitek- $2^{\text{(B)}}$ system detected 14 *E. cloacae* isolated from the 168 samples. Two of *E. cloacae* isolates (14.3%) were MDR, while 7/14 (50%) were determined to be extensively drug resistant (XDR).

Prevalence of PMQR and carbapenemase genes among *E. cloacae* isolates:

PMQR genes were detected in 3/14 (21.4%) of *E. cloacae* isolates; *qnrB* was detected in 2/14 (14.3%) of the isolates while *qnrS* was detected in 3/14 (21.4%) of the isolates. Two *E. cloacae* isolates co-harboured *qnrB* and *qnrS* (Figure 1). Neither *qnrA*, *qnrD* nor *aac* (6)-*Ib* was detected.

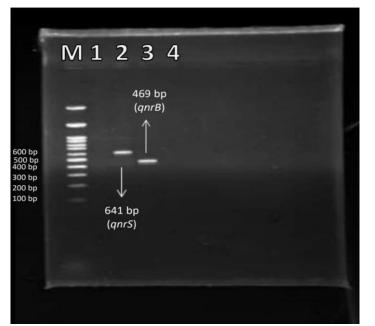


Fig. 1: Agarose gel electrophoresis of *qnrS* and *qnrB* genes in *E. cloacae* isolates. Lane M = 100 bp DNA ladder; Lane 1= negative control; Lane 2 = positive isolate for *qnrS* (641 bp); Lane 3 = positive isolate for *qnrB* (469 bp); Lane 4 = negative isolate.

Carbapenemase genes were detected in 7/14 (50%) *E. cloacae* isolates; $bla_{\text{NDM-1}}$ was detected in 6/14(42.9%) of *E. cloacae* isolates, $bla_{\text{OXA-48}}$ was detected in two isolates (14.3%) while $bla_{\text{VIM-2}}$ was detected in one isolate (7.1%). One isolate (7.1%) co-harboured $bla_{\text{NDM-1}}$, $bla_{\text{VIM-2}}$ and $bla_{\text{OXA-48}}$ genes (Figure 2).

Ghandour et al. / Fluoroquinolone resistance & carbapenemase plasmids in Enterobacter cloacae in Egypt, Volume 31 / No. 2 / April 2022 37-43

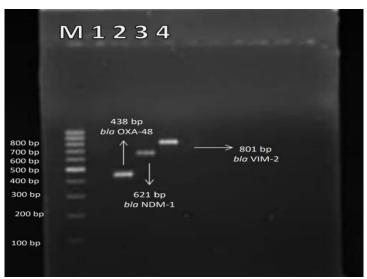


Fig 2: Agarose gel electrophoresis of bla_{OXA-48} , bla_{NDM-1} , and bla_{VIM-2} genes in *E. cloacae* isolates. Lane M = 100 bp DNA ladder; Lane 1= negative control; Lane 2 = bla_{OXA-48} (438 bP), Lane 3= bla_{NDM-1} (621 bp); Lane 4= bla_{VIM-2} (801 bp).

Co-existence of PMQR and carbapenemases determinants in E. cloacae isolates:

Two (14.3%) *E. cloacae* isolates harboured both *qnrS* and *bla*_{NDM-1}, while only one (7.1%) *E. cloacae* isolate harboured both *qnrB* and *bla*_{NDM-1} (Table 2).

SN	Antimicrobial	Ciprofloxacin	Imipenem	qnrB	qnr S	bla _{NDM-1}	bla _{VIM-2}	bla _{OXA-48}
	Phenotype	R/I/S	R/I/S					
1	APCAKFNTTNCP	R	R	+	+	_	_	_
2	AC	S	S	_	_	_	_	_
3	APCIMNTNFCP	R	Ι	_	+	+	_	_
4	APCIMAKFNFCP	R	R	+	+	+	_	_
5	ACF	S	S	_	_	_	_	_
6	ACT	S	S	_	_	_	_	-
7	APCIMNTTNFCP	R	Ι	_	_	_	_	_
8	APCIMFTNFCP	R	R	_	_	_	_	_
9	APCIMAKFNTNFCP	R	R	_	_	+	_	_
10	APCCP	R	S	_	_	+	_	_
11	APCIT	S	Ι	_	_	_	_	_
12	ACIM	S	R	_	_	+	_	_
13	APCIMFNTTNFCP	R	R	_	_	+	+	+
14	APCF	S	S	_	_	_	_	+

Table 2: Carbapenemases, PMQR determinants and associated MICs for ciprofloxacin and imipenem in *Enterobacter cloacae* isolates (n=14)

Abbreviations: SN, Serial number; R, Resistant; I, Intermediate; S, Sensitive; MIC, Minimal inhibitory concentration. *Keys:* A=Ampicillin=Piperacillin/Tazobactam; C=Cefotaxime; I= Imipenem; M=Meropenem; AK= Amikacin; F = Fosfomycin; NT=Nitrofurantoin; T=Trimethoprim/Sulfamethoxazole; NF=Norfloxacin; CP=Ciprofloxacin.

Transfer of resistance genes by conjugation:

PMQR determinants (qnrB and qnrS) as well as carbapenemases (bla_{NDM-1}) were all successfully transmitted from *E. cloacae* isolates to the recipient (*E. coli* J53) via conjugation.

DISCUSSION

Multi-drug resistant microorganisms spread in many countries, with fluoroquinolones and/or carbapenems are often used for treatment. Increased resistance to both antimicrobials is contributing to treatment failure and restricting therapeutic choices ⁹. Our previous studies of FQ-MDR in Enterobacteriaceae showed dominance of FQR and carbapenem resistance both in E. coli and K. pneumoniae with PMQR and NDM-1 high carriage prevalence ^{7,9}. The present study aimed to detect the frequency of PMQR in E. cloacae isolated from children suffered from gastroenteritis admitted at Pediatric Hospital at Assiut University and also the cocarriage of carbapenemase resistance determinants. This is the first study to our expertise about the existence of PMQR and carbapenemase determinants among E. cloacae isolates in Egypt. Regarding E. cloacae strains antimicrobial susceptibility, most strains have been shown to be multidrug resistant. This is in harmony with many studies ^{23,24}.

Our findings demonstrated 21.4% as a prevalence of PMQR genes among *E. cloacae* isolates on the molecular level. *qnrS* was the most prevalent (21.4%) followed by *qnrB* (14.3%), neither *qnrA*, *qnrD* nor *aac* (6)-*Ib* was detected while in a study in France showed that the *qnrB* was the most prevalent ²⁵. In 14.3% of our *E. cloacae* isolates *qnrS* co-occurred with *qnrB*. In agreement with our results, a previous study reported high prevalence of PMQR genes among *E. cloacae* isolates ²⁶. In addition, in *Enterobacteriaceae* and gramnegative bacteria, quinolone resistance was stated in Egypt, Europe, South America, and Asia and spread in most parts of the world ^{7,27}.

Fluoroquinolone resistance was detected in 8/14 (57.2 %) of the E. cloacae isolates, with the presence of qnrB and qnrS only in 3 of these FQR isolates. Although PMQR presence per se confers only diminished susceptibility to FO, but the existence of the first step of susceptibility reduction promptly enhances adaptive mutations and further resistance development¹¹. Although 21.4% of the qnr-positive isolates in this study exhibited quinolone resistance, but the rest of the FQR isolates did not harbour any of the PMQRs, thus FQ resistance might be attributed to chromosomal mutations in gyrA and parC. This was in line with a study suggested that the presence of PMQR might confer low-level resistance by inducing at least one quinolone resistance determining region (QRDR) substitution²⁵.

Carbapenem resistance caused by carbapenemase production is currently spreading throughout the *Enterobacteriaceae* ²⁸. Another Egyptian study conducted in Tanta University Hospitals in Egypt have found 62.7 % as a high prevalence of carbapenemases among *Enterobacteriacea* ²⁹.

In this study, carbapenemase positive isolates had higher resistance percentage to imepenem than carbapenemase negative isolates. This confirmed that carbapenemase was not the major cause of this upswing resistance percentage. This is also in harmony with a study in Lebanon³⁰ where carbapenemases were present in a high percentage of *E. cloacae* isolates (50 %). Carbapenemase positive isolates upswing prevalence could be related to hospitals' overuse of carbapenem. This high prevalence was matched by a Chinese research on *Enterobacteriaceae* including *E. cloacae*³¹.

In our study, $bla_{\text{NDM-1}}$ was the most prevalent (42.9%) followed by $bla_{\text{OXA-48}}$ genes (14.3%) and by $bla_{\text{VIM-2}}$ (7. 1%). These results are in accordance with Chinese study reported that $bla_{\text{NDM-1}}$ was dominant ³² but in disagreement with another study showed that $bla_{\text{OXA-48}}$ was the most prevalent carbapenemase ²⁵.

Carbapenemases and PMQR coexisted in 2/14 (14.3 %) of *E.cloacae* isolates, in addition to co-existance of *qnrB*, *qnrS*, and *bla*_{NDM-1} in only one *E. cloacae* strain, according to our data. Carbapenemases and PMQR were found in 65.8% of *Enterobacteriacea* strains in a Chinese study, including eight *E. cloacae* isolates, 77.8 % of *bla*_{NDM-1}-positive isolates expressed PMQR genes, including *qnrS1* and *qnrB4*³¹.

In an attempt to understand the relationship between carbapenemases and PMQR presence, conjugation experiment was done to test the co-transmissibility of resistance determinants. All determinants were transmitted suggesting their presence on transmissible plasmids⁹. The coexistence of resistance genes in the same isolate and their transmission commonly through mobile genetic elements often was the principal causes of the appearance of MDR or even XDR *E. cloacae* strains^{31,33,34}.

CONCLUSION

This study results revealed the presence of PMQR and carbapenemases determinants among *E. cloacae* isolates in Egypt. In addition, there was co-existence of multiple resistance determinants in the same isolate. All transmitted determinants suggest their presence on transmissible plasmids.

Conflicts of interest: The authors report no conflicts of interest in this work.

Funding: This research did not receive any specific grant from funding agencies.

Each author listed in the manuscript had seen and approved the submission of this version of the manuscript and takes full responsibility for it.

This manuscript has not been previously published and is not under consideration in the same or substantially similar form in any other reviewed media. I have contributed sufficiently to the project to be included as author. To the best of my knowledge, no conflict of interest, financial or others exist. All authors have participated in the concept and design, analysis, and interpretation of data, drafting and revising of the manuscript, and that they have approved the manuscript as submitted.

REFERENCES

- 1. Mezzatesta ML, Gona F, Stefani S. *Enterobacter cloacae* complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 2012; 7:887–902.
- Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int.2016;2475067.
- 3. Davin-Regli A, Pagès JM. *Enterobacter aerogenes* and *Enterobacter cloacae*; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015; 18:392.
- Cabral AB, Maciel MA, Barros JF, Antunes MM, Barbosa deCastro CM, Lopes AC. Clonal spread and accumulation of β-lactam resistance determinants in *Enterobacter aerogenes* and *Enterobacter cloacae* complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazil. J Med Microbiol. 2017; 66:70–7.
- Azevedo PAA, Furlan JPR, Oliveira-Silva M, Nakamura-Silva R, Gomes CN, Costa KRC, Stehling EG, Pitondo-Silva A. Detection of virulence and β-lactamase encoding genes in *Enterobacter aerogenes* and *Enterobacter cloacae* clinical isolates from Brazil. Braz J Microbiol. 2018;49 (1):224-8.
- Rafik A, Abouddihaj B, Asmaa D, Kaotar N, Mohammed T. Antibiotic resistance profiling of Uropathogenic Enterobacteriaceae, Casablanca, Morocco.E3S Web Conf. 319 01002 (2021) DOI: 10.1051/e3sconf/202131901002
- Abdel-Rahim MA, EL-Badawy O, Hadiya S, Daef EA, Suh SJ, Boothe DM, and Aly SA. Patterns of Fluoroquinolone Resistance in *Enterobacteriaceae* isolated from the Assiut University Hospitals, Egypt: A Comparative Study. Microb Drug Resist. 2019;509-19.
- Sabet M, Daef EA, Ghaith D, Agban M, Aly SA. How does quinolones antibotic resistance develop? Bull Pharm Sci Assiut. 2020; 43(1):95-104.

- Hammad HA, Safy Hadiya S, EL-Feky MA, Aly SA. Co-Occurrence of Plasmid-Mediated Quinolone Resistance and Carbapenemases in *Klebsiella Pneumoniae* Isolates in Assiut, Egypt. Egypt J Med Microbiol.2017;26(4):1-7.
- 10. Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: *Enterobacteriaceae*, *Pseudomonas* and *Acinetobacter* species. Clin Microbiol Infect 2014; 20:831–8.
- 11. Mitra S, Mukherjee S, Naha S, Chattopadhyay P, Dutta S, Basu S. Evaluation of co-transfer of plasmid-mediated fluoroquinolone resistance genes and *bla*_{NDM} gene in *Enterobacteriaceae* causing neonatal septicaemia. Antimicrob Resist Infect Control. 2019 ;8(1): 1-15.
- 12. Elshamy RM, Oda MS, Saeed MA, Ramadan RA. Detection of Plasmid Mediated Quinolone Resistance Among Isolates from Cirrhotic Patients with Spontaneous Bacterial Peritonitis in A University Hospital. Eur j mol clin med. 2020; 7(6): 2068-81.
- 13. Taha SA, Omar HH, Hassan WH. Characterization of plasmid-mediated *qnrA* and *qnrB* genes among *Enterobacteriaceae* strains: quinolone resistance and ESBL production in Ismailia, Egypt. Egypt J Med Hum Genet.2019; 20: 26.
- 14. Bruins MJ, Bloembergen P, Ruijs GJ, Wolfhagen MJ. Identification and susceptibility testing of *Enterobacteriaceae* and *Pseudomonas aeruginosa* by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J Clin Microbiol. 2004;42(1):7-11.
- 15. Paauw A, Fluit AC, Verhoef J, Leverstein-van Hall MA. *Enterobacter cloacae* outbreak and emergence of quinolone resistance gene in Dutch hospital. Emerg Infect Dis. 2006;12(5):807-12.
- Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006 ;6(10):629-40.
- Xia LN, Li L, Wu CM, Liu YQ, Tao XQ, Dai L, Qi YH, Lu LM, and Shen JZ. A survey of plasmidmediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shan- dong, China. Foodborne Pathog Dis. 2010; 7: 207–15.
- 18. Cavaco LM, Hasman H, Xia S, Aarestrup FM. *qnrD*, a novel gene conferring transferable quinolone resistance in *Salmonella enterica* serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother. 2009 ;53(2):603-8.
- Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of *aac(6`)-Ib-cr* encoding a ciprofloxacin- modifying

Ghandour et al. / Fluoroquinolone resistance & carbapenemase plasmids in Enterobacter cloacae in Egypt, Volume 31 / No. 2 / April 2022 37-43

enzyme. Antimicrob Agents Chemother. 2006; 50: 3953–5.

- 20. Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-Producing *Klebsiella pneumoniae* in Kenya. Antimicrob Agents Chemother. 2011; 55: 934–6.
- 21. Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, Pérez JL, Oliver A. Molecular epidemiology and mechanisms of carbapenem resistance in *Pseudomonas aeruginosa* isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007;51(12):4329-35.
- 22. Miller JH. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory Press; 1972
- 23. Fernández A, Pereira MJ, Suárez JM, Poza M, Treviño M, Villalón P, Sáez-Nieto JA, Regueiro BJ, Villanueva R, Bou G. Emergence in Spain of a multidrug-resistant *Enterobacter cloacae* clinical isolate producing SFO-1 extended-spectrum betalactamase. J Clin Microbiol. 2011;49(3):822-8.
- 24. Tian X, Huang C, Ye X, Jiang H, Zhang R, Hu X, Xu D. Carbapenem-Resistant *Enterobacter cloacae* Causing Nosocomial Infections in Southwestern China: Molecular Epidemiology, Risk Factors, and Predictors of Mortality. Infect Drug Resist. 2020; 13:129-37.
- 25. Guillard T, Cholley P, Limelette A, Hocquet D, Matton L, Guyeux C, Lebreil A-L, Bajolet O, Brasme L, Madoux J, Vernet-Garnier V, Barbe C, Bertrand X and de Champs C. Fluoroquinolone Resistance Mechanisms and population structure of *Enterobacter cloacae* non-susceptible to Ertapenem in North-Eastern France. Front Microbiol.2015; 6:1186.
- 26. Peymani A, Farivar TN, Najafipour N and Mansouri S. High prevalence of plasmid-mediated quinolone resistance determinants in *Enterobacter cloacae* isolated from hospitals of the Qazvin, Alborz, and Tehran provinces, Iran. Rev Soc Bras Med Trop.2016 49(3):286-91.
- Dahmen S, Poirel L, Mansour W, Bouallegue O, Nordmann P. Prevalence of plasmid-mediated quinolone resistance determinants in *Enterobacteriaceae* from Tunisia. Clin Microbiol Infect 2010; 16:1019-23.
- 28. Tängdén T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-

producing *Enterobacteriaceae*: clinical perspectives on detection, treatment and infection control (Review). J Intern Med. 2015; 277: 501–12.

- 29. Amer WH, Khalil HS, Abd EL Wahab MAA. Risk factors, phenotypic and genotypic characterization of carpabenem resistant *Enterobacteriaceae* in Tanta University Hospitals, Egypt. IJIC.2016;12(2).
- 30. Hammoudi D, Ayoub Moubareck C, Aires J, Adaime A, Barakat A, Fayad N, Hakime N, Houmani M, Itani T, Najjar Z, Suleiman M, Sarraf R, Karam Sarkis D. Countrywide spread of OXA-48 carbapenemase in Lebanon: surveillance and genetic characterization of carbapenem-nonsusceptible *Enterobacteriaceae* in 10 hospitals over a one-year period. Int J Infect Dis. 2014; 29:139-44.
- 31. Hu L, Zhong Q, ShangY, Wang H, Ning C, Li, Y & Hang Y & Xiong J, Wang X, Xu Y, Qin Z, Parsons C, Wang L, Yu F.) The prevalence of carbapenemase genes and plasmid-mediated quinolone resistance determinants in carbapenemresistant *Enterobacteriaceae* from five teaching hospitals in central China. Epidemiol Infect.2013; 142: 1972–7.
- 32. Liu C, Qin S, Xu H, Xu L, Zhao D, Liu X, Lang S, Feng X, Liu HM. New Delhi Metallo-β-Lactamase 1(NDM-1), the Dominant Carbapenemase Detected in Carbapenem-Resistant *Enterobacter cloacae* from Henan Province, China. PLoS One. 2015;10(8): e0135044.
- 33. Zhu X, Li P, Qian C, Liu H, Lin H, Zhang X, Li Q, Lu J, Lin X, Xu T, Zhang H, Hu Y, Bao Q, Li K. Prevalence of Aminoglycoside Resistance Genes and Molecular Characterization of a Novel Gene, *aac(3)-IIg*, among Clinical Isolates of the *Enterobacter cloacae* Complex from a Chinese Teaching Hospital. Antimicrob Agents Chemother. 2020 Aug 20;64(9): e00852-20.
- 34. Liu J, Xu Z, Guo Z, Zhao Z, Zhao Y, Wang X. Structural investigation of a polysaccharide from the mycelium of *Enterobacter cloacae* and its antibacterial activity against extensively drug-resistant *E. cloacae* producing SHV-12 extended-spectrum β -lactamase. Carbohydr Polym. 2018 ;(1) 195:444-452.