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Abstract: Composite structures are distinguished by interfaces separating their different 

layers. These interfaces represent region of mismatches in mechanical and thermal properties 

of the adjacent layers. These regions are rich in cracks which are laying either on or sub- the 

interface in a direction parallel or perpendicular to it. In bi-material composites, interfacial 

crack is under mixed loading mode and stress intensity factor is a complex number even if the 

opening mode loading is applied. This paper solves for energy release rates and the magnitude 

of complex intensity factor of interfacial cracks using the classical stiffness finite element 

method. The path-independent   integral is used to calculate the energy release rate during 

crack extension in the elastic plane strain deformation field. In this work, the crack tip region 

is meshed with fan-shaped non-singular four nodes isoparametric quadrilateral elements. In 

addition, a conical shape of   function is employed in the numerical implementation of the 

equivalent energy domain integral. Realization of all numerical computations and 

demonstration of results are completely composed and written in MATLAB language. 

Meshing the computational domains and crack tip region are performed by a free 

downloadable program AUTOMESH-2D. Numerical results of stress intensity factor are 

found to be very close to the analytical and referenced values in both cases of bi-material and 

single layer systems. Furthermore, numerical values of  -integral contours are very close to 

interfacial fracture energy measured experimentally between a hard film and a soft substrate. 

 

 

Keywords: Bi-material composite, interfacial crack,   integral, complex stress intensity 

factor, fracture mechanics, finite element method. 

 

 

1. INTRODUCTION 
Owing to its importance in practical applications, such as thermal barrier coatings, layered 

structures in aerospace and naval industry, welding of two dissimilar solids …etc., solution of 

interfacial crack problems between two dissimilar elastic materials has attracted interests of 

many scientists and researchers, [1, 2, 3]. They proved that the stress fields near the tip of 

interfacial crack are singular, depend on mechanical properties of both boned layers and have 

an oscillatory nature. The singular stresses field ahead the interfacial crack tip; i.e.    ; 

under remote normal   
  and shear    

  stresses, Fig. 1, are calculated as the following, [4]: 

 

        
 

    
             (1)
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Where      ,   is the complex stress intensity factor, and   is the bi-material (bi-elastic) 

constant. The bi-material constant or the oscillation index   represents the mismatch in 

mechanical properties between the two layers at the interface; it is evaluated according to, [5]: 

 

  
 

  
   

       

       
          (2.a) 

 

Where   is shear modulus, and: 

 

   
   

   
                

                    
         (2.b) 

 

Subscripts   and   refer to the material above and below the interface respectively. The 

expression of complex intensity factor is, [6]: 

 

            
      

                       (3.a) 

 

Where         , and          are the real and imaginary parts of   respectively.  

 

 
Fig. 1 Interfacial Crack Between Two Dissimilar Perfectly Bonded Elastic Solids. 

 

The magnitude of complex stress intensity factor is: 

 

         
    

         (3.b) 

 

If the shear stress component in Eq. (3.a) is nullified, i.e.    
   , as in the case of the present 

study, the expression of complex stress intensity factor becomes: 

 

           
                         (4) 

 

Equation (4) states that   is inseparable into the opening and shearing modes even the loading 

is perpendicular to the interface of the bi-material composite. In other words, in the bi-

material system, due to the mismatch in mechanical properties at the interface; i.e.    , the 

crack mode is mixed. In the case of a single material system,   is equal to zero and the 

expression of   in Eq. (3.a), becomes: 
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                   (5) 

 

In this case, the expressions of    and    have the same physical meaning of the familiar 

stress intensity factors    and     which are corresponding to the opening and shearing modes 

respectively. The crack face displacement at a distance   behind the crack tip is calculated by 

the following equation, [7]: 

 

        
 

              

         

   
 

  
          (6) 

 

Where                   and                  .   and   are displacement 

components along   and   directions respectively. The term    is defined as the mean 

Young’s modulus of the bi-material composite, and is evaluated according to, [7]: 

 

   
       

       
          (7.a) 

 

Where: 

 

    
                 
 

                    
         (7.b) 

 

Inspection of equations (1) and (6) reveals that both stresses and deformations fields are 

synchronously oscillating at the interface, where the term     may be decomposed into two 

harmonic waves; i.e.                          . As a sequence, equation (6) implies 

interpenetration of one layer into another in the vicinity of the crack tip. However, for most 

bi-material systems, the values of   are multiplications of     , for example for           

system          , and          is for          system, [8]. These low values of   

attenuate the frequency of stress oscillations and the consequent interpenetrations. Thus, both 

phenomena are neglected in the present study. The energy release rate for the elastic crack 

advance at the interface is, [7]: 

 

  
 

         

   
    

  

            (8) 

 

Equation (8) is reduced to      
     

      for homogenous solid, i.e. when    . The 

magnitude of stress intensity factor, equation (3.b), can be calculated from the energy release 

rate; equation (8) as the following: 

 

                        (9) 

 

In modern structures, where materials, geometries, interfaces, loading and boundary 

conditions are heterogeneous and nonlinear, application of the aforementioned analytical 

solutions might be difficult. Consequently, numerical solutions are recommended. The 

assumed – displacement or stiffness finite element method seizes a prestigious position in 

solving many problems related to solid and structural mechanics and it could be efficient 

candidate in the field of fracture mechanics as well. However, some recommendations for 

meshing the cracked regions to simulate singular stress fields around the crack tip are 

required. Besides, advanced methodologies for calculating crack characteristics are 

supplemented. In two-dimensional problems, it is customary to mesh the cracked model with 
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high order isoparametric quadrilateral elements having at least eight or higher number of 

nodes. Such element should have at least one node on each element’s edge. In order to 

simulate the 
 

  
 singularity of strain and stress fields around the crack tip, the corner nodes 

may be collapsed to the crack tip forming a rosette of fan-shaped triangular elements. In 

addition, the edge nodes are displaced by 
 

 
 towards the crack tip where   is the length of the 

element edge. Such elements are called singular. Details and list of many relevant papers to 

this approach are extensively explained in references [9] and [10]. Another familiar 

methodology in solving crack problems is to use the extended finite element method (X-

FEM). The standard displacement-based approximation is enriched near a crack by 

incorporating discontinuous and the near tip asymptotic fields through a partition of unity 

method. Comprehensive information about X-FEM can be found in references [11 - 14]. 

In this paper, the complex stress intensity factor and energy release rate of through thickness 

interfacial crack are numerically calculated. The displacement-based or stiffness finite 

element method is used to calculate deformation, strain and stress fields. Plane strain state of 

deformation is assumed. Materials of the composite system are linear, isotropic and elastic. 

The layers are meshed by four nodes isoparametric quadrilateral elements. The four nodes 

quadrilateral elements are degenerated to three nodes nonsingular triangular elements at the 

crack tip. Four parameters are introduced to design crack tip mesh. The energy release rate is 

calculated using the energy domain area integral which is equivalent to the contour path -

independent   –integral. Conical form of   function is proposed to calculate the equivalent 

energy domain integral. Magnitude of stress intensity factor is calculated through equation 

(9). In the present work, all numerical computations including realization of the finite element 

model, proposed   function, equivalent energy domain integral and demonstration of results 

are completely composed and written in MATLAB R2012a language. Meshing the 

computational domains and crack tip region are performed by a free downloadable program 

AUTOMESH-2D [15]. The second section explains briefly the principals of  - integral and 

the equivalent energy domain area integral. The third section explains briefly shape function 

of four nodes isoparametric quadrilateral element and derivation of element stiffness matrix 

and force vector. The fourth section explains the meshing of crack tip region and numerical 

realization of   function. The fifth section solves three different crack problems and compares 

the results with referenced values in order to check the validation of the proposed technique. 

 

 

2. PATH INDEPENDENT   INTEGRAL METHOD 
Rice [16] proved that the energy release rate of a crack extension in a nonlinear elastic solid is 

equal to the value of a path independent contour integral performed round that crack. The 

contour integral is denoted by  - integral and has the following mathematical expression, [16]: 

 

          
  

  
   

 
         (10) 

 

Where                       
 

 
 is the strain energy density,     is the stress tensor, 

    is the strain tensor,         is displacement vector,                 is spatial 

coordinate system,         is the traction vector,    is component of normal vector to 

closed contour  , and    is an element of arc length along  , Fig. 2(a). Rice proved that value 

of  -integral is equal to the energy release rate of a crack extension in a deformed nonlinear 

elastic solid; i.e.: 

 

               (11) 
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Rice stated that the value of   integral around a closed contour in nonlinear elastic defect-free 

solid is zero. Apply Eq. (10) to the crack problem in Fig. 2(b), we get: 

 

     
    

    
    

          (12.a) 

 
 

(a) (b) 

Fig. 2 (a) Definition of   integral (b) Application of   integral in crack problems. 

 

Since the crack faces are traction free; i.e.    
    

  , and the change in vertical heights is 

zeros; i.e.     
     

  , then we have: 

 

   
    

            (12.b) 

 

Substituting by Eq. (12.b) into (12.a), we get: 

 

   
     

          (12.c) 

 

In words, the values of   integral carried along either    or    are equal. Equation (12.c) 

proves the path independency of   integral when applied to a crack problem, the negative sign 

appears because the direction of    is opposite to that of   , Fig. 2(b). 

However, the form of   integral, which appears in equation (10), is not suitable for FEM 

implementation [17]. Divergence theorem of Gauss is used – in two-dimensional space – to 

transform the domain of the integration from a contour   onto the area   enclosed by that 

contour, Fig. 2(b), mathematically, [18]: 

 

       
   

   
       

  

   
           (13) 

 

Where     is the Kronecker delta, and   is a mathematical device that enables the generation 

of an area integral. Equation (13) is called the equivalent energy domain integral. Realization 

of   function is deeply explained in the fourth section. 

 

 

3. REALIZATION BY THE FINITE ELEMENT METHOD  
In this work, the bi-material composite is subjected to a remote vertical tensile stress 

perpendicular to its interface. A through thickness crack of length    exists at the interface. 

The crack faces are traction free. The strain and stress fields are in the state of plane strain 

condition. Figure 3.a illustrates the full mathematical model of the interfacial crack problem 

shown in Fig. 1. Both layers have the same length    and width of   The applied surface 

tractions are   
     and    

   . According to the prescribed geometries and applied 

surface traction, the finite element model would be symmetric, as shown in Fig. 3(b). 
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Horizontal displacement of the left edge nodes and the vertical displacement of the bottom 

edge nodes are fixed. A surface traction    is applied on the top edge of the model, Fig. 3(b). 

The crack is simulated as an isosceles triangle cut from the symmetric model as shown in 

Fig. 3(b). The angle   between crack faces is recognized as a crack mouth angle. The height 

of the isosceles triangle is equal to the half crack length, Fig. 3(b). A Cartesian coordinate 

system     is fixed at the crack tip, Fig. 3(b) The whole domain is discretized by the four 

nodes isoparametric quadrilateral elements which is abbreviated by QUAD4. Figure 4 shows 

the QUAD4 element in the Cartesian coordinate system     and its mapped image in natural, 

intrinsic or normalized coordinate system    . Most of forthcoming formulations of QUAD4 

are taken from [19]. The spatial coordinates   and   of QUAD4 vary according to: 

 

             and                   (14.a) 

 

Where    and    are nodal coordinates in     Cartesian coordinate system, Fig. 4(a); and 

         .         are the shape functions of the element; defined as: 

 

   
 

 
                      (14.b) 

 

Where    and    are nodal coordinates in     natural coordinate system, Fig. 4(b).  

 

  

(a) (b) 

Fig. 3 (a) Full Mathematical Model. (b) Half Symmetric Model: Applied Surface 

Traction and Boundary Conditions. 

 

The horizontal        and vertical        displacement fields within the element are: 

 

 
 
 
               (15) 

 

Where    
   
   

  is shape matrix, and          is vector of nodal displacements 

along   and   directions respectively. Superscript   means transpose. The normal strain    

and    along   and   directions respectively and the in-plane shear strain      are: 
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,    

  

  
 and     

  

  
 

  

  
        (16) 

 

Substitution of equations (14.b) and (15) into (16), gives: 

 

  

 
 
 
 
 

 

  
 

 
 

  

 

  

 

   
 
 
 
 

 
 
 
  

 
 
 
 
 

 

  
 

 
 

  

 

  

 

   
 
 
 
 

           (17.a) 

 

Where              is the engineering strain vector, and   is the strain – displacement 

matrix defined as: 

 

 

  

Fig. 4 Four Nodes Isoparametric Quadrilateral Element QUAD4 in (a) Cartesian 

Coordinates system and (b) Normalized Coordinates System. 

 

   

 
 
 
 
 
   

  
 

 
   

  

   

  

   

   
 
 
 
 

 
 

   
 

    
    
      

        (17.b) 

 

where     is the Jacobian defined as: 

 

     

  

  

  

  

  

  

  

  

          (17.c) 

 

The coefficients     and     are: 

 

    
  

  

   

  
 

  

  

   

  
 and     

  

  

   

  
 

  

  

   

  
      (17.d) 

 

The normal components of stresses    and    along   and   directions respectively and the 

in-plane shear stress     are evaluated in case of plane strain condition as the following: 

 

              (18.a) 
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Where              is the stress vector, and   is the elasticity matrix defined in plane 

strain condition as the following: 

 

    
 

           
 

     
     

  
    

 

       (18.b) 

 

Since, the computational model – in the present work – is linear and conservative (non-

dissipative). Therefore, the principal of virtual work can be applied to derive the governing 

equation of element’s equilibrium in a matrix form; i.e.  

 

               (19.a) 

 

Where    is the virtual change in the total strain energy and    is the virtual change in the 

work of the applied surface loads. In matrix form, equation (19.a) can be written as the 

following: 

 

        
 

            
 

              (19.b) 

 

Where   is the element volume; and   is the element stiffness matrix defined as: 

 

       
 

            (19.c) 

 

The work of external applied surface traction is: 

 

        
 
  

 
 

           
 
  

 
 

            (19.d) 

 

Where   is the surface area upon which the traction        is applied; and   is the 

generalized element force vector defined as: 

 

      
 
  

 
 

           (19.e) 

 

Substituting by equations (19.b and d) into equation (19.a) and dividing by      , we get: 

 

               (20) 

 

Equation (20) is the governing equation of equilibrium of the element in matrix form. 

Evaluation of element stiffness matrix equation (19.c) and element force vector equation 

(19.e) are performed numerically using     Gauss numerical integration rule. For example, 

consider the numerical integration of element stiffness matrix; equation (19.c) The first step is 

to map the integration onto the natural coordinates system; i.e. 

 

       
     

        
                      

  

  

  

  
       (21.a) 

 

Where   and   are the element area and thickness respectively. The second step is to evaluate 

the last integrand in equation (20.a) at four Gauss points shown in Fig. 4(b) then multiply 

each term in a weighting factor     ; as the following: 
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        (21.b) 

 

The same procedure is applied to integrate the element force vector; equation (19.e). 

However, the integration is performed on the top surface of the QUAD4 element. Thus the 

two – dimensional surface integration in equation (19.e) becomes one – dimensional line 

integration. The shape function of    isoparametric line element is: 

 

   
 

 
                (22.a) 

 

Two Gauss points are used to perform the integration numerically, their locations on the 

isoparametric line element are: 

 

     
 

  
, and     

 

  
        (22.b) 

 

The Gauss – summation form of the element force vector is: 

 

            
 
  

   
   
           (22.c) 

 

 

4. MESHING THE CACK TIP REGION AND REALIZATION OF THE q 

FUNCTION 
Design of crack tip mesh characterizes the proposition of   function. Figure 5 exemplifies a 

mesh of a crack tip region. Taking the crack tip as an origin of a local polar coordinate 

system, parameters controlling the mesh are: (1) crack mouth angle;  , (2) number of 

elements in radial diction;      ; (        in Fig. 5), (3) number of elements in 

circumferential direction;     ; (       in Fig. 5), and (4) ratio between the outer radius 

of the rosette   to half crack length  ; this ratio is denoted by   
 

 
. Elements in the first ring 

are always degenerated QUAD4. A degenerated QUAD4 element is obtained by assigning 

same coordinates to any adjacent nodes of the parent element. In the next section, the 

influences of aforementioned parameters on the accuracy of numerical results are 

investigated. 
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Fig. 5 Design Parameters Controlling Crack Tip Mesh  

 

In this work, the domain of the equivalent energy integral, equation (13) is an annulus around 

the crack tip, Fig. 6. The area of the domain is bounded by the two circular contours    and    

and crack faces. Radii of the    and    are    
 and    

 respectively. The energy integral, 

equation (13), is calculated over the elements meshing the annulus  . The number of the 

elements is equal to     . The number of annuli where, we can calculate the energy integral 

is equal to      . That means for each crack mesh we have       values of   – integral. 

And according to the path – independent property of   - integral, their values should be equal; 

equation (12.c). The values of are    
 and    

 are determined according to   and      , 

where the radius   is equally divided into       annuli. 

To define the q function within a QUAD4 element, the first and second nodes of the element 

should be located on    and third and fourth nodes on    as shown in Fig. 6. Nodal values    

of function   are assigned to have the following values, Fig. 6: 

 

                 (23.a) 

                 (23.b) 

 

The variation of   within QUAD4 is expressed as: 

 

                         (23.c) 

 

Where    is shape function of QUAD4 defined in equation (14.b). The spatial variation of   

has smooth conical form, Fig. 7(c).  
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Fig. 6 Implementation of   Function  

 

It is worthy to mention that Shih et al [18] suggested two types of  ; pyramid and plateau 

functions, Fig. 7(a) and (b). However, in this work, the conical form of   is more convenient 

to fan-shaped rosette of elements around the crack tip, Fig. 5. 

 

 

 

(a) 

 
(b) (c) 

Fig. 7 Different Definitions of   Function: (a) Pyramid and (b) Plateau as in Shih et al 

[20], (c) Conical as Proposed by in The Present Work. 

 

The energy domain integral, equation (13) is calculated in the post processing stage of FEM 

computations, i.e. after the computations of displacement, strain and stress fields. The 

discretized form of the domain integral is written as the following: 

 

               
               

     
         (24.a) 

 

            
  

  
      

  

  
 

  

  
     

  

  
   

  

  
 

  

  
    (24.b) 
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                         (24.c) 

 
  

    
   

   

   

  
   

 
   

   

   
          (24.e) 

 
  

  
 

   

  
   and 

  

  
 

   

  
          (24.f) 

 

According to equation (11), numerical values of energy release rate      are calculated by 

equation (24.a); i.e.: 

 

                (25.a) 

 

In the present work, the effect of 
 

 
 ratio is considered in numerical and analytical 

computations of stress intensity factor. Tada [21] expressed this effect as a factor   
 

 
  

defined as: 

 

  
 

 
           

 

 
 

 

      
 

 
 

 

     
  

  
     (25.b) 

 

Thus, the numerical values of magnitude of stress intensity factor      are calculated as the 

following: 

 

                        
 

 
       (25.c) 

 
The percentage errors in numerical results of the energy release rate    and the magnitude of stress 

intensity factors    are calculated as the following: 

 

        
      

 
           (26.a) 

 

        
      

 
          (26.b) 

 

 

5. NUMERICAL RESULTS: VALIDATION AND DISCUSSION  
The primary task in this section is the validation of the numerical computations of crack 

characteristics i.e. energy release rate and magnitudes of complex stress intensity factor. To 

achieve this goal, three crack problems are solved. The first is a thickness through crack in a 

single material system. The second problem is an interfacial crack in bi-material composite. 

The third one is the comparison of numerically calculated energy release rate with which 

experimentally measured in case of an interfacial crack in bi-material composite. Influences 

of varying parameters of crack tip mesh (i.e.  ,      ,     , and  ) on crack 

characteristics are investigated as well. 

 

5.1. CRACK PROBLEM IN A SINGLE MATERIAL SYSTEM 
The mathematical model of this problem is shown in Fig. 3, by assigning the same 

mechanical properties to both layers; i.e: 

 

                  and                    (27.a) 
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Where     and     are Young’s modulus and Poisson’s ratio of the copper. The bi-material 

constant  , equation (2.a), is: 

 

              (27.b) 

 

The mean Young’s modulus of the single material system in plane strain condition; equation 

(7) is: 

 

                      (27.c) 

 

Crack length and model dimensions are selected to be, Fig. 3,         ,          , 

and        . Surface tensile stress (traction) is           . The analytical value of 

stress intensity factor, equation (5), considering the 
 

 
 effect, equation (25.b), is: 

 

               
 

 
                   (27.d) 

 

The analytical value of the energy release rate, equation (8) is: 

 

                        (27.e) 

 

 

 

 

 

(a) (b) 

Fig. 8 (a) Finite Element Model of The Single Layer Through Thickness Crack Problem. 

(b) Crack Tip Mesh;     ,        ,        ,      . 

 

The finite element model is illustrated in Fig. 8(a) with an enlarged view of crack tip mesh in 

Fig. 8(b). The crack tip mesh parameters in Fig. 8(b) are:     ,        ,        , 

     . The total number of nodes and elements of the whole model are      and      
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respectively. The numerical finite element results of stress intensity factor and energy release 

rate are listed in Table 1.1. 

 

Table 1.1 FE Results of Crack Characteristics in The Single Layer System; Crack Mesh 

Parameters:     ,        ,        ,      . 

Contour 

number: 
                                

1 16.451 -9.023 47.337 -5.775 
2 17.861 -1.224 49.324 -1.820 
3 18.221 0.767 49.819 -0.836 
4 18.322 1.324 49.956 -0.562 
5 18.373 1.608 50.026 -0.422 

 

Inspection of errors    and    reveals that the degenerated QUAD4 elements in the first 

contour result in high errors in      and      respectively. If the   – integral contours is 

increased to        , the errors would be decreased, Table 1.2. However, the total number 

of nodes and elements of the whole mesh are changed to      and      respectively. 

In order to study the influence of crack mesh parameters on crack characteristics, the number 

of   contours is kept constant at         and: (1) Number of elements in circumferential 

direction,      is changed as shown in Fig. 9. (2) Ratio   between domain radius   and half 

crack length   is varied as shown in Fig. 10; (3) Amount of crack mouth angle   is altered as 

depicted in Fig. 11. 

 

 

 

 

Table 1.2 FE Results of Crack Characteristics in The Single Layer System; Crack Mesh 

Parameters:     ,        ,        ,      . 

Contour 

number: 
                                

1 16.612 -8.132 47.568 -5.315 
2 18.000 -0.454 49.516 -1.438 
3 18.350 1.481 49.995 -0.485 
4 18.444 2.003 50.123 -0.229 
5 18.490 2.254 50.185 -0.106 
6 18.519 2.419 50.225 -0.026 
7 18.542 2.545 50.256 0.036 
8 18.561 2.651 50.282 0.087 

 

Analyses of figures 9 to 11 lead to the following two important conclusions: (a) Results 

related to the first contour are a little bit away from the analytical ones, (b) Varying of crack 

mesh parameters has minor influence on the results of crack characteristics at least on the 

engineering level. On the light of both conclusions, we will solve the next two crack 

problems, subsections 5.2 and 5.3. 
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(a) (b) 

Fig. 9 Effect of varying      on (a) Energy release rate;      and (b) Stress intensity 

factor;     , at     ,        , and      . 

 

  
  

Fig. 10 Effect of varying   on (a) Energy release rate;      and (b) Stress intensity 

factor;     , at     ,        , and        . 

 

 

 

  
  

Fig. 11 Effect of varying   on (a) Energy release rate;      and (b) Stress intensity 

factor;     ; at      ,        , and        . 
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5.2. INTERFACIAL CRACK PROBLEM IN BI-MATERIAL 

COMPOSITE 
The second crack problem is the interfacial thickness through crack in a bi-material 

composite. The mathematical model of the problem is illustrated in Fig. 3. Material properties 

are selected to be                    ,               ,          
       and 

            . Where        and       
 are Young’s modulus and Poisson’s ratio of 

aluminum oxide respectively. Model dimensions and loads are the same as in the first 

problem; i.e.        ,          ,        , and           . The analytical 

value of complex stress intensity factor, equation (3.a), is: 

 

                                 (28.a) 

 

The magnitude of complex stress intensity factor considering the 
 

 
 effect, equations (3.b) and 

(25.b), is: 

 

                       (28.b) 

 

The analytical value of the energy release rate, equation (8) is: 

 

                        (28.c) 

 

The deformed finite element model is illustrated in Fig. 12(a) with an enlarged view of 

deformed crack tip mesh in Fig. 12(b). The crack mesh parameters in Fig. 12(b) are:     , 
       ,        ,       . The total number of nodes and elements are      and 

     respectively. The finite element results of the magnitude of complex stress intensity 

factor and the energy release rate are listed in Table 2.  

Disregarding the computations corresponding to the first ring (contour), the maximum error in 

     and      are         and         respectively. The minimum errors in are      

and      are         and          respectively, Table 2. 
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(a) (b) 

Fig. 12 (a) Deformed FE Model of The Interfacial Crack Problem in          

Composite. (b) Magnified View of Deformed Crack Tip Mesh. Crack Mesh Parameters: 

    ,        ,        ,       . All deformations are multiplied by     for 

illustrative purposes. 

 

Table 2 FE Results of Interfacial Crack Characteristics in          Composite; Crack 

Mesh Parameters:     ,        ,        ,       . 

Contour 

number: 
                                

1 10.722 -8.368 47.597 -5.437 
2 11.584 -0.996 49.474 -1.707 
3 11.791 0.774 49.915 -0.832 
4 11.840 1.193 50.018 -0.626 
5 11.862 1.374 50.063 -0.537 
6 11.874 1.479 50.089 -0.486 
7 11.882 1.552 50.107 -0.450 
8 11.889 1.608 50.121 -0.422 

 

 

5.3. COMPARISION WITH EXPERIMENTAL RESULTS 
Sun et al [22] measured experimentally the fracture toughness of delamination between 

plasma-enhanced chemical vapor deposition      islands (hard coating) and a polyimide (  ) 
substrate (soft substrate), Fig. 13. Such structure is frequently found in flexible electronics 

industry. They applied tensile strain and measured the deboned length (      ), 

Fig. 13(b); where   is the remaining bonded length of the coating (island), Fig. 13(a). After 

rigorous theoretical and numerical analyses, they related the applied strain with the fracture 

energy, Fig. 13(c). They proposed a symmetric mathematical model for their problem, 

Fig. 13(d) and assumed plane strain state of deformation. Mechanical properties of both 

coating and substrate materials are listed in Table 3.1.  
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Table 3.1 Dimensions, Loading and Mechanical Properties for Symmetric Sun et al [22] 

Model corresponding to       ,         and            

Dimensions: 

Crack length         . 

 

Coating length         . 
Coating thickness        . 

 

Substrate length         . 
Substrate thickness           . 

Mechanical properties: 

Coating: 

              

          
 

Substrate: 

            

        

 

 
 

(a) (b) 

 

 

(c) (d) 

Fig. 13 (a) Sun et al Experiment, [22] (b) Relation between Applied Strain and 

Delaminated Interfacial Crack Length, [22] (c) Relation Between Applied Strain and 

Fracture Energy of Delamination, [22]. (d) Sun et al Symmetric Model. [22]. 

 

In this section, we solve for interfacial debonding energy corresponding to applied strain 

           and coating thickness        and coating length         . From 

Fig. 13(b), we read the length of delaminated crack as        . The corresponding 

fracture energy is taken from Fig. 13(c) as          . The proposed finite element model 

in the present study is shown in Fig. 14(a). Mesh parameters of crack tip regions, Fig. 14(b), 

are:     ,        ,        , and       . Boundary conditions are: (1) 

Horizontal displacement of the left edge nodes is fixed. (2) Vertical displacement of the 

bottom edge nodes is fixed. The applied strain is realized as applied horizontal displacement 

           to the nodes of right substrate edge. The deformed model is shown in Fig. 14(c) 

and (d). Contour results of energy release rate      (delamination fracture energy) and the 
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corresponding errors are listed in Table 3.2. Excluding the result of the first contour, 

maximum and minimum errors are          and          corresponding to the second and 

fifth contour respectively.  

 

  
(a) (b) 

  

(c) (d) 

Fig. 14 (a) Present Work FE Model. (b) Enlaged View of Interfacial Crack. 

Crack Mesh Parameters are:     ,        ,        , and       . (c) 

Deformed FE model. (d) Magnified View of Deformed Crack Tip Mesh. Deformations 

are multiplied by   for Illustrative Purposes  
 

Table 3 Present Work Computations of Delamination Fracture Toughness between SiNx 

and PI corresponding to       ,         and            

Contour 

number: 
               

1 11.628 -10.551 
2 12.566 -3.342 
3 12.844 -1.201 
4 12.933 -0.516 
5 12.989 -0.085 
6 13.031 0.236 
7 13.065 0.499 
8 13.095 0.728 
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6. CONCLUSION 
This paper discussed the finite element computations of fracture characteristics of interfacial 

crack in isotropic, linear and elastic bi-material composite. It presented: (1) Conical form of 

the assumed crack extension vector;   function and (2) Four parameters controlling the design 

of crack tip mesh with non-singular   nodes isoparametric quadrilateral elements. Elastic 

fracture characteristics are computed in the post processing stage using the counter  - integral 

via equivalent energy domain integral. Results of the present work, showed good agreement 

with both referenced and experimental values. 
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