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Abstract: A Quad-rotor, which is an airplane with four rotors, is considered a complex and 

challenging control problem. Analysis and design of its control systems is usually started by 

careful consideration of its mathematical models description. This paper presents a detailed 

mathematical model for a Vertical Takeoff and Landing (VTOL) type Unmanned Aerial 

Vehicle (UAV) known as the quad rotor. The presented paper focus on the nonlinear 

modeling of an experimental type quad-rotor. The first objective of this paper aims to develop 

a nonlinear dynamical model based on Newton-Euler approach. Then, a linear model is 

obtained around an optimized hovering point. The state space, transfer function matrix and 

matrix fraction description models are derived. Finally, a linear controller is designed to 

achieve a stable compensated system around a hovering point. The methodology applied in 

this paper takes the ST-450 experimental quad-rotor as a case study. 

Keywords: Quad rotor, Modeling, Identification, Linearization, linear control, Stabilization, 

LQR 

Nomenclature 
    Quad rotor moment of inertia around x axis.   (kg) Mass of  quad rotor without battery 

    Quad rotor moment of inertia around y axis.   (kg) Mass of full quad rotor 

    Quad rotor moment of inertia around z axis.  (m) Distance to the center of the quad rotor 

    Single rotor moment of inertia g (m.s
-2

) Gravitational acceleration 

   Thrust factor    Drag factor 

UAV Unmanned aerial vehicles VTOL Vertical Takeoff And Landing 

COG Center of Gravity ESC Electrical Speed Controller 

BLDC Brushless DC Motor  PWM Pulse Width Modulation 

DOF Degree of Freedom LQR  Linear Quadratic Regulator 
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1. Introduction.  

UAVs have become progressively popular for commercial and military applications. UAVs 

and especially quad rotors can be utilized in wide set of real-life applications such as 

intelligent, surveillance, reconnaissance ,wild-fire surveillance, agriculture development, 

search and rescue, traffic monitoring, pollution air measurements, area exploration and 

mapping and military applications . Most of the previously declared applications need 

hovering and VTOL capabilities. In general, fixed-wing aircrafts are incapable to achieve 

VTOL and be affected from maneuverability limitations. Traditional helicopters are capable 

of VTOL, but hovering is dynamically and structurally complex, more expensive and hard to 

control. Quad rotor helicopters are becoming more favorable than helicopters as they are 

mechanically simpler and easier to control. Although, quad rotor control is a challenging 

problem, because it is an extremely nonlinear, coupled system, multivariable system, highly 

unstable nature and underactuated system. Consequently this paper is dedicated to study the 

problem of modeling the quad copter to get more accurate models, linearization of the derived 

nonlinear model, and different representation of the linear model and stability analysis. 

 Modeling of the quad rotor dynamics using a white-box approach. This method assumes full 

familiarity of both system physical equations and parameters, i.e., it uses a priori information. 

Amir and Abbas designed and developed mathematical model of a quad rotor dynamics and 

simplified the quad rotor model using momentum theory. Where the gyroscopic effect and air 

friction on frame of machine has been neglected [1]. Erginer and Altug studied a white box 

model for quad rotor, comprised gyroscopic effects for dynamical model and implemented a 

simulator for the developed model [2]. Pounds et al constructed and built an X-4 quad rotor 

then modeling of quad rotor used the basic physics to achieve the mathematical model  [3]. 

Salih et al used Newtonian Methods to describe the dynamic of the quad rotor model [4]. 

Bouabdallah et al studied the design of quad rotor autonomous robot OS4 and its dynamic 

nonlinear modelling using Newton- Euler method and vehicle design optimization and control  

[5]. Bousbaine et al presented a nonlinear dynamic system based on the Euler–Lagrange 

approach [6].Number of studies has built their linear model based on different linearization 

techniques. Palm et al designed the open loop linear model of the quad rotor system by 

linearizing each block in a model individually [7].  Kivrak achieved Linearization of the 

nonlinear state space equations of the quad rotor system around hovering conditions using 

Jacobians method  [8]. Wilson et al presented a linear state-space method of the quad rotor 

control system [9]. Ataka et al used the gain scheduling based linearization to achieve linear 

quad rotor model and simplified the nonlinear model [10].Sørensen used 1
st
 order Taylor 

approximation  to described the appropriate linearization of quad rotor mode [11]. Sonntag 

presented a linearized model of the quad rotor around hovering condition using identification 

method  [12]. 

The design of linear controller to achieve a stable compensated system has been studied by 

many authors. Minh and Cheolkeun designed linear controller for stabilization of the attitude 

of the quad rotor MAV [13] .Palm et al design control structure that uses feedback to achieve 

autonomous flight controller [7]. Bouabdallah et al presented the PID and LQ control methods 

have been reported to successfully stabilize the quad rotor’s attitude around hover position in 

the presence of minor disturbances [14]. Argentim et al presented a comparison between 

different linear controllers to be used in a dynamic model of a quad copter platform such as 

PID, LQR and LQR-PID [15]. Lebedev used Pole-Placement state feedback controller design 

to design a linear controller for stabilization of the quad rotor system [16]. Kivrak used LQR 

to stabilize of the quad rotor system [8]. Wilson et al presented the linear control of the quad 

rotor system using pole placement state-feedback controller [9]. Peña et al designed the LQR 

control with integral effect to track reference paths for the attitude controller [17]. Ataka et al 

designed linear controller of quad rotor system with LQR state feedback controller  [10]. 

Belkheiri et al presented comparison between different linearization control algorithms such 

as feedback linearization and LQR  [18]. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ly%20Dat%20Minh.QT.&searchWithin=p_Author_Ids:37591218400&newsearch=true
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Several universities and research group are using quad rotors for scientific research, whether 

it is a control focused on research or autonomous systems and navigation system. We will 

show here a brief overview of some of the famous research groups and universities around the 

world achieved very promising results and used hardware quad rotor. Bouabdallah et al. used 

a quad rotor model called the OS4 for testing their proposed control algorithms, the OS4 was 

manufactured and assembled in their laboratory [14]. The X4-Flyer is utilized in the 

Australian National University [19]. Also, the Mesicopter was developed by Stanford 

University using off-the-shelf components [19]. Hoffmann et al used the STARMAC II UAV 

to study the aerodynamic effects on the quad rotor when operating far from the hovering 

position. Other research groups would rather save the time, cost and effort of building the 

quad rotor model from scratch and use a commercially available platform. One of the most 

widely used platform is the one produced by AscTec [20] company. Which is a company that 

sells quad rotors specially designed to be used in research related tasks. Their prototypes of 

quad rotor were used by several research groups and universities for example: MIT Robust 

Robotics Group [21], MIT Aerospace Controls Lab [22] and University of Pennsylvania 

GRASP Lab [23]. Another widely used platform is the Draganfly from Draganfly Innovations 

[24] also used by MIT Aerospace Controls Lab [22], [25]. Company is the French company 

Parrot [26], their model AR.Drone is generally designed for entertainment purposes and it can 

be remotely controlled by an iPhone mobile. Another company is the Germany Company 

Microdrones [27] that improves UAVs to be used in various applications for instance aerial 

surveillance, power lines inspection and bridge inspections among others. 

In this paper, we tackle the stabilization and navigation problems of a quad rotor system. A 

nonlinear model is derived and used for linear controller design. This article is organized as 

follows: The ST-450 quad rotor kinematics and dynamics models are derived based on the 

Newtonian mechanics in Section 2. In Section 3, we present the state space model and linear 

model is obtained around an optimized hovering point. The analysis of our system concerning 

stability, controllability, observability, minimal realization, System poles and different system 

representation will be given in section 4. In Section 5, we presented linear state feedback 

controller to achieve the required performance. The developed simulation framework is 

introduced in Section 6.Simulation results are presented in Section 7 to show the efficiency of 

the linear controller. Finally, the paper is concluded in Section 8. 

2. Dynamics modeling of the quad-rotor Model 

Quad rotor helicopter is actuated by four rotors. Four propellers in cross configuration style as 

shown in Fig.1. Generally, each propeller is directly connected to the Brushless DC Motor 

(BLDC) motor. Two pairs (1, 3) and (2, 4), rotating in opposite directions. Input Control 

forces and moments are generated by changing the speed of the rotors 

(            ).Variation of rotor speeds to generate Vertical thrust (by concurrent change in 

rotor speed), pitch moment (by converse change of rotor speeds 1 and 3), Roll moment (by 

converse change of rotor speeds 4 and 2) and yaw moment (by rotor speed difference between 

the two pairs of rotors). 

 

Fig.1 The structure of quad rotor and relative coordinate systems 
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In this section, The kinematics and dynamics models of the quad rotor will be derived based 

on a Newton-Euler formalism with the following assumptions: The quad rotor structure is 

supposed rigid and symmetrical, the propellers are supposed to be rigid, the cross products of 

the inertia matrix can be neglected, interaction with ground or other surfaces is neglected and 

the CoG and the body frame origin are assumed to match. The model of quad rotor consist of 

three main parts (motor dynamics, rotor velocity to control input and body dynamics). First 

block, Motor dynamics are include as the first order lag transfer function of 4 BLDC 

.Secondly, converted actual speed rotor to control input. Third block, body dynamics: as 

illustrated position (   , z) and Euler angles (     ) as illustrated in Fig 2. 

 

 

Fig.2 The quad rotor open loop input output block diagram 

 

2.1. Kinematics Model 
In this part, modelling starts with defining the reference frames .There are two coordinate 

systems to be considered, the earth frame (E-frame) and the body- frame (B-frame). To 

transform a vector from the body-frame (    and  ) to the earth- frame (  ,   and   ) shown 

in fig.1. From the body dynamics, it follows that the two reference frames are connected by 

the following relations ( [28] , [29]). The following rotational matrix is used  [28] 
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(1) 

     represents the orientation of the aircraft relative to the earth-frame 

(                         is obtained by post-multiplying the three basic rotation 

matrices. The relation between the dynamics of angular velocity        and the rate of 

change of the Euler angles (                   ) can be determined by  
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As a result, it is likely to describe previous equations in only one equivalence which the 

relation the derivative of the position in the earth-frame         ) to the velocity in the body- 

frame           

            
        

      
        

                                                                            
 

(4) 

2.2. Dynamics Model 
The Dynamics of the quad rotor system can be divided into two parts, translation subsystem 

(x, y positions and altitude) and rotational subsystem (roll, pitch and yaw) as shown in 

fig.2.the translation motion is coupled, while the rotational subsystem is fully decoupled [14] 

[28].  In the quad rotor relied on the Newton-Euler formulation.  
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(5) 

The Newton-Euler formulation consists of the rotational equations of motion and the 

translation equations of motion. Firstly, the rotational equations of motion are derived in the 

body frame using the Newton-Euler method with the following general equation [5] 

                                                      (6) 

 Where              is the total torque,         is the diagonal inertia matrix and 

      angular body rates. Consider the dynamics of the quad rotor, i.e. how the total force 

and the total torque vectors are composed. Gyroscopic effects are presented if the total sum 

of the rotational speeds of the rotors                      is not zero and they 

influence the total torque adding the following term (see [19], [20]),       
    

              . 

The above obtained relations in one matrix equation the Newton-Euler formulation. 

                                              (7) 

Where    (a) is the skew-symmetric matrix. While the rotational dynamic model can be 

written as 

 

  

  

  

   

    
    

    

 

         
 

 

  

  

  
   

 
 
 
   

    
    

    

  
 
 
 
                              

 

 

(8) 

The aerodynamic moments produced by the i
th

 rotor are directly proportional to the square of 

the rotor’s speed         
   where    drag factor. The aerodynamic moments of the quad 

rotor in the body-frame are given by 

              
     

         
     

        
     

     
     

   
 
 (9) 

The rotational equations of motion are described by 

 

  

  

  
   

                                  

                                 

                

   

       

       

      

  

Neglecting the gyroscopic effects in this case     , i.e, 

                                                           

                                                            

                                                

 

 

 

 

 

 

(10) 

The translation subsystem is based on Newton's second law and they are described in the 

earth-frame 

                                
    

 

Where              is the total force,     is the mass of the quad rotor. 

 

(11) 

Gravity has effect on the total force (  ) and its direction is along the z axis of the earth-

frame. 
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(13) 

The translation dynamic model can be written  

                                              

                                                               

                                           

 

 

(14) 

2.3. BLDC Dynamics 
The motors used in quad rotors are BLDC motors that provide little friction and high torque. 

The dynamics of a BLDC at steady state is the same as a traditional DC motor. In this section, 

the BLDC model identified experimentally using a system identification tool (e.g. 

MATLAB's System Identification Toolbox). The system is put on action and the up_down_up 

is applied to its input as a control command to the BLDC motor. The response of the system 

to this up_down_up signal is measured. Fig.3. presented the scaled up_down_up step and the 

scaled response of the system. All inputs and outputs are scaled. The input which represents 

the control action to the BLDC motor is scaled to the range [25 to 65] that represents [1000 to 

7000] RPM. Finally, the first order model was 80.5% best fit with the reference signal.  

 

 

Fig .3. Model Fitting(first order system) 

 

First order lag transfer function was identified to be, 

G(s) = 
                  

                   
 = 

     

       
 (15) 

2.4. Inertia Calculation 
This part uses the data derived by elementary measurements to identify the body (quad rotor) 

and rotational moments of inertia. Therefore, the main objective is to derive body moments of 

inertia matrix I and derive the total rotational moment of inertia around the motor axis 

2.5. Quad Rotor State Space Model 
 Defined the state vector of the quad rotor to be 

                                                     
    (16) 

Which is mapped to the DOF of the quad rotor as follows. 

                                   (17) 

The state vector defines the quad rotor states. A control input vector, U, consisting of four 

inputs  

                  
 , where (18) 
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Using the equations of the rotational angular acceleration and translation Equations 10 and 16 

the complete mathematical model of the quad rotor can be written in a nonlinear state space 

representation as follows 

           

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

  

  

  

  

                               

                             

                  

                         

                         

                          
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(20) 

3. Linearized System 

In this section, the nonlinear quad rotor model described by equation (10, 15) can be 

approximation by the linear model using a first order Taylor’s series .The linear 

approximation of the quad rotor model will be in the form of equation (21). 

    
    

   

   
         

   

   
                                               

(21) 

The non-linear model of quad rotor will be linearized at the equilibrium point in order to 

make the system more amenable. So as to do the linearization, we need to calculate the 

hovering point of the system. The hovering mode is an operating mode where the quad rotor 

without motors is stable. The constraints for the hovering operating point are defined in Table 

1. 

Table.1. Hovering Point Constraints 

Inputs Value Min(RPM) Max(RPM) Inputs Value Min(RPM) Max(RPM) 

   0 1000 8000    0 1000 8000 

   0 1000 8000    0 1000 8000 

 

We can get the hovering point by two possible methods, experimentation or optimization by 

numerical methods of the nonlinear set of differential equations using the previous given 

constraints Table.1.One problem with the experimentation method that it is quite hard to get 

the system in hovering by open loop controls, as the system may be marginally stable. 

Another problem arises with the quantization levels of the inputs that add difficulty to assign 

precise values that achieve stable hovering. So, it is desirable to calculate the hovering point 

by numerical optimization method. In this section we will follow optimization method” trust-

regions” and algorithm “nonlinear least squares trust region reflective”. The calculated 

hovering point data are defined Table 2.  

 

Table.2. Calculated Hovering Point data 
System 

Inputs 

Desired Omega 

(RPM) 

Actual Omega 

(RPM) 

System 

Inputs 

Desired Omega 

(RPM) 

Actual Omega 

(RPM) 

   [1000, 8000] 3134    [1000, 8000] 3134 

   [1000, 8000] 3134    [1000, 8000] 3134 

 

From Equation (22), we can get the linear state space representation as the following 

equation. 

                                   (22) 
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The state space model of the Quad rotor is approximated using the Simulink Linear Analysis 

Tool. This tool uses a “Block by block analytic” algorithm, which uses preprogrammed 

analytic block Jacobians for most blocks and, is more accurate linearization than numerical 

perturbation of block inputs and states [30].Therefore, the approximated linearized model of 

quad rotor is described by the following equations.  

                                                        

           

        

                        

        

 
        

        
              

     
    

  

         
        

        
             

                        

             

            
                  

   

                                

 

 

 

 

 

 

 

 

 

(23) 

4. Characteristics of the ST-450 Quad rotor Linear State Space Model 

In this section, System analysis allows evaluating the characteristics of the future quad 

rotor in flight or its behavior in various conditions such as stability, construability, 

Observability and power required.in this part, we will study and analyze the linear quad rotor 

system. 

4.1 Testing for Controllability and Observability  

Before designing of any controller or any observer, we have to test the controllability and 

observability of the linear state space system. The controllability matrix for our linear state 

space system, 

                       (24) 

The matrix has full rank n, and therefore the system is completely controllable. Similarly the 

observability matrix. 

                        (25) 

It has rank n and therefore it is completely state observable. 
4.2. Minimal Realization  

It is known that realization {A, B, C} is minimal if and only if it is controllable and 

observable. With regard to previous controllability and observability tests, the Quad rotor 

System has minimal realization. 

 

4.3 Stability Analysis 

The stability and performance of the proposed linear quad rotor system are analyzed using 

stability theorem. As the minimal realization of the Quad rotor system linear model has 12 

states, then we expect to find 12 poles of the system .To compute the Quad rotor system 

eigenvalues. The pole characteristic polynomial      is defined as:                
       

 
   = . All the poles are equal to zero and therefore the system is unstable. 

4.4. Transfer Function Matrix Representations 

Several frequency domain representations of MIMO systems are associated with the same 

linear time-invariant state space representations. The transfer function matrix H of the state 

space representation {A, B, C, D} can be defined by                   .The H(s) is 

returned:  



 Paper: ASAT-16-028-CT  
 

     

 
 
 
 
 
 
 
                        

                        

                        
                        

                        

                         
 
 
 
 
 
 

  =

 
 
 
 
 
 
 
 
 
 

       

    
 

    

   
 

 
        

     
 

     

    
          

     

          

     

          

     

          

     

  
       

   
 

      

   

 
     

   
 

      

   
 

          

     

          

     

          

     

          

      
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(26) 

4.5. Rosenbrock System Matrix 

Rosenbrock system matrix is a matrix that groups the four state space matrices           
into a general system matrix. The Rosenbrock System Matrix is defined by Equation (26). 

       
     
   

   

(27) 

The Rosenbrock system matrix is essentially helpful in extracting system transmission and 

invariant zeros. 

5. Control system design  

We are now able to design linear controller of the quad rotor system using the matrix 

A, B and C we have found. The main purpose is to design a full state feedback controller to 

stabilize the quad rotor system by improving performance of the system using pole placement 

and Linear Quadratic Regulator methods. Let us verify the controllability of this linearized 

model of the quad rotor by using state feedback regulator. Constructed equations that will 

govern the controller dynamics. Since, the state of the system is to be to be feedback as an 

input, the controller dynamics will be: 

 

       ,              ,         ,                  (28) 

 

5.1. Pole placement  
The pole assignment technique is used to place the poles of closed loop system in the desired 

locations by state feedback. There are two main steps to carry out.  First step is the location or 

assignment of poles and the second step is the calculation of the feedback gain matrix. This 

approach depends on the performance criteria, such as overshoot (  ), settling time 

(         ), and rise time used in the design. The design requirements are using time domain 

specifications to locate dominant poles             
   . This is done by using the 

following Equation (29) and finding the dominant poles at       . 

  
       

           
            

 

   
,           ,       and           (29) 

 

Then placing rest of poles hence they are much faster than the dominant poles. 

5.2. LQR Controller  

Linear quadratic regulator control is a technique to invention optimum solution for a problem 

of minimization that declares the quad rotor system stability in closed loop. Furthermore, its 

calculation is very easy .the most general problem this approach ca solve is given the dynamic 

system as Equation (33).the quadratic cost function to minimize: 

                               
 

 
    

             is the state cost with weight   

             is the control cost with weight R 

 

 

(30) 

The matrix K can be derived from           .While the matrix P is solution for the 

algebraic Riccati equation                       .The optimal input is defined 

   –     . In order to solve for matrix K, we have to give numerical value so that we get all 
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numerical values of matrix A and B.         Are weight matrix in order respectively to 

increase or to decrease the effect of the states. We select small value for weight matrix R for 

the reason that we don’t need to minimize the energy of input signal. In order to make the 

quad rotor system able to maintain its altitude, we have to give great amount of energy for 

input signal. On the other hand, so as to contain the effect of BLDC motor saturation, we 

contribute maximum and minimum boundary of the motors rotational speed, where      = 

8000 RPM and      = 1000 RPM according to ST-450 quad rotor model. 

6. Simulation Results 

In this section, we present the simulation result of the controller design and linearization 

which is presented in previous sections. We have built the ST-450 quad rotor nonlinear model 

and linear state space model in Matlab/Simulink to test the control algorithms proposed in 

sections (5.1, 5.2) for the quad rotor.as shown in Fig 4. The ST-450 quad rotor parameters 

used during simulations are shown in Table 3. 

 

Table 3. ST-450 Quad rotor Simulation Parameters 

  =1.006 kg  g=9.81 m.    CD=1.9318          =0.0148 

l=0.225 m CT=                =0.0143       =0.0246 

 

 
Fig.4.Quad rotor dynamics in MATLAB/SIMULINK 

 

Firstly, the pole placement placing rest of poles hence they are much faster than the dominant 

poles given         and           , so, the dominant poles are: Dpoles=         
        .We can select the desired poles of the system around the dominant poles. Desired 

poles=                                                                
      = 

 

                                                  
                                                
                                                      

                                                     

  

 

 

 

 

 

(31) 

 

Fig.5. Simulation result of linear state space model in  pole placement 
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From Fig.5.show the step response of the pole placment controller to stablize the linear quad 

rotor system .Secondly, LQR then is synthesized using control toolbox to calculate the LQR 

gains using different weighting Q and R matrices. , firstly, we can Select design parameter 

matrices Q and R (easily, starting with            .Secondly, Selecting design 

parameter matrices Q and R (                       .where q = 10 and r = 0.1. This is 

done supposing the model is described in the following equations (35, 36) and is presented in 

Fig 6. Thirdly, Selecting design parameter matrices Q and R (                
       .where q = 100 and r = 0.01. This is done supposing the model is described in the 

following equations (37, 38) and is presented in Fig 7. 

     = 
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(38) 

 

Fig.7. Simulation result of linear state space model in       
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Fig.8. Simulation result of linear state space model in       

According to system step response results,      has an acceptable command following 

capability with reasonable settling time, rise time and overshoot along with     , but the 

pole placement method has faster settling time than      and      . 

7. Conclusion 

In this article, we get the linearized model of quad rotor simplified model and show that the 

system is controllable and observable regardless of the value of reference position. The model 

of quad rotor system based on Newtonian mechanics was developed. The BLDC motor of the 

model were identified using Identification toolbox. Parameters of the model were calculated 

using a test based on an approach of successive measurements. The nonlinear model is first 

achieved and then represented by a state space model .an approximated linear model of the 

Quad-rotor system was extracted using a first-order Taylor’s series. We use the simplified 

model of quad rotor based on ST-450 model then linearize it to get the linearized state 

equation at some hovering point. Then, we investigation the controllability, observability, 

mineralization and stability of the linear model of the quad rotor system and prove that the 

system is controllable and observable regardless of the value of the operating point we 

choose. Then, we check the linear quad rotor system behavior by using the state feedback 

controller and designed a state feedback controller using pole placement and LQR. Simulation 

results are carried out to show that the designed linear controllers make sure the convergence 

of the error dynamics in closed-loop system. Some simulations in the presence of model 

parametric insecurity and some external disturbance forces will be included to complete this 

research. We get from this article show that the simplified model of ST-450 quad rotor can be 

controlled by more advanced linear controller method such as LQR and pole placement and 

we used this controllers to stabilize the linear quad rotor system. All controllers have 

acceptable suppressing capabilities for the linear model. Examinig results, it is clear that pole 

placement has the least overshoot and acceptable settling time, therefore it is considered the 

best controller compared with other controllers. Finally, we need to increase the efficiency of 
each controller. We will redesign these controllers using heuristic tuning algorithm of the 
state feedback controller or we will design another controller such as PID controller and 

sliding mode controller. 
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