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Abstract  

In its most general form, a pressure vessel consists of two main parts; the cylindrical part and 

the dome part. This paper presents the analysis that has been conducted in order to obtain the 

optimum shape of the filament wound dome part. A composite pressure vessel with optimized 

dome ends avoids critical stresses that are incorporate with the structure when the structure is 

internally pressurized. The analysis deals with domes with/without polar opening. Analytical 

models are developed based on mechanics of materials, geodesic analysis and are solved 

using numerical techniques. The models can predict both the optimum shape and optimum 

thickness of the dome part that can safely withstand the applied loads with minimum weight. 

The results have been verified using published work with good agreement. Finally, the 

models have used to investigate the effect of changing material type, material properties on 

the optimum shape of the dome part. 
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1. Introduction 

A pressure vessel is a closed container designed to hold gases or liquids at 

a pressure substantially different from the ambient one. In its most general form, a pressure 

vessel consists of two main parts; the cylindrical part and the dome part. New possibilities to 

improve the performance of pressure vessels were offered in the middle of the 20
th

 century 

and were associated with the development of filament winding technology. Filament winding 

is a type of composite manufacturing process where controlled amount of resin and oriented 

fibers are wounded around a rotating mandrel and are cured to produce the required 

composite part. Its typical application include the manufacture of: pressure vessels, rocket 

motor cases, aircraft fuselages, wing sections, radar domes, helicopter rotor shafts, high-

pressure pipelines, and sports goods [1]. 

The dome part experiences high stress values hence it is more susceptible to failure than the 

cylindrical part, which emphasizes the importance of its design. An optimum design is the one 

that guarantees different contradicting requirements; a high burst pressure and a large internal 

volume at the lowest possible weight [2]. This makes the design of optimum pressure vessels 

a considerable complex design problem that many researches have tried to solve; a brief 

summary of pertinent research is presented in the next section.  
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Fukunaga et al. [3] presented two methods for determining the optimum shapes of filament-

wound domes. One is based on the failure criteria of composite materials and the other is 

based on the performance factor. Liang, C.C. et al. [4] investigated the optimum design of 

dome contours for filament-wound pressure vessels. Geometrical limitations, winding 

condition, Tsai-Wu failure criterion, and maximizing shape factor were taken into account in 

design procedures. Zu, L. et al. [5] showed a design method for determining the optimal 

meridian shape and related structural efficiency for non-geodesically overwound domes. The 

continuum lamination theory and the equal shell strains condition were used to outline the 

optimal meridian shapes of non-geodesics-based domes for various material anisotropy 

parameters. The dome thickness varies as a function of dome radius and winding pattern, 

which complicates the prediction of the dome thickness. Vafaeesefat, A. [2] introduced an 

algorithm for shape optimization of composite pressure vessel domes Based on rational B-

spline curve and genetic algorithm.  The genetic algorithm was used due to its great 

versatility, easy implementation and its ability for locating the globally optimal solution.  

Madhavi, M. et al. [6, 7] used netting analyses to calculate hoop and helical thicknesses for 

both cylinder and end domes. The distribution of winding angles through the dome part is 

calculated using Claurit’s principle. The hoop components of the helical layers are not 

sufficient to fulfill the hoop reinforcement requirement, hence hoop winding is required. 

However, it is not possible to wind hoop layers on the end domes directly by filament 

winding technique. Therefore, an additional layer (called a doily) is placed as reinforcement 

on the end dome. This layer is in the form of a unidirectional fabric or drum wound hoop 

layers. Kumar, S. et al. [8] used geodesic  path  equation in order to predict the optimum 

meridian of filament-wound dome. The thicknesses  of  laminate  structure  at  various  

portions of  the  dome  and  cylindrical  regions  are calculated  by  using  netting  analysis. A 

new method for predicting the dome thickness of composite pressure vessels based on cubic 

spline function was established by Wang, R. [9].  

The main objective of this paper is to develop mathematical models for finding the shape and 

thickness of the optimum dome the one that can safely contains maximum volume with 

minimum weight. In the following section the governing equations are explained followed by 

description of the models development process. The models are solved numerically using 

MATLAB and the results are compared with previously published work. The models are then 

used to investigate the effect of material properties on optimum shape and thickness. 

 

2. Models Development 

2.1. Governing equations 

Consider a filament-wound membrane shell of revolution. The shell is loaded with uniform 

internal pressure p and axial forces T uniformly distributed along the contour of the shell 

cross section 0r r  as shown in Figure (1). Meridian,   , and circumferential,  , stress 

acting in the shell follow from the corresponding free body diagrams of the shell element 

and can be written as [10]  
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where z(r) specifies the form of the shell meridian, 
dz

z
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   and  
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Meridian and circumferential stresses can be expressed in terms of stresses in the principal 

material coordinates of the tape, in case of orthotropic tape winding at   as: 
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where h is the shell thickness. The strains in the principal material coordinates can be 

expressed in terms of meridian and circumferential as: 
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Since the right-hand parts of equation (4) include only two strains ɛα and ɛβ, hence a 

compatibility equation linking the strains in the principal material coordinates is needed. This 

equation is 

  1 2 12sin 2 cos2 0        (5) 

Substituting the stains ɛ1 and ɛ2 in terms of stress σ1 and σ2 into equation (5), we have 
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where E1,2 are Young’s modulus in directions 1 and 2; υ12,21 are Poisson’s ratios in the 1-2 and 

2-1planes. 

By combining the previous equations, the stresses acting on the optimal shell have the 

following expression 
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Substituting these stresses into strain-stress relations for plane stress, the strain in the optimal 

shell has the following form 
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2.2. Design of Geodesic Dome Profile 

The geodesic profile is the elliptical curve connecting the two points taking the consideration 

of shortest distance. We need to define geodesic profile between pole opening radius and 

cylindrical portion radius [11, 12].  

By combining equations (1), (3) and (6); the equation of the shell meridian in the explicit 

form becomes 
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where 
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The “k” parameter is function of material properties and defined as: 
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The vessel meridian can be decomposed into two segments as shown in Figure (2). For the 

first part of the meridian where fR r r  , we should take 0

2

pr
T   into equation (2) and the 

shell meridian (equation (9)) becomes 
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 (12) 

where the subscript, 1, refers to the first part.  For the second part, where 0fr r r  , we 

should take 0T  and fp p in equation (2) and the shell meridian (equation (9)) becomes 
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where the subscript, 2, refers to the second part. Equations (12) and (13) are solved 

numerically for the two parts, where they must satisfy the following boundary conditions: 
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where 
 1

1
0

z R



 means that the tangent line to the shell meridian is parallel to the axis z at 

r R . The conditions    1 2f fz r z r and    1 2f fz r z r   must be achieved to ensure the 

continuity of the two meridian’s segments at fr r . 

2.3. Optimum shell meridian without polar opening (r0 = 0) 

The two equations which specify the shell meridian are the same in case of 0 0r  , hence only 

one of them is needed to solve. For geodesic winding of the shell with the polar hole of radius 

0r , the geodesic path is defined as: 

 

 0sinr r   (15) 

The exact solution of equation (12) cannot be found. Hence, the solution has been done 

numerically using trapezoidal numerical integration method (TNIM). Combining equations 

(10) and (15) at 0 0r   and then substituting in equation (12), we get 
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In the previous equation, the subscript is removed where the two parts of the shell meridian 

have the same slop. Transform equation (16) to first order differential equation, and then 

integrate it with 
 

1
0
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boundary condition given by equation (14). The first integration 

of equation (16) is 
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where y z  , and the negative sign appears due to the slop of meridian is decreasing with 

increasing the radius. Equation (17) cannot be integrated exactly; hence the integration will be 

done numerically. Equation (17) can be simplified into the following form: 
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Integration of the above equation can be done by using TNIM as: 

 
( 1) ( 0)x x iz z A    (19) 

where “i” is number of intervals in the specified domain. Combining equations (14) and (19), 

we get 
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where “b” is the nearest point to the point x=1 as shown in Figure (3). In the domain 

1b x  , by using TNIM, the area under the curve has the following form 
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Rearranging the above equation yields,  
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where “h” is the step. At x=1; we find 
*

1
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0
A  , hence taking limit as follows 
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The second term in the previous equation is zero at x=1 and any value of k. By combining the 

above equation and equation (20), we get the equation that describes the meridian of optimum 

shell without polar opening as follows 
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2.4. Optimum shell meridian with polar opening (r0 ≠ 0) 

This case is more complicated than the previous one, where the shell meridian is divided into 

two segments. As previous derivation, the first integration of equation (12) yields 
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where 
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Integration of (25) can be done using TNIM as follows 
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The above equation can be simplified considering equation (14) as  
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Rearranging the above equation yields  
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At x=1, the second term in the previous equation is zero at 
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The above equation is simplified to the following form by considering that 2k   
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By combining the above equation and equation (27), we have 
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Equation (30) describes the meridian of optimal shell with polar opening in the range 

1fx x  . The meridian of optimal shell with polar opening in the range 0 fx x  can be 

obtained by double integration of equation (13). The first integration of equation (13) with aid 

of equation (14) yields 
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The second integration of equation (31) describes the meridian of optimal shell with polar 

opening, and has been done by using TNIM. 

2.5. Optimum thickness of filament-wound dome 

Dome thickness is needed, in order to determine the behavior of composite pressure vessels. 

Prediction of the dome thickness is not easy, which it varies as a function of dome radius and 

winding pattern. A simple expression of the dome thickness is presented by [13], which 

follows from the condition of filament continuity: 

  
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R
h r h
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
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where R ,  R , and Rh  are radius, winding angle, and thickness at cylinder section; r, 
 r

 , 

and h  are arbitrary shell radius, winding angle, and thickness at the vessel dome , 

respectively. Rearranging equation (32) yields  
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There are three expressions specify the dome thickness for the case of geodesic winding, 

which presented by [11].  For 1 fx x  , the dome thickness is specified by the following 

expression 
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where dtt
R

 , ‘td’ is the tape width. For 0fx x x t   , the dome thickness has the 

following expression 
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For 0 0x x x t   , the dome thickness has the following expression 
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3. Results and discussion 

The optimum meridian of filament-wound dome without polar opening is described in 

equation (24) as a function of material properties. In order to increase the accuracy of this 

numerical integration, a small step (
51 10 ) is used. Figure (4) shows the meridians of 

optimum shell for different material properties; these meridians are verified with the results of 

Vasiliev [13]. It can be shown that the results of the present approach are in very good 

agreement with the published results. 

The optimum meridian of filament-wound dome with polar opening is found to be a function 

of material properties. In this paper, parameter k is used to describe material properties and 

the optimum meridians are calculated for a range of k from zero to one. The results are shown 

in Figure (5) and are verified with the ones of Vasiliev [13]. There is a good agreement with 

the published results in this range of ‘k’. The ratio of polar opening radius to cylindrical 

radius is taken equal to 0.2, while the ratio of flange radius to cylindrical radius is taken equal 

to 0.3. However, if ‘k’ is larger than unity, the deviation between results from afore-

developed models and published ones increases as shown in Figure (6). This difference is 

discussed in Table (1) by examining the slope of the two meridians. In case of shells without 

polar opening, the slope of two meridians is almost the same. For shells with polar opening, 

the slope of the meridian ( 1fx x  ) of the published results is almost the same as the one 

shells without polar opening. This should not be the case and it is clear that the published 

results have been mistakenly typed. 

The effect of type of composite material on the meridian of dome is shown in Figure (7). 

Three types of composite materials (see Table (2)) are used in this study. It is clear that the 

type of material has a strong effect on the optimum shape of the dome. To demonstrate the 

effect of changing specific longitudinal and transverse moduli of elasticity, Aramid/Epoxy is 

selected as the composite material for the case study. The results are shown in Figure (8) and 
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Figure (9). It is interesting to note that longitudinal modulus has a higher effect on the 

optimum shape of the dome compared with the transverse modulus. 

The dependence of the normalized thickness of filament-wound dome on the normalized 

radius from equation (33) is shown in Figure (10). As can be seen, the shell thickness 

increases while x  decreases from 1 to 0x . Fair prediction of shell thickness can be obtained 

only for a certain distance from the polar hole using equation(33). However the equation 

cannot be used in the close vicinity of the hole. Consider a shell made by geodesic winding 

with 0.042t  , dependence of the normalized thickness ,which is specified by equations (34) 

: (36) on the shell radius is shown in Figure (11). By comparing Figure (10) and Figure (11), 

it can be observed that at a distance exceeding 2t from the polar hole, the two curves are 

identical. However, there is a sharp thickness peak near one-band width, as shown in Figure 

(11), which in  reality may occur due to slipping, realignment and roving separation of the 

fiber tows, and material consolidation in the process of winding and curing. Due to the lack of 

analytical equations describing these effects, an approximate model is developed. This 

approximation has the following third-order polynomial: 

 
2 3

0 1 2 3ah a a r a r a r     (37) 

where 0a , 1a , 2a , and 3a  are unknown coefficients. The approximation is valid for 

 2 0 02tr r t r r    and requires that: 

 The dome thickness specified by equation (35) for 2f tx x x  and by 

equation (37) for 0 2tx x x  is continuous and has continuous derivative at 

2tx x , i.e., 

       2 2 2 2,t a t t a th x h x h x h x   

 Equations (34) : (37) provide the same material volume for 0 2tx x x  , i.e., 

2 2

0 0

2 2

t tx x

a

x x

h x dx h x dx    

The above conditions are enough to determine the unknown coefficients in equation(37). 

The whole optimum pressure vessel can now be described where for the cylindrical section, 

k=2 from equation(16). However, for vessel with domes, we must take k < 2; hence the 

cylindrical section should be additionally reinforced with fibers in the circumferential 

direction. 

4. Conclusion  

In this paper, a development of analytical models that describe optimum shape and thickness 

of the filament-wound dome with/without polar opening was presented. The developed 

models were verified by comparing them with published work. The verified models were used 

to investigate the effect of changing composite material type on the optimum shape of the 

dome. It was found that the longitudinal modulus has a higher effect on the optimum shape of 

the dome compared with the transverse modulus. The developed models can be used in the 

design of optimum pressure vessels and moreover in selection of most suitable composite 

materials. 
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Appendix 

 

 
Figure (1) Axi-symmetrically loaded membrane shell of revolution [13] 

 
Figure (2) Structure of a composite pressure vessel dome [13] 
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Figure (3) First derivative of meridian of optimal shell 
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Figure (4) Meridian of optimum shells without polar opening 

 

 
Figure (5) Meridians of optimum shell with polar opening (at 0≤ k ≤1) for r0= 0.2R 
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Figure (6) Comparison between the used technique and published results [13] for determining the 

meridian of optimum shell with polar opening for k >1 

 

 

Figure (7) Effect of material properties on dome shape without polar opening 
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Figure (8) Effect of variation of longitudinal modulus E1 of Aramid/Epoxy on dome shape 

 

 

Figure (9) Effect of variation of transverse modulus E2 of Aramid/Epoxy on dome shape 
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Figure (10) Dependence of the normalized thickness on radius, equation (33) 

 

 

Figure (11) Dependence of the normalized thickness on radius  

from equations (34) : (36) 
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Table (1) Comparison between the slope of optimal meridians from the used approach and the slope of 

optimal meridians from Ref. [13] 

  The used technique Ref. [13] 

Without polar 

opening 

k=1.6 

y(0.3) 
-0.785672 -0.79585 

k=1.8 

y(0.5) 
-1.769128 -1.79935 

With polar opening 

k=1.6 

y(0.25) 
-0.259933 -0.6747 

k=1.8 

y(0.5) 
-1.201529 -1.8023 

 
Table (2) Typical properties of some of composites [10] 

Property 
Aramid-

Epoxy 

Glass-

epoxy 

Al2O3- 

Al 

Longitudinal 

modulus, E1 (GPa) 
95 60 260 

Transverse 

modulus, E2 (GPa) 
5.1 13 150 

Poisson’s ratio, ν21 0.34 0.3 0.24 

 


