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ABSTRACT 

 

A simple and accurate formula to calculate the failure load of adhesive bonded single lap 

joints under shear load based on plastic-to-failure criterion is presented.  For this purpose a 

new failure mechanism is proposed, in which it is assumed that there is a critical lap length at 

which the adhesive behavior is perfectly plastic along the lap length. 

Solution of the governing differential equation is obtained in the elastic and plastic ranges. 

Straightforward arrangements of the boundary and compatibility conditions yield an explicit 

formula for the critical lap length, and hence a closed formula for the failure load can be 

found. The failure loads using the proposed analytical solution are calculated and compared 

with published results obtained using the numerical Runge-Kutta fourth order with shooting 

method. The comparison shows that the analytical solution predicts failure loads for a 

carbon/epoxy adherend joint within a 3.5% error, and within 1.8 for a glass/epoxy adherend 

joint. Also the failure loads corresponding to the critical lap lengths are calculated using the 

derived closed formula and compared with the published results. The comparison shows that 

these failure loads accurately predict the plastic failure limit within 2.6% for a carbon/epoxy 

adherend joint and within 4.7% for glass/epoxy adherend joint, for lap lengths greater than the 

critical one. Example calculations presented in this paper show that the critical failure loads 

can be considered as a conservative prediction of joint failure since they are always less than 

the upper limit of the failure loads. 
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INTRODUCTION 

Adhesive bonding has been applied successfully in many technologies. Adhesive bonding of 

structures has significant advantages over conventional fastening systems. Bonded joints are 

considerably more fatigue resistant than mechanically fastened structures [1] because of the 

absence of stress concentrations that occur at fasteners. Joints may be lighter due to the 

absence of fastener hardware. Adhesive bonding may also be used for repairs to metallic 

structures and offers even further advantages over mechanically fastened repairs. Bonded 

composite repairs are efficient and cost-effective means of repairing cracks and corrosion 

grind-out cavities in metallic and composite structures. 

The disadvantages of an adhesive-bonded joint include the fact that it is a single fastener, and 

hence, there is no redundancy of load paths unless alternative load paths are added. [2].
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The foremost applications where primary loaded structures rely on adhesive bonding are 

aircraft and space structures. Some examples are the fuselage splice joint and the bonded wing 

leading edge. These structures carry significant torque loads in the form of in-plane shear flow 

that must be transferred across the joints. Generally, adhesively bonded lap joint loaded by in-

plane shear is a generic structural configuration in bonded composite assemblies. 

 

The growing applications of adhesive bonding in aircraft structures require more emphasis on 

analytical models to predict failure and load carrying capability. In general, bonded composite 

structures are designed to be loaded only up to their elastic limit. However, when designing 

for ultimate load, if the structure can operate to the joint's failure limit, the structure can be 

used more efficiently.  

 

The analytical treatment of a bonded lap joint where the adherends are loaded in tension 

has been considered extensively by many authors. Hart-Smith [3, 4] extended the shear-lag 

model that was presented by Volkersen [5] to include elastic-to-perfectly plastic adhesive 

behavior. Goland and Reissner [6] and Oplinger [7] accounted for adherend bending 

deflections to predict the peel stress in the adhesive. Tsai, Oplinger, and Morton [8] provided 

a correction for adherend shear deformation, resulting in a simple modification of the 

Volkersen's theory basic equations. Nguyen and Kedward [9] introduced a nonlinear adhesive 

constitutive model composed of three fitting parameters and used it to predict the adhesive 

shear strain distribution of a tubular adhesive scarf joint loaded to failure in tension. 

Adhesively bonded lap geometries loaded by in-plane shear have been discussed by 

Hart-Smith [3], van Rijn [10], and the Engineering Sciences Data Unit [11]. The authors of 

these works indicate that shear loading can be analytically accounted for by simply replacing 

the adherend Young's moduli in the tensile loaded lap joint solution with the respective 

adherend shear moduli. This assumption is valid only for simple cases with one dimensional 

loading; whereas in-plane shear loaded joints are generally two or three dimensional. 

Although finite element analysis (FEA) can be applied to predict failure limit accurately, 

FEA is a time consuming process and may not easily be performed for all joint 

configurations. Due to the inherent three-dimensional nature of the joint geometry and shear 

loading conditions, three-dimensional elements need to be used in FEA modeling of shear 

flow transfer across a lap joint. Creating a mesh having sufficient element refinement to 

capture the high stress gradients in the thin adhesive layer can easily result in a FEA model of 

unsolvable size. Failure limit load predictions by simple theoretical methods are therefore 

quite useful if they can provide accurate predictions for much less effort than FEA. 

Kim and Lee [12] established a theoretical model that predicts failure in adhesively bonded 

lap joints loaded by in-plane shear. The model is based on shear lag assumptions and accounts 

for a nonlinear adhesive shear stress-strain relationship. The nonlinear adhesive constitutive 

model composed of two fitting parameters of Nguyen and Kedward [9] is used in the 

derivation of the governing differential equation. The governing equation cannot be solved 

directly, so, the numerical Runge- 

Kutta fourth order with shooting method [13] is applied to obtain a solution. Failure of the 

joint is determined when the plastic strain reaches its ultimate value. 

In this paper a simple and accurate formula to calculate the failure load of adhesive 

bonded joints under shear load based on plastic-to-failure criterion is presented.  For this 

purpose a new failure mechanism is proposed.  According to this mechanism, there is a 

critical lap length at which the adhesive behavior is perfectly plastic along the lap length. So, 

the theoretical model presented in [12] is extended to directly predict the failure limit of in-

plane shear loaded adhesively bonded joints. The nonlinear adhesive behavior is accounted 

for using the two parameter version of Nguyen and Kedward [9]. The fitted curve is idealized 
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to the elastic-perfectly plastic model recommended by Hart-Smith [3] to obtain the elastic 

failure limit. The exact solution of the governing differential equation is obtained in the elastic 

and plastic ranges. Arrangements of the boundary and compatibility conditions yield an 

explicit formula for the critical lap length, at which the adhesive behavior is perfectly plastic 

along the lap length, and hence a closed formula for the failure load is obtained. 

 The failure loads using the presented analytical solution are calculated and compared 

with published results obtained by using the numerical Runge-Kutta fourth order with 

shooting method. The comparison shows that the analytical solution predicts failure loads 

accurately for a carbon/epoxy adherend joint within 3.5%, and within 1.8 for a glass/epoxy 

adherend joint. Also the failure loads corresponding to the critical lap lengths are calculated 

using the derived closed formula and compared with the published results corresponding to 

lap length greater than the critical one. The comparison shows that these failure loads 

accurately predict the plastic failure limit within 2.6% for a carbon/epoxy adherend joint and 

within 4.7% for glass/epoxy adherend joint. Examples calculations presented in this paper 

show that the critical failure loads can be considered as a conservative prediction of joint 

failure since they are always less the upper limit of the failure loads. 
.  
 

GOVERNING EQUATION 

 

The governing equation for the one dimensional single lap joint shown in Fig. 1, under shear 

load Nxy as presented in [12] is given by:  
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where; Go, Gi … Young's modulus in shear of the outer and inner adhereneds respectively. 

     to, ti … thickness of the outer and inner adhereneds respectively. 

 

In the following the subscript yz, for brevity is canceled. So, the governing equation becomes: 
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Fig. 1 One dimensional single lap joint 

 

 

The constitutive behavior for a ductile adhesive described by a two-parameter model is given 

by [12]: 
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 keBkBG        (2) 

 

 where k and B1 are the fitting parameters. 

 

Equation (2)   is leveled as follows;  

pf  = ult  

ef  = p            

 (3) 

G ef  = )1()( 11
ultk

ult eBkBG
 
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and shown in Fig. 2: 

 

 
 

Fig. 2 leveling of constitutive behavior 

 

From equation (3) the shear strain at the elastic limit ef is calculated. The solution of equation 

(1) depends on the behavior of the adhesive shear strain. 

Elastic Analysis 

  

In the elastic region; 
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The solution is: 

 

e = C1 sinh λx + C2 cosh λx       (5) 
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Plastic Analysis 

In the plastic region; 

  = G ef;       = p      

ef

p

dx

d



2

2

2

          (6) 

The solution is: 

p = ½ λ
2
 ef x

2
 + C3 x + C4       (7) 

The constants C1, C2, C3, and C4 are determined from the boundary and compatibility 

conditions. 

The shear strain of the adhesive under shear loads behaves in plastic-elastic-plastic manner as 

shown in Fig. 3. 

The shear strain distribution in the plastic region p1 is given by equation (7) while it is given 

by equation (5) in the elastic region. The distribution in the plastic region p2 is given by 

equation (8): 

 

p2 = ½ λ
2
 ef x

2
 + C5 x + C6       (8) 

 

Boundary Conditions: 
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Fig. 2 Shear strain distribution in the adhesive 
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Compatibility Conditions: 
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There are 8 unknowns C1, C2, C3, C4, C5, C6, xp1, and xp2 in 8 equations (2 boundary 

conditions and 6 compatibility conditions). 

 

Applying boundary conditions 1 and 2 yields: 

 

  C3 = 
iia

xy

tGt

N
          

 (9) 

and;  

  C5 =  1

2 d
tGt

N
ef
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xy
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 (10) 

 

Applying compatibility conditions 4, 5, 7, and 8 yields the following transcendental equation 

in ∆:  

0sinh)(
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where ∆ is the distance of the elastic region (∆ = xp2 – xp1) 

 

The transcendental equation (11) is solved to obtain ∆. Then; 
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1131 sinhcosh pefp xxCC         (14) 
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1152 coshsinh pefp xxCC         (15) 

 

where  
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Applying compatibility conditions 3 and 6 yields C4 and C6. 
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For large ∆, the transcendental equation (11) can be arranged to obtain ∆ as follows: 

 

efefCC  2

53 /)2(           (18) 

 

Determination of the critical lap length: 

 

Failure Mechanism 

 

In this mechanism it is assumed that there is a critical lap length at which the adhesive 

behavior is perfectly plastic along the lap length. For lap length greater than or less than the 

critical lap length, the strain distribution is as shown in Fig.3.  

 
Fig. 3 Failure Mechanism in the Adhesive 

 

 

From the transcendental equation (11), at the critical condition, i.e. ∆ = 0, yields; 

(when ∆ = 0,  xp1 = xp2 = d1/2) 

 

C5 = C3 

 

From which  

 

 crpefxy ddGN 11           (19) 

 

Also, at this condition, the shear strain at x = 0 (or x = d1) is, 
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Substituting C3 and rearranging yields for a balanced composite (Goto=Giti): 
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Determination of the failure load: 

 

The critical lap length is determined using equation (11). The failure load is calculated using 

equations (10) as follows: 

 

For d1 < d1cr; 

 

1)( dGN effxy           (21) 

 

 

For d1 ≥ d1cr; 
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
      (22) 

To predict the failure load, the critical lap length is calculated using equation (20). If the 

overlap length is less than the critical lap length, then the failure load is calculated using 

equation (21). The shear stain distribution is obtained for the calculated failure load using 

equations (5), (7), and (8). If the overlap length is greater than the critical lap length, then the 

failure load is obtained by gradually increasing the applied load Nxy and calculating the shear 

stain distribution using equations (5), (7), and (8) for each given load. The failure load (Nxy)
f
 

is caught when the shear strain at the ends reaches the ultimate one. The solution algorithm is 

shown in Fig. 4.The critical failure load can be obtained directly using equation (22). The 

shear stress distribution can be obtained using equation (2). 
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Fig. 4 Solution algorithm 

 

MODEL VALIDATION 

 

To validate the suggested failure mechanism, failure loads are calculated for two joints with 

carbon/epoxy and glass/epoxy cloth adherends bonded by PTM&W ES6292 adhesive 

suggested in ref. [12]. Joint parameters are listed in Table 1. The failure load and the critical 

failure load for two different lap lengths and three different adhesive thicknesses are presented 

in Table 2 and Table 3.  

 

Table 1 Joint parameters for carbon/epoxy and glass/epoxy adherends 

Joint Parameters carbon/epoxy adherends glass/epoxy adherends 
Lay up [0/45/90/-45]2s [04/45/-45/04] 

to, ti (mm) 2.03 2.49 

Go, Gi (GPa) 22.03 10.07 

d1 (mm) 25.4 and 50.8 

ta (mm) 0.33, 1.07 and 2.08 

Ga (GPa) 0.927 

ult (MPa) 26.3 

ult 0.35 
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Table 2  Ref.[12] and present results  comparisons of Carbon/Epoxy joints. 

Adhesive PTM&W ES6292 

Critical 

lap length 

(d1cr)(mm) 

ta 

(mm) 

Failure Limit, (Nxy)
f
 (N/mm) 

l = 25.4 mm l = 50.8 mm 

Ref [12] Present Critical Ref [12] Present Critical 
26.9 0.33 655.5 666.85 706.07 725.1 721.45 706.07 

40.6 1.07 630.5 630.34 1007.3 1005 1035.4 1007.3 

42.0 2.08 565.4 557.39 931.42 936.9 969.98 931.42 

 

 

Table 3 Ref. [12] and present results comparisons of Glass/Epoxy joints. 

Adhesive PTM&W ES6292 

Critical 

lap length 

(d1cr)(mm) 

ta 

(m

m) 

Failure Limit, (Nxy)
f
 (N/mm) 

l = 25.4 mm l = 50.8 mm 

Ref [12] Present Critical Ref [12] Present Critical 
20.1 0.33 541.1 536.90 528.70 543.9 537.74 528.70 

30.4 1.07 631.3 630.34 754.29 778.6 777.37 754.29 

31.5 2.08 577.9 567.29 702.47 737.3 740.59 702.47 

 

 

It is clear from the tables that there is good agreement between the results obtained by Runge-

Kutta fourth order method [12] and the present analytical method for different lap lengths and 

adhesive thicknesses. Also, the comparison shows that the analytical solution predicts failure 

loads accurately for a carbon/epoxy adherend joint within 3.5%, and within 1.8 for a 

glass/epoxy adherend joint. The failure loads corresponding to the critical lap lengths 

accurately predict the plastic failure limit within 2.6% for a carbon/epoxy adherend joint and 

within 4.7% for glass/epoxy adherend joint. The critical failure loads can be considered as a 

conservative prediction of joint failure since they are always lower than those obtained by 

analytical method. 

 

The adhesive shear strain () distribution for joints with Carbon/Epoxy adherends at the 

failure load for different adhesive materials with different lap length are given in Fig. 5. It is 

clear from the distribution that for lower lap lengths (less than the critical one), the adhesive 

constitutive behavior is perfectly plastic and the maximum adhesive shear strain does not 

reach the ultimate plastic one (pf).   For lap lengths equal to the critical one, the adhesive 

constitutive behavior is perfectly plastic and the maximum adhesive shear strain is equal to 

the ultimate plastic one (pf). For long lap lengths (greater than the critical one), the adhesive 

constitutive behavior is plastic-elastic-plastic and the range of plasticity is nearly equal to the 

critical lap length. 
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Fig. 5 Adhesive shear strain () distribution for joints with Carbon/Epoxy adherends at the 

failure load for different adhesive materials with different lap length 

 

 

CASE STUDIES 

 

The critical lap lengths and the corresponding critical failure loads for three adhesive systems 

with parameters listed in Table 4 are calculated and reported in Table 5. 

 

Table 4: Adhesive systems parameters 

Adhesive Code ta[mm] k B1 [MPa] ult 
 

 

PTM & W ES6292 

Ga=0.927 GPa 

PTM1 0.330 36.4 25.367 0.35 

PTM2 1.067 35.6 26.222 0.241 

PTM3 1.829 33.4 29.655 0.073 

PTM4 2.083 36.9 25.829 0.130 

PTM5 3.048 36.8 28.028 0.070 

PTM6 4.267 60.6 14.438 0.031 

Hysol EA9360  

Ga = 0.855 GPa 

Hysol1 0.991 26.2 32.689 0.425 

Hysol2 2.489 23.5 39.708 0.155 

Loctite 

Ga = 0.483 GPa 

Loct1 0.838 27.3 17.541 0.334 

Loct2 1.651 21.5 22.671 0.305 
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Table 5: Critical lap lengths and the corresponding failure loads 

 

The 

failure loads of joints bonded by the previous three adhesive systems with different lap 

lengths (12.7, 25.4, 38.1, 50.8, 63.5, 76.2, 88.9, and 101.6 mm) are obtained using the present 

analytical formula and plotted in Figs. 6, 7 and 8 for carbon/epoxy adherends. In these figures 

the elastic failure loads (Nxyef and Nxyefcr) are plotted. The elastic failure loads are calculated 

for different lap lengths using the following formula: 

 

1

11 )5.0(tanh2

d

dd
N e

xy



         (14) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 6 Failure load distribution for joints with Carbon/Epoxy adherends- PTM & W ES6292 

adhesive 
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Carbon/Epoxy Adherend - PTM3 Adhesive
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Carbon/Epoxy Adherend - PTM4 Adhesive
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Adhesive ta[mm] ult ef (d1)cr 

[mm] 
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 

cr
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 
cr

pf

xyN  

[N/mm] 
 

PTM & W 

ES6292 

Ga =0.927GPa 

0.330 0.35 0.0283 26.9 20.1 706.07 528.70 

1.067 0.241 0.0268 40.6 30.4 1007.3 754.29 

1.829 0.073 0.0242 26.7 20.0 598.47 448.13 

2.080 0.130 0.0241 42.0 31.5 938.14 702.47 

3.048 0.070 0.0200 38.3 28.7 711.46 532.73 

4.267 0.031 0.0149 29.8 22.3 412.03 308.52 

Hysol EA9360  

Ga=0.855GPa 

0.991 0.425 0.0494 39.7 29.7 1676.5 1255.3 

2.489 0.155 0.0311 45.6 34.1 1210.6 906.46 

Loctite 

Ga =0.483GPa 

0.838 0.334 0.0392 48.3 36.2 914.41 684.70 

1.651 0.305 0.0441 60.2 45.05 1280.8 959.07 
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Fig. 7 Failure load distribution for joints with Carbon/Epoxy adherends- Hysol EA9360 

adhesive 

 

  
  

Fig. 8 Failure load distribution for joints with Carbon/Epoxy adherends- Loctite adhesive 

 

Discussion and conclusions 

 

It is clear from equation (20) that the critical lap length depends on the adhesive constitutive 

behavior (ef and pf) and the adherends stiffness (Gt). So, each combination of adhesive and 

adherends has its failure load. This clarifies the reason that predictions of joint failure are non-

monotonically dependent on bond line thickness, since adhesive constitutive behavior 

depends mainly on the bond line thickness.  

 

Equation (21) is a simple formula to calculate the shear failure load which represents the 

ultimate elastic shear stress in the adhesive per unit lap length. 

 

Tables (2) and (3) show that the critical failure loads have good agreement with results of Ref. 

[12] for lap lengths greater than the critical one. Figures (6), (7), and (8) show that the critical 

failure loads are easy and accurate predictions of balanced adhesively bonded joints under 

shear loads.  

 

The sugested analytical solution predicts failure loads accurately for a carbon/epoxy adherend 

joint within 3.5%, and within 1.8 for a glass/epoxy adherend joint. 

The failure loads corresponding to the critical lap lengths accurately predict the plastic failure 

limit within 2.6% for a carbon/epoxy adherend joint and within 4.7% for glass/epoxy 

adherend joint for lap length greater than the critical one. The critical failure loads can be 

considered as a conservative prediction of joint failure since they are always less the upper 

limit of the failure loads. 
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Carbon/Epoxy Adherend - Loct1 Adhesive
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