
 Paper: ASAT-16-097-CE

16
th

 International Conference on

AEROSPACE SCIENCES & AVIATION TECHNOLOGY,

ASAT - 16 – May 26 - 28, 2015, E-Mail: asat@mtc.edu.eg

Military Technical College, Kobry Elkobbah, Cairo, Egypt

Tel : +(202) 24025292 – 24036138, Fax: +(202) 22621908

Object Tracking Using Vision on Raspberry Pi

W. Askar
*
, O. Elmowafy

†
, A. Youssif

 ‡
 and G. Elnashar

§

Abstract:

Object tracking is an important task in several computer vision applications. Optical flow is

one of the most widely used techniques in the image processing and video analysis fields.

This paper implements an object tracking algorithm based on optical flow method to be

computed by Raspberry Pi microcomputer. A Lucas–Kanade method has been used to

calculate the velocity vector of the moving object between two consecutive frames. Two

experiments are performed to evaluate the robustness of the proposed algorithm by the new

computing device. The results were encouraging to use the proposed framework on wide

variety of real time application.

Keywords: Video Tracking, Optical Flow, Lucas–Kanade, Raspberry Pi

1. Introduction
Video tracking is an important task within the field of computer vision. It is a fundamental

step in many civilian and military applications. Many of tracking algorithms has been well

studied in the last decades and implemented in different frameworks. The optical flow is the

distribution of apparent velocities associated with apparent motion in the time varying

images, [2]. There are many techniques that handle the computation of the optical flow. They

can be classified into global and local techniques. Global techniques such as the

Horn/Schunck approach yield dense flow fields while local methods such as the Lucas–

Kanade technique are more robust under noise, [16]. Lucas–Kanade method carried out the

computation of the optical flow in the neighborhood of the pixel algebraically, [3]. So, Lucas-

Kanade method is preferred in single object tracking applications.

Tracking an object, in general, is a very challenging task and many problems have to be

solved. The loss of information due to the projection of the 3D world on a 2D image is the

main source of those problems. Also the cluttered-background, noise in images, partial or full

occlusions, illumination changes and the real-time processing requirements are well-known

difficulties [1-3]. In applications such as remote surveillance, troops tracking and terrorist

chasing, which may performed by Unmanned Arial Systems (UASs), different kinds of

constrains will be taken into consideration. The minimum weight and size, low power

consumption, suitable cost and the real time processing capabilities are the most important

requirements. The Raspberry pi microcomputer is one of promising embedded systems that

can achieve most of the requirements with acceptable results.

*
 Egyptian Armed Forces, wesamaaa@gmail.com

†
 Dr., Computer Engineering Dept., New Cairo Academy, drosama@ebcegypt.com

‡
 Prof., Computer Engineering Dept., Helwan University, aliaay@yahoo.com.

§
 Egyptian Armed Forces, enjygamal@gmail.com.

 Paper: ASAT-16-097-CE

This paper aims to estimate the object position as precisely and computational efficiently as

possible on the Raspberry Pi microcomputer. It uses the Lucas-Kanade algorithm with some

extensions and contributions to meet the real time requirements in order to implement a vision

based object tracking system. It divided into six sections in addition to the references. The

first section is the introduction. The second section is about the related works to this paper.

The third section provides descriptive information about the framework environment. In

section four, the proposed Raspberry Pi Tracking algorithm Framework is explained. Then the

experimental results are demonstrated in section five. Finally, the paper ended by the

conclusion in section six.

2. Literature Survey
The computation of 2-d image velocities, or optical flow, is a common topic in video tracking

area. Optical flow is a dense field of displacement vectors. It defines the translation of each

pixel in a region. Popular techniques for computing dense optical flow include methods by

Horn and Schunck, and Lucas and Kanade. They computed flow vector using the brightness

constraint, which assume brightness constancy of corresponding pixels in consecutive frames,

[3]. For optical flow estimation, Horn and Schunck introduced both the brightness constancy

and the spatial smoothness constraints. Their implementation is not robust to outliers caused

by reflection, occlusion, motion boundaries etc., [6].

Lucas-Kanade algorithm is one of the most common optical flow algorithms that estimate the

optical flow by simple way. Comparative studies designated that the Lucas-Kanade

algorithms deliver accurate results while being significantly more efficient than other optical

flow methods, [1,5]. It computes the optical flow vectors for any pixel by including its

neighborhood into the calculations. Lucas-Kanade algorithm is a local optical flow technique.

It assumes that the flow field is smooth locally, [5].

Shi and Tomasi proposed a tracking algorithm which iteratively computes the translation of a

region (patch) centered on an interest point. They constructed the similar optical flow

equation as that proposed by Lucas and Kanade. The KLT tracker evaluates the quality of the

tracked patch by computing the affine transformation between the corresponding patches in

consecutive frames to choose between continue tracking the feature or eliminate it, [3].

Bouguet et.al implemented a pyramidal Lucas Kanade feature Tracker, [14]. He represented

the image by its Gaussian pyramid to compensate the large movement of the tracked object. A

sub-pixel computation technique was introduced by using the bilinear interpolation for the

non-integer pixel coordinates inside the loops of pyramids and iterations. Although this way

gives accurate results, it consumes a lot of computation time. This makes it not suitable for

real time application, especially when implemented on limited speed hardware. Also, he

considered the same weight for all pixels neighboring the tracked point inside the moving

window. On contrary, Sepehr et.al consider a 2-D Gaussian distribution as a coefficients for

the pixel neighborhood to increase the accuracy, [13].

Rinu et.al. implement optical flow motion detection algorithm on Raspberry Pi. They used the

Lucas-Kanade method to detect the motion for the whole image frame, [7]. Their algorithm

compares between two successive image frames to find out a displaced object. They used

Python and OpenCV for implementing the algorithm. The algorithm works well only at

moderate object speeds.

 Paper: ASAT-16-097-CE

Jianbo et.al proposes criteria to select features that can be tracked well, [15]. The tracking

algorithm utilizes their method to select the strongest point representing the object inside the

initially selected rectangle.

3. Locus-Kanade Optical Flow Calculation:
The Lucas-Kanade method is one of the most important algorithms of two-frame differential

methods for motion estimation [4]. To calculate the velocity vector (optical flow) of an

arbitrary point between two consecutive frames as shown as Fig.1; the Locus-

Kanade method assumes that the intensity value of point at frame at time will be the

same at time .

Fig. 1. Velocity Vector (Optical Flow) of Point : (a) Image Frame at

Time , (b) Image Frame at Time

This assumption can be formulated as the following:

 (1)

Applying the first order Taylor series approximation on equation (1) to obtain the optical flow

constancy equation:

 (2)

Where and are the x-component and y-component of the gradient vector respectively

(spatial derivatives), and are the components of the optical flow vector and is the

temporal derivative at point . To emphasize the terms of spatial and temporal derivatives, eq.

(1) may be re-written as the following:

 (3)

Although the derivative terms of equation (3) can be determined for point P, it still one

equation with two unknowns . Suppose a window with size to be the neighborhood

of the point P and suppose all pixels in it have the same . Then equation (3) will expand

into:

 (4)

 Paper: ASAT-16-097-CE

Now equation (4) has more equations with two unknowns . So it can be handled as the

following:

 (5)

Where = , and are the most left and the most right matrices.

 (6)

Finally, by solving equation (6) the displacement values can be calculated from the

following formula:

 (7)

The term have to be invertible with recommended high eigenvalues, [14, 15].

4. The Tracking Algorithm Environment
The proposed tracking algorithm is programmed on Raspberry Pi microcomputer using

Python and OpenCV to take the advantages of each component of them. It implements an

object tracking module to be used in various unmanned systems especially UAVs. Also, other

python library such as Numpy is utilized for its importance.

A. Raspberry Pi hardware
The Raspberry Pi is a low cost, small weight and credit-card sized computer, [8]. It is

essentially a system-on-a-chip (SoC) with connection ports. It has a 32-bit ARM processor

which delivers a range of processing speed from 700 - 1000 MHz and Videocore 4 GPU. The

Raspberry Pi model B has a 512 Mb SDRAM comes with two USB ports and can be

connected to an Ethernet network, [8]. It supports modern technologies such as OpenGL ES2

and hardware accelerated audio/video processing. These capabilities make the Raspberry Pi

an exceptional platform for computer vision applications. The processor in the Raspberry Pi

runs at 700MHz by default. But it can be overclocked by increasing its frequency with no

problems happened on all speed modes [8].

B. Raspbian Operating System
Although Raspberry Pi can utilize different types of Linux distributions for its default

operating system (OS), Raspbian is the recommended one. It is a free operating system based

on Debian, optimized for the Raspberry Pi hardware. It comes with over 35,000 packages;

precompiled software bundled in a good format for easy installation on Raspberry Pi

hardware, [9].

C. Python and OpenCV
It can be programmed with Python or any other language that will compile for ARM v6, [10].

Python is a widely used general-purpose, high-level powerful programming language. Its

design philosophy emphasizes code readability, and its syntax allows expressing concepts in

fewer lines of code than would be possible in languages such as C++ or Java. Python supports

multiple programming paradigms including object-oriented, imperative and functional

programming or procedural styles. It offers all facilities that are wanted for programming

 Paper: ASAT-16-097-CE

from the basic operations to advanced functions. It integrates with a lot of third-party tools to

make everything possible in Python, [11].

In image processing and computer vision field the OpenCV, PIL and Numpy are famous

libraries integrated with Python. OpenCV is an open-source library that includes grate number

of computer vision algorithms. In general, Python is slower compared to other languages like

C/C++. But it can be easily extended with C/C++ by writing computationally intensive codes

in C/C++ and create a Python wrapper (package) for it. Then use these wrappers as Python

modules. This gives two advantages: first, the code is as fast as original C/C++ code (since it

is the actual C/C++ code working in background) and second, it is very easy to code in

Python. This is the way that OpenCV-Python works in i.e. a Python wrapper around original

C/C++ implementation, [12]. Numpy is the fundamental package for scientific computing in

Python. It is very important to use Numpy for the reason of minimum computational time

requirements. It is used to speed up the linear algebraic calculation, [17].

5. The Proposed Tracking Framework
This paper use Lucas-Kanade method to implement point tracking algorithm within a new

framework based on Raspberry Pi microcomputer. Fig. 2 shows the block diagram of the

proposed system.

As mention before, the Raspberry Pi microcomputer can overclock to perform processing at

1000 MHz speed. However, this speed still limited in object tracking task performed by

several optical flow implementations. This limitation was taken into account in each step of

the algorithm implementation. However, focusing on that the main problem is point tracking

not motion detection [7], it can overcome this limitation relatively.

Back again with equation (7), all derivative terms and have to be calculated as fast as

possible. Also their algebraic operations including matrix multiplications, raises to power,

inverts and summations must be handled carefully. The sub-pixel accuracy calculation plays

an important role in almost all steps. So the good manipulation of it gives perfect results.

The simple but efficient approaches were used to calculate the spatial and temporal

derivatives. Let be a sub-region of image which centered on the tracked point . It was

extracted from directly with the sub-pixel accuracy. Then the spatial derivatives were

calculated simply as the following:

 (8)

 (9)

Image
Frames

Image
Frames

Image
frames

Fast Lucas-Kanade

algorithm

Display the new
object location

Raspberry Pi

 Paper: ASAT-16-097-CE

The temporal derivatives were handled simply by obtaining the difference between the

current frame sub-region and the previous one as the following:

 (10)

Instead of using the exhausted loops fashion proposed by Bouguet [14], the proposed

algorithm uses the algebraic libraries delivered by Numpy package to perform array and

matrix operations.

To increase the accuracy a 2-D Gaussian distribution was considered as coefficients () for

all Point neighborhood just like Sepehr et.al, [13]. So, equation (7) would be modified to

the following:

 (11)

All above values had been calculated for each pyramid level and an iteration process was

continued until either the displacement vector error is less than a certain threshold or the

number of iterations exceeds certain value. The threshold and allowed number of iteration

values all was predetermined experimentally.

6. Experimental Work
To examine the proposed system two main experiments are introduced. The first was by using

the pre-implemented Lucas-Kanade tracking function provided by the OpenCV library. The

second was by the proposed algorithm. All experiments were run initially on the Intel core 2

duo CPU to choose the fastest algorithm. All experiments were done on the purposely

selected video, [18] and the five image sequences from PETS datasets, [19]. The frame size of

all videos is pixels and the results were approximately the same. Fig. 3

demonstrates an object tracked during some image frames.

Fig. 3. Object Tracking

Fig. 4 shows a comparison between the execution time in case of the traditional Lucas-

Kanade implementation [14] and the proposed one. It is clear that the proposed algorithm

calculated the displacement vector at approximately half time the OpenCV had. This was

encouraging to implement it on the Raspberry Pi board.

 Paper: ASAT-16-097-CE

Fig. 4. Execution time comparison between Lucas-Kanade implemented by OpenCV and

the proposed method

On the Raspberry Pi microcomputer an execution time comparison was performed between

the Lucas-Kanade traditional implementation [14] and the proposed method. There was a

significant inhancment on the calculation time as shown in Fig. 5.

Fig. 5. Execution time comparison between Lucas-Kanade traditional implementation

and the proposed method

The error of the displacement vector was calculated at different values of the search

window , which is equivalent to sub-region mention in section 4, and the number of

allowed iterations. After some experiments the values and gave suitable

results for speed and accuracy.

The efficiency of the overclocking is emphasized. This is performed by switching between the

different computational speeds and measure the execution time of the optical flow in the

tracked point in each case. Table 1 shows the average speeds of the tracking which can

reach 20 frames per second. Fig. 6 demonstrates the resulted time processing to calculate the

optical flow for .

Table 1 Average calculation time for arm processor overclocking speeds

 Average calculation second/frame

Processor

Speeds

700 MHz 0.087523

800 MHz 0.084929

900 MHz 0.076089

950 MHz 0.072786

1000 MHz 0.050638

0

0.005

0.01

0.015

0.02

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

4
6

3

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Frame Number

OpenCV LK

Proposed LK

0

0.2

0.4

0.6

0.8

1

1

6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6
 Ex

e
cu

ti
o

n
 T

im
e

 (
se

c)

Frame Number

Traditional LK

Proposed LK

 Paper: ASAT-16-097-CE

Fig. 6. Execution time comparison between different overclocked speeds

7. Conclusion
A Lucas-Kanade algorithm is implemented with optimizing techniques to be hosted and

processed on the raspberry pi microcomputer. Different experiments were performed to

compare between the OpenCV Lucas–Kanade tracking function and the traditional Bouguet

one with the proposed algorithm. Results were encouraging to use the new framework with

the proposed algorithm in many point tracking applications. It has been promising to use for

unmanned aerial systems (UAS) that require special hardware configurations. This is because

of its minimum weight and size and low power consumptions. In the future, the propose

framework will be hosted on a UAV for vision based object hovering and chasing.

8. References
[1] Hanxuan Y., Ling S., Feng Z., Liang W. and Zhan S., “Recent advances and trends in

visual tracking: A review,” ”, Elsevier,” August 24, 2011.

[2] Emilio, M. and Andrea C, Video Tracking Theory and Practice, 1
st
. ed., Vol. 1, Wiley,

New York, 2011, pp. 1-71.

[3] Alper Y., Omar J. and Mubarak S., “Object Tracking: A Survey,” ”, ACM Computing

Surveys, Vol. 38, No. 4, Article 13,” December, 2006.

[4] Ekta, P. and Dolley, S., “Comparison of Optical Flow Algorithms for Speed

Determination of Moving Objects,” ”, International Journal of Computer Applications,”

2013, pp. 0975 – 8887.

[5] Tobias, B., Volker, E., and Thomas, S., “Robust Local Optical Flow for Feature

Tracking,” ”, IEEE Transactions on Circuits and Systems for Video Technology,”

September, 2012.

[6] Deqing S., Stefan R., Lewis J. P., and Michael J. B., “Learning Optical Flow,” ”,

Springer-Verlag Berlin Heidelberg (ECCV),” 2008, pp. 83–97,.

[7] Rinu M. B. and Rooha R. A., “Optical Flow Motion Detection on Raspberry Pi,” ”,

Fourth International Conference on Advances in Computing and Communications,”

IEEE, August 27-29, 2014, pp. 151-152.

[8] Raspberry Pi Foundation, “Raspberry Pi Documentation”, United Kingdom,

20/12/2014, http://www.raspberrypi.org/documentation/.

[9] Raspberry Pi Foundation, “RASPBIAN”, United Kingdom, 18/11/2014,

http://www.raspberrypi.org/documentation/raspbian/README.md.

[10] WhatIs.com, “Raspberry Pi ($35 computer)”, April 2012, Tech Target, 22/12/2014,

http://whatis.techtarget.com/definition/Raspberry-Pi-35-computer.

http://www.raspberrypi.org/documentation/
http://www.raspberrypi.org/documentation/raspbian/README.md
http://whatis.techtarget.com/definition/Raspberry-Pi-35-computer

 Paper: ASAT-16-097-CE

[11] Masoud N., “Python: An appropriate language for real world programming,” ”, World

Applied Programming,” June 2011. pp. 110-117.

[12] Alexander M. and Abid K., OpenCV-Python Tutorials Documentation, 1
st
. ed., February

18, 2014, p. 6.

[13] Sepehr A. and Homayoun M., “Optical Flow Based Moving Object Detection and

Tracking for Traffic Surveillance,” ”, International Journal of Electrical, Robotics,

Electronics and Communications Engineering,” Vol. 7, No. 9, 2013.

[14] Bouguet J., “Pyramidal Implementation of the Lucas Kanade Feature Tracker

Description of the algorithm,” 1994.

[15] Jianbo S. and Carlo T., “Good Feature to Track,” ”, IEEE Conference on Computer

Vision and Pattern Recognition,” June, 1994.

[16] Andres B. Joachim W. and Christoph S., “Lucas/Kanade Meets Horn/Schunck:

Combining Local and Global Optic Flow Methods”, International Journal of Computer

Vision 61(3),” 2005, pp. 211–231.

[17] NumPy community, ”NumPy User Guide,” 1.8.0. ed., November, 2011.

[18] Admin Aerobot, “Drone Racing a GTR”, February 2012, 5/1/2015

https://www.youtube.com/watch?v=TXTucbmk2o8.

[19] VIVID Tracking Evaluation Web Site, “PETS2005”, April 2014, 22/12/2014,

http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html.

https://www.youtube.com/watch?v=TXTucbmk2o8
http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html

