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Abstract: A nonlinear finite element model is provided for the thermal post buckling and 

linear flutter behavior of composite panels. Panel subjects to combined aerodynamic and 

thermal loads. The governing equations are derived using the classical plate theory and the 

principle of virtual work. The effect of large deflection is included in the formulation through 

the von Kármán nonlinear strain-displacement relations. To account for the temperature 

dependence on material properties, the thermal strain is stated as an integral quantity of the 

thermal expansion coefficient with respect to temperature. The aerodynamic pressure is 

modeled using the quasi-steady first order piston theory. The Newton–Raphson iteration 

method is employed to obtain the nonlinear aero-thermal post-buckling deflections, and a 

frequency-domain solution is presented to predict the critical dynamic pressure at different 

elevated temperatures. Finally, numerical results are provided to depict the optimum 

lamination scheme in order to maximize the aero-thermal stability of such panels. The 

optimum solution is obtained by Genetic Algorithms. 
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Introduction 
The external skins of supersonic flight vehicles experience high temperature rise due to 

aerodynamic heating. A flat plate panel with symmetric 8-plies composite material is studied. 

This panel induces thermal buckling and panel flutter that occur at statically and dynamically 

instability, respectively. 

Instability due to thermal expansion reshapes the skin of panel which reduces the 

aerodynamic performance. The fundamental frequency which has dependency in dynamically 

instability is studied. Finally, genetic algorithm is the distinct optimization algorithm 

improves the aero-thermal stability and delaying the critical buckling temperature. 

Ibrahim et. al. [1] studied the thermal buckling and free vibration behavior of shape memory 

alloy (SMA) with hybrid composite panel. SMA improved the stiffness of plate, the critical 

temperature was increased and the thermal large deflection was decreased. Lee et. al. [2] 

studied the design of a thick laminated composite plate subjected to a thermal buckling load 

under a uniform temperature distribution. A one-dimensional search method was used to find 

optimal fiber orientation and optimal thickness, this method is a golden section method. Kan 

and Kim [3] investigated the minimum-weight design of compressively loaded composite 
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plates under constrained post-buckling strength. Paluch et al. [4] presented a procedure 

allowing layout and thickness optimization of composite structures by means of a genetic 

algorithm and a finite-element program. Spallino and Thierauf [5] studied the requirements of 

aerospace structure components that were able to withstand the external environmental loads 

without loss of stability. Faria and Almedia [6] analyzed the problem of optimizing buckling 

loads of plates with variable thickness within the scope of a novel approach where the 

variability or uncertainty of the loading distribution was taken into consideration. Lanhe [7] 

derived equilibrium and stability equations of moderately thick simply supported rectangular 

plate made of Functionally Graded Material (FGM) under thermal loads based on the first 

order shear deformation theory. Mukherjee et al. [8] studied panels of re-entry vehicles 

subjected to a wide range of flow conditions during ascent and re-entry phases. The flow 

could vary from subsonic continuum flow to hypersonic rare-field flow with wide ranging of 

dynamic pressure and aerodynamic heating. Ibrahim et al. [9] presented a finite element 

solution for the thermal buckling and nonlinear flutter performance of thin functionally 

graded material panels under combined aerodynamic and thermal loads. At certain 

temperature, the decreasing of volume fraction exponent enhanced flutter characteristics 

through increasing the critical dynamic pressure. 

 

 

Finite Element Formulation of Thermal Postbuckling of Composite 

Material Panels 
The equations of motion with the consideration of moderately large deflection and 

temperature-dependent material properties are derived for a composite plate subject to 

aerodynamic and thermal loadings. To account for the temperature dependence on material 

properties, a cumulative thermal strain is adopted for the calculation of the thermal deflection 

and stresses in the plate. The element used in this study is the rectangular, four-node, C0
, 

nonconforming element (for the bending DOF) 

The nodal degrees of freedom vector of a four-noded rectangular plate element can be written 

as 
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where w is the transverse displacement, u and v are the membrane displacements in the x and 

y directions respectively, {wb} is the transverse displacement vector, and {wm} is the 

membrane displacement vector 

The displacement/nodal-displacement relation can be presented in terms of interpolation 

function matrices [Nw], [Nu], and [Nv]. 

w = [Nw] bw , u = [Nu]  mw , v = [Nv]  mw        (2) 

Nonlinear Strain-Displacement Relation the in-plane strains and curvatures, based on the von 

Kármán moderately large deflection and classical plate theory, are given by Timoshenko and 

Woinowsky-Krieger [10] and Ventsel and Krauthammer ‎[11] [11] 
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or, in compact form, 

          zm          (4) 

where m, θ, and  are the membrane linear strain vector, the membrane nonlinear strain 

vector due to large deflection, and the bending strain vector, respectively. 

Stress-Strains Relation for a general k
th
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The resultant force and moment vectors per unit length are defined as, [12] 
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where h is the plate thickness, and [A], [B], and [D] are the laminate stiffness matrices. They 

are defined as 
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The vectors {NT}, and {MT} are the resultant force and moment vectors per unit length, 

which are due to the thermal stress. They can be expressed as, Reddy [13] 
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Aerodynamic Loading 
Quasi-steady first-order piston aerodynamic theory is a verified aerodynamic model, by 

Ibrahim [14] and Dowell [15] 
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where Pa is the aerodynamic pressure, M∞ is the undisturbed Mach number, 2

2

1
Vq a  is the 

dynamic pressure,  is the air mass density, 12  M , and w is the panel transverse 

displacement,  D110 is the first entry in the laminate bending stiffness matrix D (1,1), L is the 

panel length in the flow direction; and  is the non-dimensional dynamic pressure.  

 

 

Governing Equation 
Governing equation states that the work done by internal and external forces (including inertia 

forces) through an infinitesimal virtual displacement is zero, Ibrahim [14] 

0int  extWWW    (15) 

The virtual work done by internal forces on a plate element is given by 

 

        dAMNW
A

TT
 int       (16) 

           T

T

T

T PwwNNKKwW }{2
3

1
1

2

1
}{int 








   (17) 

where {w}=



















vu

yx

w

y

w

x

w
w ,,,,,

2

 is the nodal-displacement vector; [K] and [KT] are the 

linear stiffness matrix and the thermal geometric stiffness matrix respectively; [N1] and [N2] 

are the first- and second-order nonlinear stiffness matrices, respectively; and {PT} is the 

thermal load vector. 
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The virtual work done by external forces on a plate element, considering inertia, and 

aerodynamic, is 
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where h denotes the plate thickness, [M] is the mass matrix, [G] is the aerodynamic damping 

matrix, and [Aa] is the aerodynamic influence matrix. 

Substituting by equations (17), (19) into equation (15), yields 
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or simply 
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Procedure of solution 
The solution of the governing equation (21) is assumed to be as follows 

     ts WWW    (22) 

The homogeneous solution refers to a self-excited dynamic oscillation tW , and the particular 

solution refers to the aero-thermal static equilibrium deflection sW . Both deflections 

 sW and  tW are considered to be large. 

Substituting by equation (22) into equation (21) results in: 
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Resolve equation (23) to obtain it in the form of 
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Equation (24) represents the general equation for the thermal buckling and nonlinear flutter of 

a composite material plate under the combined effect of aerodynamic and thermal loads. The 

subscripts s and t indicate that the relevant matrix depends on the static or dynamic 

displacements, respectively. Separating the static and dynamic terms of Eq. (24), the 

following two equations can be obtained 
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Static Aero-Thermal Buckling 
In the following, the solution procedure using the Newton–Raphson method for the aero-

thermal post-buckling analysis of a composite material plate is presented. 

Introducing the function  W  to equation (25), 
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Equation (27) is expressed as a Taylor expansion in Douglas and Burden.‎[16] [16] 
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Thus, the Newton–Raphson iteration procedure for the determination of the post-buckling 

deflection can be expressed as follows 
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where the tangent stiffness matrix [Ktan]i is 
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      11   iii WWW   (33) 

Convergence occurs in the above procedure when the maximum magnitude of the vector 

{ΔW}i+1 becomes‎less‎than‎a‎given‎tolerance‎εtol ; i.e.‎max‎|‎{ΔW}i+1 |‎≤‎εtol. 

 

 

Free Vibration 
From equation (26), the equation of free vibration about a statically stable position could be 

stated as 

             021  tssTt WNNKKWM     (34) 

or 

      0  tan  tt WKWM     (35)

  

The solution of equation (35) is assumed to take the harmonic form 
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    t

t ecW     (36) 

Substituting equation (36) into equation (35) hence, the associated Eigen value problem can 

be stated as 

      0 tan

2  KM    (37) 

Thus, the solution procedure would be, first, the solution of the static thermal deflection and 

the associated stiffness matrices by following the procedure outlined in the preceding section, 

and then, solving the eigen value problem of equation (37) for the free vibration of a 

thermally buckled traditional composite material plate. 

 

 

Panel Flutter under Thermal Effect 
In this section, the procedure of determining the critical non dimensional dynamic pressure 

under the presence of thermal loading is presented. Equation (26) can be reduced for the 

solution of the linear (pre-buckling and pre-flutter) problem to the following equation 

              0 tTatt WKKAWGWM     (38) 

Now apply a new definition for the bending degrees of freedom by considering the transverse 

deflection degrees of freedom 

   bB WW 
 

Neglecting the in-plane inertia terms will not bring significant error, because their natural 

frequencies are usually 2 to 3 orders of magnitude higher than the bending ones by Ibrahim 

[14] and Tawfik [17]. Separating equations (38) in the membrane and transverse directions 

results in the following transverse dynamic equation 

              0
tBTBBaBtBBtBB WKKAWGWM     (39) 

Now, assume the deflection function of the transverse displacement  
tBW to be in the 

harmonic form 

    t

BtB ecW     (40) 

where Ω =‎α‎+‎i,‎is‎the‎complex‎panel‎motion‎parameter‎(α‎is‎the‎damping‎ratio,‎and‎ is the 

frequency), by Xue [18], c is the amplitude of vibration, and  { B} is the mode shape. 

Substituting equation (40) into (39), the following equation is obtained 

       0      t

BBB eKMc    (41) 

where       BaB MgG  ,       ag 2     and             TBBaBB KKAK    

From equation (41), the generalized Eigen value problem can be written as 

    0B BM K        (42) 

Given that the values of   are real for all values of   below the flutter critical value, an 

iterative solution can be utilized to determine the flutter non-dimensional dynamic pressure 

 cr at the given temperature rise. 
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Optimization 
Genetic Algorithm is adopted on a finite element code to optimize the shape scheme of 

laminas of an applied composite material that causes the apparent change in the critical 

temperature and obtain the best temperature as the maximum one. 

Genetic Algorithm (GA) is a distinct optimization code that will be investigated, using of GA 

has gained some popularity in optimization, and has been identified as a potential technique to 

be evaluated in heuristic search and combination problems. GA is a global search technique. 

GA does not require any mathematical increase to the numerical solution methods used to 

represent the ill objects. 

GAs differ from others which is more widely in real valued search space. Search using GAs 

strikes a reasonable balance between exploiting the available information and searching 

through unexplored regions. 

GA depends on the performance of a population of recommended solution. Population is 

created from the variable that will be optimized. Genetic Algorithm operation close to the 

laws of nature, uses a population of potential solutions represented by string  of binary digits, 

called chromosomes or individuals, which is submitted to many transformations, called 

genetic operations such that selection, crossover and mutation. The population is going to 

evolve during the generations according to the fitness value of the individuals; then, when a 

stationary state is reached, the population has converged to the solution of the given 

optimization problem. 

GAs can work as a Multi-Objective Optimization (MOO) where several scores must be 

satisfied simultaneously to obtain an optimal solution. Extend optimization theory by 

permitting multiple objectives to be optimized simultaneously. MOO is known as multi-

criteria, multidisciplinary, or a vector optimization problem. GA is a powerful code because it 

can be adapted to operate as a parallel genetic algorithm operator. 

 

 

Working principles 

Wahba [19] mentioned that the basic structure of a GA consists mainly of the following steps: 

(1) Random initialization of a population of individuals. 

(2) Evaluation of the individuals. 

(3) Application of genetic operators (selection, crossover and mutation) to the population 

and return to step (2) until the best individual is reached. 

 

 

Parametric study and recommendations 
Experiences clear that crossover rate generally should be high as mentioned by Wahba [19], 

about 60%-80%. On the other hand, the mutation rate should be very low. Best rates reported 

are about 0.5%-1% (recommended that there is a relationship between mutation rate, 

population size and chromosome length). It may be surprising, that very big population size 

usually does not improve performance of GA (in meaning of speed of finding solution), and 

good population size was found to be around 25-100. In this case sensitivity study is 

performed and the shape scheme [0/-45/45/90]S is optimized to be [-79/46/-42/8]S and [55/-

52/-77/-52]S for clamped and simply supported flat plate element, respectively. Choose 

crossover 80%, generation 10, and population 40. 
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Numerical Results and Discussions 
Numerical analysis of the aero-thermal buckling of a traditional composite plate is performed 

using the finite element method. The full plate is modeled with a uniform 4 x 4 finite element 

mesh of four-node rectangular plate elements and consists of eight-layered Graphite-Epoxy 

matrix with a symmetric stacking sequence with old shape scheme of [0/-45/45/90]S. The four 

edges are all clamped and simply supported respectively. The plate dimensions are chosen to 

be 0.381x0.305x0.0013m. The Young's modulus is a function in the temperature rise. The 

phase transformation is activated at the room temperature 20ºC. The material properties of 

applied composite lamina, Ibrahim [14] and Hwang and Moon ‎[20] [20], are shown in Table 1 

 

Table 1   Material properties of Graphite-Epoxy 

 composite lamina 

 

Graphite-epoxy 

Symbol Value 

E1 155 (1-6.35x10
-4

 ∆T)‎GPa 

E2 8.07 (1-7.69x10
-4

 ∆T)‎GPa 

G12 4.55(1-1.09x10
-3

 ∆T)GPa 

Ρ 1550 Kg/m
3
 

Ν 0.22 

α1 -0.07x10
-6

(1-0.69x10
-3

 ∆T)‎/‎ºC 

α2 30.6x10
-6

(1+0.28x10
-4 
∆T)‎/‎ºC 

 

Figures (1, 2) present the optimum arrangement is compared by the old one to show critical 

temperature rise for clamped and simply supported symmetric composite plate with the 

maximum non-dimensional thermal deflections respectively. 16 elements are used because of 

time consuming of genetic algorithms. Curve shows the new position of the critical 

temperature and observed delaying which improve the aero-thermal buckling stability. Where 

the angles are [-79/46/-42/8]S for clamped plate and [55/-52/-77/-52]S for simply supported 

plate. The validated figure by Ibrahim [14] are shown below the optimum figures (1, 2) shows 

the effect of temperature on the ratio of maximum lateral deflection / thickness but in the 

validated‎ figure,‎ the‎ absolute‎ temperature‎ is‎ used‎ (Temperature‎ rise‎ “∆T”‎ =‎ absolute‎

temperature – room temperature). Validation is verified for just normal scheme. 
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Fig. 1   Optimum and old lamination scheme for symmetric 

 16 elements clamped composite plate 

[0/-45/45/90]s 

[-79/46/-42/8]s 
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Fig. 2   Optimum and old lamination scheme for symmetric 

 16 elements simply supported Composite plate 

 

 

 

Figures (3) and (4) represent the corresponding Lamination scheme on the fundamental 

frequency for clamped and simply supported 16 elements traditional composite plate, 

respectively. These study the effect of temperature rise on the fundamental frequency and 

demonstrate decreasing in the values of the fundamental frequency while temperature rise 

increases because of panel lose its stiffness. The critical buckling temperature is found at 

reflected point of the curve, hence; the nonlinear terms will be added because of theta (angles 

of fibers) effect is appeared and consequently the fundamental frequency increases again 

because of stiffness will increases with the temperature rise increasing. Figures (1, 2, 3, and 4) 

use 16 elements instead of 36 elements because of time consuming of genetic algorithms.  
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Figure 3   Fundamental frequencies of clamped 

 16 elements composite plate   
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Figure 4   Fundamental frequencies of simply supported 

 16 elements composite plate 

 

Figure (5) presents a comparison between the stability boundaries of simply supported and 

clamped 36 elements traditional composite plates. The arrangement of lamination is [0/-

45/45/90]S. It is seen in the figure that the clamped plate has a wider flat and stable region 

than that of the simply supported one. Figure demonstrates the regions of static and dynamic 

stability or instability. For two types of fixations, critical non dimensional dynamic pressure 

decreases while temperature rise increases because of plate lose its stiffness and the 

corresponding values of dynamic pressure is decreases. So, above this curve; plate is 

dynamically unstable (panel flutter occurs). Below this curve the plate is flat and stable until 

appearance of critical buckling temperature curve versus non dimensional dynamic pressure, 

hence; plate becomes statically unstable. Curves study the phenomena of panel flutter and 
thermal buckling individually. 

 

 

Conclusions 
An efficient finite element formulation has been presented for the analysis of supersonic 

linear panel flutter and thermal buckling characteristics of a composite panel made of graphite 

epoxy. Conclusions of this work are summarized as follows: 

1. Composite panels with simply supported edges were found to have no distinguished 

buckling phenomena, because any small temperature rise results in a prompt 

transverse deflection of the panel, due to structural asymmetry about the middle plane. 

2. Clamped flat plate panel more stable than simply supported one. 

3. Increasing in length over the same thickness decreases the critical temperature (at 

buckling occurrence). 

4. Critical non-dimensional‎dynamic‎pressure‎(λcr) decreases with elevated temperature. 

5. Improvement and increasing of the critical temperature depend on many parameters as 

increasing total thickness, material properties, changing thickness of the layers into the 

same total thickness, and changing orientation scheme. 

 

 

 

[0/-45/45/90]s 

[55/-52/-77/-52]s 
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Figure 5   Comparison between the stability boundaries of  

simply supported and clamped plates 
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