مجلسة البحوث البيئية والطاقة

جامعة المنوفية قطاع خدمة المجتمع وتنمية البيئة

Monitoring of Pesticide Residue Levels in Blood Samples Collected from the Agricultural Sprayworkers in Menoufia Governorate, Egypt

Prepared by

Hager A. Ammar Department of pesticides, Faculty of Agriculture Menoufia University, Egypt

Mohamed A. Tahon Sherif El-Safty

Central Lab. of Residue Analysis of Pesticides and Heavy Metal Agric. Res. center, Egypt

ینایر ۲۰۲۲ م

العدد (۱۸)

<u>المحلد ١١</u>

Monitoring of Pesticide Residue Levels in Blood Samples Collected from the Agricultural Spray-workers in Menoufia Governorate, Egypt

Hager A. Ammar

Department of pesticides, Faculty of Agriculture Menoufia University, Egypt

Mohamed A. Tahon Sherif El-Safty

Central Lab. of Residue Analysis of Pesticides and Heavy Metal Agric. Res. center, Egypt

ABSTRACT

Spray-workers during the activity of spraying crops are directly exposed to pesticides while mixing handling and spraying. Also, they are exposed to pesticides indirectly through contaminated soil, air, drinking water, eating food, and smoking at workplaces. Thus, the aim of this study was to monitor pesticide residues in blood samples collected from exposed agricultural workers (spraying workers) from three different locations (Shibin El-Kom, Tala and Quweisna) in Menoufia Governorate, Egypt during 2021. A total of 461 Pesticides were analyzed using HPLC and GC-MS/MS system to determine pesticides residues in blood samples of spray workers. Ten pesticides, one herbicide (atrazine), four insecticides (chlorpyrifos, cyhalothrin-lambda, DDE-p,p' and malathion), four fungicides (metalaxyl, ortho phenylphenol, propiconazol and pyrimethanil) and one pesticide synergist (piperonyl butoxide) were detected. Results shown that the most frequently pesticide found in blood samples of spray workers was chlorpyrifos (in 7 blood samples) with percent 35% followed by malathion (in 4 blood samples) with percent 20%. The highest concentration of pesticide residue in analyzed spray workers blood samples was pyrimethanil fungicide with 0.035 mg/kg in blood samples from Quweisna.

Keywords: Spray workers, Pesticide residue, Blood samples, QuEChERS technique.

INTRODUCTION

Pesticides are used to improve agricultural production and control pests, but there is a possibility that they will have unfavorable effects on the environment and human health. During the process of spraying crops, sprayworkers are directly exposed to pesticides when handling, mixing, and spraying. Also, they are exposed to pesticides indirectly through contaminated soil, air, drinking water, eating food, and smoking at workplaces. Finally, these are absorbed by inhalation, ingestion, and dermal contact (Vega, 1994).

Agricultural workers in developing countries are exposed to pesticide contamination (occupational exposure) due to improper application techniques, poor or unsuitable spraying equipment, insufficient storage practices, a lack of personal protective equipment, and the reuse of old pesticide packaging for food or water storage (Ecobichon, 2001; Damalas and Eleftherohorinos, 2011; Nassar et al., 2016). Furthermore, pesticides were applied to crops by non-certified applicators (farmers) using handled, backheld, or motor-drawn sprayers, putting farmers at risk of exposure.

Pesticide exposure has been linked to a variety of negative health effects, including acute symptoms such as abdominal pain, dizziness, headaches, nausea, vomiting, skin problems, eye irritation, and excessive salivation, as well as chronic diseases such as cancer, reproductive, and developmental disorders. Restlessness, memory loss, convulsions, and coma are all frequent effects on the Central Nervous System (CNS). Furthermore, there have been several reports of effects on the parasympathetic and sympathetic nervous systems, including respiratory paralysis, which is lethal (US EPA, 2005).

During 2016, Egypt consumed 10,600 metric tons of pesticides (active ingredient), accounting for 0.2 percent of global usage (Sustainability of Agricultural Environment in Egypt: Part II). According to the Agricultural Pesticides Committee, (2019) Egypt used about 11,000 tons (active

ingredients) of pesticides in 2018 (4,510; 4,290; and 2,200 t of herbicides, insecticides, and fungicides, respectively).

Therefore, the objective of this study was to monitor pesticide residues in blood samples collected from exposed agricultural workers (spraying workers) living in Menoufia Governorate, Egypt during 2021.

MATERIALS AND METHODS

1. Study area

This study was carried out on pesticide spraying workers living Menoufia governorate, Egypt, during 2021. Menoufia is governorate of Lower Egypt in the western part of the apex of the Nile River delta, between the Damietta (east) and Rosetta (west) branches of the Nile. Agriculture is the principal occupation, employing more than three-fifths of the workers. Nearly one-third of the land is under corn (maize); other crops include cotton, wheat, clover, dates, and onions (Britannica, 2012).

2. Collection of blood samples:

Blood samples were collected from field workers involved in pesticides spraying activities at three different locations (Shibin El-Kom, Tala and Quweisna) in Menoufia Governorate. For this issue, blood samples of 30 adult male ranging from 16-50 years old. Subjects were classified into 2 groups of people: Group 1 (spray workers, occupationally exposed) was of 20 spray workers exposed to pesticides continuously for about 5-10 years. Group 2 (control, not exposed to pesticides) was of 10 Inhabitants from the city who were not involved in the pesticide application.

For pesticide residues analysis about 5 mL of blood samples were collected with the help of a professional nurse into residue free heparinized glass vials with sterilized syringe after cleaning the skin with a swab of methylated spirit to minimize sample contamination from possible Pesticides residue adsorbed to the skin Blood samples were transported in dry ice to the laboratory and stored at -20°C until they were analyzed.

Hager A. Ammar

3. Chemicals and pesticides used:

Organic solvents used such as methanol, acetonitrile, acetone (HPLC grade) and toluene (\geq 99.9%) were purchased from Merck (Germany). N-hexane, 97% was obtained from Sigma Aldrich or similar quality. De-ionized Water, generated by Millipore water-purification system was used. QuEChERS extraction reagents such as magnesium sulphate, sodium chloride, sodium citrate and citric acid disodium salt were purchased ready mixed in one package (Agilent Technologies). Pesticide reference standards (for about 461 pesticides Table 1.) obtained from Dr. Ehrenstorfer (Augsburg, Germany), with purities >95% were used to prepare stock solutions dissolved in Toluene for stock solution. Reference standard solutions of concentration 1000 µg/ml were prepared and were kept at -20±2°C; for HPLC and GC-MS/MS using (Hexane: Acetone 9:1). The solvent(s) used are appropriate to the analyte solubility, stability and method of analysis (i.e., not negatively influencing on the pesticides).

Table 1. A total of 461 Pesticides of different groups analyzed using HPLC and GC-MS/MS system to determine pesticides residue levels in blood samples of agricultural spray-workers

No.	Compound	LOQ* (mg/k g)		Compound	LOQ (mg/kg)	No.	Compound	LOQ (mg/k g)
1	1-NaphthyIacetic acid	0.05	156	Endosulfan-sulfate	0.01	311	Oxadiaxyl	0.05
2	2-(1-Naphthyl) acetamide	0.01	157	Endrin	0.05	312	Oxadiazon	0.01
3	Abameciin	0.01	158	EPN	0.01	313	Oxamyl	0.01
4	Acephate	0.01	159	Epoxiconazole	0.01	314	Oxasulfuron	0.01
5	Acetamiprid	0.01	160	Ethiofencarb	0.01	315	Oxycarboxin	0.01
6	Acrinathrin	0.01	161	Ethiofencarb Sulfone	0.01	316	Oxydemeton-methyl	0.01
7	Alachlor	0.01	162	Ethiofencarb Sulfoxide	0.01	317	Oxyfluorfen	0.05
8	Aldicarb	0.01	163	Ethion	0.01	318	Paclobutrazole	0.01
9	Aldicarb Sulfone	0.01	164	Ethirimol	0.01	319	Paraoxon-ethyl	0.01
10	Aldicarb Sulfoxide	0.01	165	Ethofumesate	0.01	320	Paraoxon -methyl	0.01
11	Ametoctradin	0.01	166	Ethoprophos	0.01	321	Parathion-ethyl	0.01
12	Ametryn	0.01	167	Ethoxyquin	0.01	322	Parathion-methyl	0.01
13	Amidosulfuron	0.01	168	Etofenprox	0.01	323	PCB 101	0.01
14	Arninocarb	0.01	169	Etoxazole	0.01	324	PCB 118	0.01

٥

Tabl	le 1. (continued)							
	Amisulbrom	0.01	170	Etridiazole	0.01	325	PCB 138	0.01
16	Arnitraz	0.05	171	Etrimfos	0.01	326	PCB 153	0.01
17	Anilofos	0.01	172	Famoxadone	0.01	327	PCB 180	0.01
18	Atraton	0.05	173	fenamidone	0.01	328	PCB 28	0.01
19	Atrazine	0.01	174	Fenamiphos	0.01	329	PCB 52	0.01
20	Azaconazol	0.01	175	Fenamiphos sulfone	0.01	330	Penconazole	0.01
21	Azamethiphos	0.01	176	Fenamiphos sulfoxide	0.01	331	Pencycuron	0.01
22	Azimsulsfuron	0.01		Fenarimol	0.01		Pendimethalin	0.01
23	Azinphos-ethyl	0.01	178	Fenazaquin	0.05	333	Penoxsulam	0.01
24	Azinphos-methyl	0.01	179	Fenbuconazole	0.01		Pentachloroamisole (PCA)	0.01
25	Azoxysttrobin	0.01	180	Fenfurarm	0.01	335	Permethrin	0.01
	Barban	0.01	-	Fenhexamid	0.01		Phenmedipham	0.01
	Beflubutamid	0.01		Fenitrothion	0.05		Phenthoate	0.01
	Benalaxyl	0.01		Fenoxaprop-p-ethyl	0.01		Phorate	0.01
29	Bendiocarb	0.01	184	Fenoxycarb	0.01	339	Phorate sulfone	0.01
30	Benomyl (as Carbendazim)	0.01	185	Fenpropathrin	0.01	340	Phorate sulfoxide	0.01
	Bensulfuron-methyl	0.01		Fenpropidin	0.01	341	Phosalone	0.01
32	Benthiavalicarb isopropvl	0.01	187	Fenpmpimorph	0.01		Phosmet	0.01
33	Benzoximate	0.01	188	Fenpyrazamine	0.01		Phosphamidon	0.01
34	Bifenazate	0,01		Fenpyroximate	0.01		Phoxim	0.01
35	Bifenthrin	0.01		Fenthion	0.01		Picolinafen	0.01
	Biphenyl	0.01	191	Fenthion sulfoxide	0.01	346	Picoxystrobin	0.01
37	Bispyribac-Sodium	0.01	192	Fenvalerate	0.05	347	Pinoxaden	0.01
38	Bitertanol	0.01	193	Fipronil	0.01	348	Piperonyl butoxide	0.01
39	Bixafen	0.01	194	Flamprop	0.01		Pirimicarb	0.01
-	Boscalid	0.01		Flonicamid	0.01		Pirimicarb desmethyl	0.01
41	Brodifacoum	0.01		Florasulam	0.01		Pirimiphos-ethyl	0.01
	Bromacil	0.01		Fluazifop-p-butyl	0.01		Pirimiphos-methyl	0.01
-	Bromophos-ethyl	0.01		Flubendiamide	0.05		Prochloraz	0.01
	Bromophos-methyl	0.01		Flucarbazone Sodium	0.01		Procymidone	0.01
	Biomopropylate	0.01		Flucythrinate	0.01		Ptodiamine	0.01
-	Bromoxynil-octanate	0.01	-	Fludioxonil	0.01		Profenofos	0.01
	Bromuconazole	0.01		Flufenacet	0.01		Profluralin	0.05
	Bupirimate	0.01		Flufenoxuron	0.01		Profoxydim	0.01
	Buprofezin	0.01		Flumetsulan	0.01		Promecarb	0.01
	Butachlor	0.01		Flumeturon	0.01		Prometon	0.01
51	Butocarboxim	0.01		Fluopicolide	0.01	361	Prometryn	0.01
52	Butocarboxim subfoxide	0.01	207	Fluopyram	0.01		Propachlor	0.01
53	Butralin	0.01	208	Fluquinconazole	0.01	363	Propamocarb	0.01

Monitoring of Pesticide Residue Levels in Blood Samples Collected from the Agricultural Spray-workers

٦

مجلة البحوث البيئية والطاقة ؛ مج ١١، ع ١٨ (يناير ٢٠٢٢)

Hager A. Ammar

54	Butylate	0.01	209	Fluroxypyr	0.01	364	Propanil	0.0
	Cadusafos	0.01		Fluroxypyr-methyl	0.01		Propaquizafop	0.0
	Captan	0.01		Flusilazole	0.01		Propargite	0.0
	Carbaryl	0.01		Flutolanil	0.01		Propazine	0.0
	Carbendazim	0.01		Flutriafol	0.0I		Propazine-2-hydroxy	0.0
	Carbetamide	0.01	214	Fluxapyroxad	0.01		Propetamphos	0.
0	Carbofuran	0.01	215	Foramsulfuron	0.01		Propiconazol	0.
1	Carbofuran-3-hydroxy	0.01	216	Formetanate	0.01	371	Propoxur	0.
2	Carbosulfan	0.05	217	Formothion	0.01	372	Propyzamide	0.
	Carboxin	0.01		Fosthiazate	0.01	373	Proquinazid	0.
4	Chlorantraniliprole	0.01		Fuberidazole	0.01		Prosulfocarb	0.
	Chlorbromuron	0.01		Furathiocarb	0.01		Prothioconazole	0.
	Chlorbufam	0.01		Halosulfuron-methyl	0.01		Prothiofos	0.
7	Chlordane-cis	0.01		Haloxyfop	0.01		Pymetrozine	0.
	Chlordane-trans	0.01		Haloxyfop-etotyl	0.01		Pyraclostrobin	0.
	Chlorfenapyr	0.01		HCH-alpha	0.05		Pyraflufen-ethyl	0.
	Chlorfenvinphos	0.01		HCH-beta	0.05		Pyrazophos	0.
	Chlorfluazuron	0.01	226	HCH-delta	0.05	381	Pyrazosulfuron Ethyl	0.
	Chloridazon	0.01		HCH-gamma (Lindane)	0.05		Pyrethrins	0.
	Chlorobenzilate	0.01	228	Heptachlor	0.05	383	Pyridaben	0.
4	Chlorothalonil	0.05		Heptachlor-endo- epoxide	0.01		Pyridalyl	0.
5	Chloroxuron	0.01	230	Heptachlor-exo- epoxide	0.01	385	Pyridaphenthion	0.
6	Chlorpropham	0.05	231	Heptenophos	0.01	386	Pyrifenox	0.
7	Chlorpyrifos	0.01	232	Hexachlorobenzene (HCB)	0.01	387	Pyrimethanil	0.
8	Chlorpyrifos-methyl	0.01	233	Hexaconazole	0.01	388	Pyriproxyfen	0.
9	chlorsulfuron	0.01		Hexazinone	0.01		Pyroxsulam	0.
	Chlorsulfuron- dimethyl	0.01	235	Hexythiazox	0.01	390	Quinalphos	0.
1	Chlorthiophos	0.01	236	Hymexazol	0.05	391	Quinmerac	0.
2	Chlozolinate	0.01		Imazalil	0.01	392	Quinoxyfen	0.
3	Chromafenozide	0.01	238	Imazamethabenz- methyl	0.01	393	Quintozene	0.
4	Cinidon-ethyl	0.01		Imibenconazole	0.01	394	QuizaIofop-ethyl	0.
	Cinosulfuron	0.01		Imidacloprid	0.01		QuizaIofop-P-ethyl	0.
_	Clethodim	0.01		Indoxacarb	0.01		Rimsulfuron	0.
	Clodinafop free acid	0.01		lodosulfuron-methyl Sodium	0.01	397	Rotenone	0.
8	Clodinafop-propargyl	0.01	243	lprobenfos	0.01	398	Sebuthylazine	0.
	Clofentazine	0.01		Iprodione	0.01		Sebuthylazine-desethyl	0.
	Clomazone	0.01		Iprovalicarb	0.01		Simazine	0.
_	Cloquintocet-mexyl	0.01		Isazofos	0.01		Simetryn	0.
	Clothianidin	0.01		lsofenphos	0.01		Spinetoram	0.

Tabl	e 1. (continued)							
	Coumaphos	0.01	248	Isofenphos-methyl	0.01	403	Spinosad	0.01
94	Coumatetralyl	0.01	249	Isofenyhos-oxon	0.01	404	Spirodiclofen	0.01
95	Cyanophos	0.01	250	lsoprothiolane	0.01	405	Spirornesifen	0.05
96	Cyantranilirpole	0.01	251	Isoproturon	0.01	406	Spirotetramate	0.01
97	Cyazofamid	0.01	252	Isoxaben	0.01	407	Spiroxamine	0.01
98	Cycloheximide	0.01	253	Karbutilate	0.01	408	Sulcotrione	0.01
99	Cycloxydim	0.01	254	Kresoxim- meth _l	0.01	409	Sulfotep	0.01
100	Cyflufenamid	0.01	255	Lenacil	0.01		SulfoxafIor	0.01
	Cyfluthrin	0.01	256	Linuron	0.01	411	Sulfur	0.05
102	Cyhalofop-butyl	0.05	257	Lufenuron	0.01	412	Tebuconazole	0.01
	Cyhalothrin-Lambda	0.01		Malaoxon	0.01	-	Tebufenozide	0.01
	Cymiazole	0.01	259	Malathion	0.01		Tebufenpyrad	0.01
	Cymoxanil	0.01		Mandipropamid	0.01	415	Tebutam	0.01
	Cypermethrin	0.01		Mecarbam	0.01		Tebuthiuron	0.01
	Cyproconazole	0.01		Mefenacet	0.01		Tecnazene	0.05
	Cyprodinil	0.01		Mefenpyr-diethyl	0.01		Tefluthrin	0.01
	Cyromazine	0.01		Mepanipyrim	0.01		TEPP-O,S	0.05
	Dazomet	0.05		Mepronil	0.01		Tepraloxydim	0.01
	DDD-o,p'	0.01		Mesosulfuron-methyl	0.01		Terbufos	0.01
_	DDD-p,p'	0.01		Metaflumizone	0.0t		Terbumeton	0.01
	DDE-p,p'	0.01		Metalaxyl	0.01		Terbuthylazine	0.01
	DDT-o,p'	0.05		Metaldehyde	0.05		Terbutryn	0.01
-	DDT-p,p'	0.05		Metamitron	0.01		Tetrachlorvinphos	0.01
-	DEET	0.01		Metazachlor	0.01		Tetraconazole	0.01
	Deltamethrin	0.01		Metconazole	0.01		Tetradifon	0.01
118	Demeton-S-methyl	0.01	273	Methabenzthiazuron	0.01		Tetramethrin	0.01
119	Demeton-S-methyl sulfone	0.01	274	Methacrifos	0.01	429	Thiabendazole	0.01
	Desmedipham	0.01		Methamidophos	0.01		Thiacloprid	0.01
121	Diafenthiuron	0.01	276	Methidathion	0.01	431	Thiamethoxam	0.01
122	Diazinon	0.01	277	Methiocarb	0.01	432	Thifensulfuron-methyl	0.01
123	Dichlobenil	0.01	278	Methiocarb Sulfone	0.01		Thiobencarb	0.01
124	Dichlofenthion	0.01	279	Methiocarb Sulfoxide	0.01	434	Thiocyclam Hydrogen Oxalate	0.01
125	Dichlofluanid	0.01	280	Methomyl	0.01		Thiodicarb	0.01
126	Dichlorvos	0.01		Methoprotryne	0.01	436	Thiofanox	0.01
127	Diclofop-methyl	0.01	282	Methoxychlor	0.05	437	Thiometon	0.01
128	Dicloran	0.05		Methoxyfenozide	0.01	438	Thiophanate-methyl	0.01
129	Dicofol	0.01	284	Metobromuron	0.01	439	Tolclophos-methyl	0.01
	Dicrotophos	0.01		Metolachlor	0.01	440	Tolfenpyrad	0.01
	Dieldrin	0.01	286	Metosulam	0.01		Tolylfiuanid	0.01
	Diethofencarb	0.01	287	Metoxuron	0.01		Tralkoxydim	0.01
133	Difenoconazole	0.01	288	Metrafenone	0.01	443	Triadirnefon	0.01

٨

مجلة البحوث البيئية والطاقة ؛ مج ١١، ع ١٨ (يناير ٢٠٢٢)

Hager A. Ammar

Table 1. (continued)	-						
134 Diftufenican	0.01	289	Metribuzin	0.01	444	Triadimenol	0.01
135 Dimethachlor	0.01	290	Metsulfuron-methyl	0.01	445	Triallate	0.01
136 Dimethenamid	0.01	291	Mevinphos	0.01	446	Triasulfuron	0.01
137 Dimethoate	0.01	292	Milbemectin A3	0.01	447	Triazophos	0.01
138 Dimethomorph	0.01	293	Milbemectin A4	0.01	448	Tribenumn-methyl	0.01
139 Dimoxystrobin	0.01	294	Mirex	0.01	449	Trichlorfon	0.01
140 Diniconazole	0.01	295	Molloniate	0.01	450	Triclopyr butotyl	0.01
141 Dinotefuran	0.01	296	Monocrotophos	0.01	451	Tricyclazole	0.01
142 Diphacinone	0.01	297	Monolinuron	0.01	452	Trietazine	0.01
143 Diphenamid	0.01	298	Monuron	0.01	453	Trifloxystrobin	0.01
144 Diphenylamine (DPA)	0.01	299	Myclobutanil	0.01	454	Triflumizole	0.01
145 Disulfoton sulfone	0.01		Napropamide	0.01	455	Triflumuron	0.01
146 Disulfoton sulfoxide	0.01	301	Neburon	0.01	456	Trifluralin	0.01
147 Disulfoton	0.01	302	Nicosulfuron	0.01	447	Triazophos	0.01
148 Diuron	0.01	303	Nitenpyrarm	0.01	457	Triforine	0.05
149 DMST	0.01	304	Novaluron	0.01	458	Triticonazole	0.01
150 Dodemorph	0.01	305	Nuarimol	0.01	459	Vemidothion	0.01
151 Dodine	0.01	306	Ofurace	0.01	460	Viclozolin	0.01
152 Edifenphos	0.01	307	Omethoate	0.01	461	Zozamide	
153 Emamectin	0.01	1112	Ortho Phenylphenol (OPP)	0.01	-	-	-
154 Endosulfan-alpha	0.05	309	Orthosulfamuron	0.01	-	-	-
155 Endosulfan-beta	0.05	310	Oxadiargyl	0.01	-	-	-
*LOQ: (Limit of Quantific	ation)						

4. Determination of pesticide residues in the blood samples:

Samples were analyzed in the Central Pesticide Residue and heavy metals Lab. (QCAB) in Giza, Egypt. QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method followed by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) was used for the determination of pesticide residues. Blood samples (5 ml) were added to 50 ml polypropylene tube followed by the addition of 5 ml deionized water. This mixture was mixed with vortex (5 s) and left for 10 min for sample hydration. Ten milliliters of acetonitrile were added and mixed with the sample by intensive shaking. Then buffer-salt mixture was added, and the sample was shaken. Centrifugation was carried out for 5 min at 4000 rpm, and the filtration of an aliquot was done with 0.45 μ m syringe filter into

2 mL clear HPLC vials. About 1 μ L of each sample was injected directly into the HPLC and GC-MS/MS system.

4.1. Determination of pesticide residues by HPLC:

Agilent 1260 Series instrument (HPLC) was used for separation coupled to an API 6500 Qtrap tandem mass spectrometer from AB Sciex with electrospray ionization (ESI) interface. C18 column was used for separation (ZORBAX Eclipse XDB-C18 4.6×150 mm, 5µm particle size) (Agilent, USA). The mobile phase was as follows: Solvent A: 10 mM ammonium format solution at pH 4 ± 0.1 in methanol–water (1:9); Solvent B: methanol. The linear gradient program was start at 100% A; 0-13 min from 100% to 5% A; 13-21 min 5% A; 21-28 min from 5% to 100% A; 28-32 min 100% A at a flow rate of 0.3 ml/min. The source was adjusted in the positive mode while nitrogen nebuliser, curtain and other gas parameters were optimized according to the manufacturer recommendations. A source temperature (400°C) and ion spray potential (5500 V) was common for all compounds. Decluster potential and collision energy was in tune by injecting direct infusion from individual pesticide solutions into MS detector. Multiple reactions monitoring mode was used for quantitation and confirmation (Li et al., 2020).

4.2. Determination of pesticide residues by GC-MS/MS:

Gas Chromatography-Mass Spectrometry (GC-MS) measurements were completed using an Agilent Gas Chromatograph system 7890A equipped with tandem mass spectrometer 7000C series GC. Includes the triple Quadrupole GC/MS EI mainframe, EI ion source, ion gauge controller with Routine femto-gram-level limits of detection and quantitation Ultra-low noise, Superior selectivity, Inlet: Split less, Carrier gas: Helium with flow rate 1.830 ml/ minute. Agilent Technologies: HP-5 MS capillary column (5% biphenyl to 95% dimethyl siloxane). Column Internal Diameter (ID): 0.25 mm, Film thickness: 0.52 μ m, Column length: 30 m. The initial oven temperature of 70 °C for 2 min, heating from 70 to 150 °C at 25 °C /min, heating from 150 to 200 °C at 3 °C/ min, heating from 200 to 280 °C at 8 °C/min, holding for 10 minutes. The total run time will be 42 minutes.

۱۰	مجلة البحوث البيئية والطاقة ؛ مج ١١، ع ١٨ (يناير ٢٠٢٢)
----	--

Quantification of the pesticides was performed by comparing the peak areas of the pesticides to a calibration curve of the standards, and multitude point calibration was used.

4.3. Quality assurance:

An analytical method and instruments were carefully validated as a part of the laboratory quality assurance system and were audited and accredited by the Center of Metrology and Accreditation Finnish Accreditation Service (FINAS) ISO/IEC Guide 17025. The criteria of quality assurance were followed to determine the performance of the standard method. The average recoveries tests on different types of pesticides at different concentration levels varied between 70- 120%. The reproducibility expressed as relative standard deviation was less than 25%. The limit of quantification started at 0.01 mg/kg and up depending on the pesticide type and detected module. The measurement uncertainty expressed as expanded uncertainty and in terms of relative standard deviation (at 95% confidence level) is lower than the default value set by EU (European Union) (\pm 50%). Blank samples were fortified with the pesticides mixture and analyzed as a normal sample with set of samples. The results were recorded on control charts. Repeated analysis of old samples was regularly carried out to control reproducibility.

RESULTS AND DISCUSSION

Humans are exposed to pesticides through either occupational (pesticide manufacturing/formulation and application in agricultural fields) or nonoccupational methods (pollution of the ecosystem through the food chain). A total of 30 blood samples were analyzed for detection of pesticides using multi pesticide residue method to determine the presence or absence of pesticide in occupationally exposed workers. Ten pesticides among 461 pesticides were analyzed (one herbicide, four insecticides, four fungicides and one pesticide synergist) were detected. Data in (Table 2) shown that the most frequently pesticide found in blood samples of spray workers was chlorpyrifos (in 7 blood samples) with percent 35% followed by malathion (in ϵ blood samples) with percent 20%. The highest concentration of pesticide residue in analyzed spray workers blood samples was reported for

pyrimethanil fungicide with 0.035 mg/kg in blood samples from Quweisna followed by DDE-p,p' and ortho Phenylphenol with 0.005 in blood samples from Shibin El-Kom.

Data in Figure 1. revealed that the concentration of the fungicide Pyrimethanil residue was the highest in all detected blood samples (0.085 mg/kg), followed by ortho Phenylphenol (0.02 mg/kg) and the lowest was metalaxyl (0.0002 mg/kg).

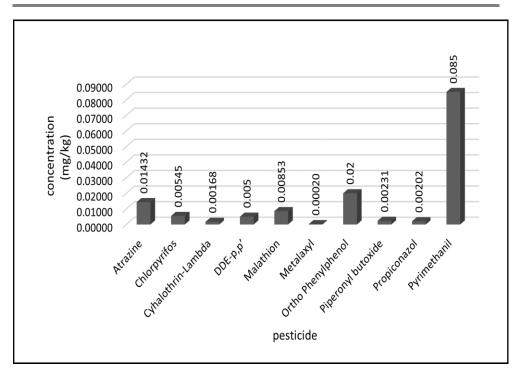
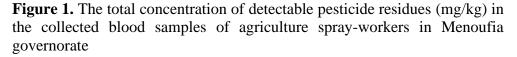

Chlorpyrifos was detected in 85 percent of the samples examined by Hayat et al., (2010), indicating regular and extensive exposure to this pesticide. Chlorpyrifos concentrations were extremely low as compared to those observed by Schafer et al., (2004), who found that residue levels of chlorpyrifos and methyl parathion in blood and urine samples were up to 4.5 times greater than what the US government considers acceptable, they also reported that two chemicals found in nearly all the test subjects were TCP, a metabolite of the insecticide chlorpyrifos (found in 93% of tested populations), and p,p-DDE, a breakdown product of DDT (found in 99% of tested populations). Our results are in accordance with those obtained by Shalaby and Abdou, (2020) who reported that organophosphate insecticide chlorpyrifos was found in 38.3 percent of blood samples from the study population (farmers, pesticide dealers, and pesticide sprayers) with a concentration of 3.78 mg, followed by acetamiprid (11.7 percent) with a concentration of 1.24 mg, and fenvalerate (1.3 percent) with a concentration of 0.01 mg. They also stated that the presence of Chlorpyrifos pesticide could be due to the fact that it is the most extensively used pesticide in the research area (38.9 percent).

Table 2. The concentrations of pesticide residues detected in blood samples of agricultural spray-workers in Menoufia governorate


Pesticides	Uses	RT*		City Inhabita (control)	nts	Spray Workers (treatment)				
resucides	Uses	(min)	n**	range	average	n	range) average		
Shibin El-Kom										
Atrazine	Н	6.34	ND	ND	ND	0	ND	ND		
Chlorpyrifos	Ι	12.7	1	0-0.000057	0.000057	1	0-0.00128	0.00128		
Cyhalothrin-Lambda	Ι	13.1	0	ND	ND	1	0-0.00168	0.00168		
DDE-p,p'	Ι	14.4	0	ND	ND	1	0-0.005	0.005		
Malathion	Ι	9.38	0	ND	ND	1	0-0.00087	0.00087		
Metalaxyl	F	7.04	0	ND	ND	1	0-0.0001	0.0001		
Ortho Phenylphenol	F	17.8	2	0.005-0.01	0.0075	1	0-0.005	0.005		
Piperonyl butoxide	S	12.5	0	ND	ND	1	0-0.00103	0.00103		
Propiconazol	F	11	0	ND	ND	1	0-0.00104	0.00104		
Pyrimethanil	F	18.07	1	0-0.01	0.01	1	0-0.005	0.005		
Tala										
Atrazine	Н	6.34	ND	ND	ND	0	ND	ND		
Chlorpyrifos	Ι	12.7	1	0-0.000057	0.000057	2	0.00057-0.00068	0.000625		
Cyhalothrin-Lambda	Ι	13.1	0	ND	ND	0	ND	ND		
DDE-p,p'	Ι	14.4	0	ND	ND	0	ND	ND		
Malathion	Ι	9.38	0	ND	ND	2	0.00067-0.00146	0.00107		
Metalaxyl	F	7.04	0	ND	ND	1	0-0.0001	0.0001		
Ortho Phenylphenol	F	17.8	2	0.005-0.01	0.0075	0	ND	ND		
Piperonyl butoxide	S	12.5	0	ND	ND	0	ND	ND		
Propiconazol	F	11	0	ND	ND	0	ND	ND		
Pyrimethanil	F	18.07	1	0-0.01	0.01	0	ND	ND		
				Quweisna						
Atrazine	Н	6.34	0	ND	ND	2	0.00264-0.01168	0.00716		
Chlorpyrifos	Ι	12.7	1	0-0.000057	0.000057	4	0.00057-0.001	0.000713		
Cyhalothrin-Lambda	Ι	13.1	0	ND	ND	0	ND	ND		
DDE-p,p'	Ι	14.4	0	ND	ND	0	ND	ND		
Malathion	Ι	9.38	0	ND	ND	1	0-0.00554	0.00554		
Metalaxyl	F	7.04	0	ND	ND	0	ND	ND		
Ortho Phenylphenol	F	17.8	2	0.005-0.01	0.0075	0	ND	ND		
Piperonyl butoxide	S	12.5	0	ND	ND	1	0-0.00129	0.00129		
Propiconazol	F	11	0	ND	ND	1	0-0.00098	0.00098		
Pyrimethanil	F	18.07	1	0-0.01	0.01	2	0.01-0.06	0.035		

*RT: Retention Time, **n: number of samples (control=10, Shbin El-kom=8, Tala=7, Quwesina=5), ND: Not Detected, H: Herbicide, I: Insecticide, F: Fungicide, S: Synergist.

مجلة البحوث البينية والطاقة ؛ مج ١١، ع ١٨ (يناير ٢٠٢٢)

Monitoring of Pesticide Residue Levels in Blood Samples Collected from the Agricultural Spray-workers

populations free from pesticide residues may have used protective equipment before pesticide applications or the detoxification process was caused by e.g., excretion (Usui et al. 2012). Our findings are consistent with those of Arshad et al., (2016), who found malathion residues in 72 percent of all blood samples from pesticide manufacturing workers (ranging from 0.01 to 0.31 mg/l) and Huen et al., (2012), who found levels of diazinon and chlorpyrifos pesticides in the umbilical cord plasma of wombats ranging from 0.0-0.5 ng/mL and 0.0-1.726 ng/mL

Osesua et al., (2018) reported that a major metabolite of DDT, 2,2-bis (pchlorophenyl)-1,1-dichloroethylene (pp' DDE) was detected in 32 samples at levels of 0. 0338ng/g and have 15.41% distribution in the whole blood samples analyzed. The presence of DDE is because DDE is more persistent

١٤	(* * * *	، ع ۱۸ (ینایر	لطاقة ؛ مج ١١	مجلة البحوث البيئية وا
----	----------	---------------	---------------	------------------------

Hager A. Ammar

than DDT. They also found that among the organophosphorus residues, chlorpyrifos, one of the most extensively used pesticides in households and agriculture, was detected in 100% of the whole blood samples tested, with a mean concentration of 0.0355ng/g and a percentage distribution of 16.18%.

CONCLUSION

In conclusion, the current study found that the population investigated (spray workers and city residents) were occupationally and environmentally exposed to pesticides as a result of the widespread and indiscriminate use of pesticides for pest management. According to this study, human pesticide residue is a biological index/number of pesticide exposure, and blood sample studies may be used to estimate pesticide residues in occupationally exposed and non-exposed people. Our present results indicated that among 461 pesticides analyzed, ten pesticide residues, one herbicide (atrazine), four insecticides (chlorpyrifos, cyhalothrin-lambda, DDE-p,p' and malathion), fungicides (metalaxyl, ortho Phenylphenol, propiconazol and four pyrimethanil) and one pesticide synergist (piperonyl butoxide) were detected in blood samples of 30 agriculture spray-workers from three different locations in Menoufia governorate. Therefore, intensive training and efforts are required to raise awareness of critical safety practices and to change workers' potentially detrimental environmental behavior. Also, the role of government guidelines and agricultural research services with the cooperation of pesticide manufacturers is very important for reducing pesticide hazards and risks.

REFRENCES

- Agricultural Pesticides Committee (APC), Egypt. (2019). Available on: http://www.apc.gov.eg/AR/
- Arshad M.; Siddiqa M.; Rashid S.; Hashmi I.; Awan M.A. and Ali M.A. (2016). Biomonitoring of toxic effects of pesticides in occupationally exposed individuals. Safety and Health at Work 7: 156-160. <u>https://doi.org/10.1016/j.shaw.2015.11.001</u>
- Britannica, The Editors of Encyclopaedia. "Al-Minūfiyyah". Encyclopedia Britannica, 4 Oct. 2012, <u>https://www.britannica.com/place/Al-Minufiyyah</u>
- Damalas C.A. and Eleftherohorinos I.G. (2011). Pesticide exposure, safety issues and risk assessment indicators. Int. J. Environ. Res. Public Health. 8: 1402-1419. <u>https://doi.org/10.3390/ijerph8051402</u>
- Ecobichon D.J. (2001). Pesticide use in developing countries. Toxicology, 160: 27-33. <u>https://www.europarl.europa.eu/cmsdata/219887/Pesticides%20health</u> <u>%20and%20food.pdf</u>
- Hayat K.; Ashfaq M.; Ashfaq U.; Saleem M.A. (2010). Determination of pesticide residues in blood samples of villagers involved in pesticide application at District Vehari (Punjab), Pakistan. African Journal of Environmental Science and Technology. 4(10): 666-684. http://dx.doi.org/10.4314/ajest.v4i10.71330
- Huen K.; Bradman A.; Harley K.; Yousefi P.; Barr D.B.; Eskenazi B. and Holland N. (2012). Organophosphate pesticide level in blood and urine of women and newborns living in an agricultural community. Environmental Research 117: 8-16. <u>https://doi.org/10.1016/j.envres.2012.05.005</u>
- Li R.X.; Li M.M.; Wang T.; Wang T.L.; Chena J.Y.; Francis F.; Fana B.; Konga Z.Q. and Daia X.F. (2020). Screening of pesticide residues in traditional Chinese medicines using modified QuEChERS sample preparation procedure and LC-MS/MS analysis. Journal of Chromatography. Analyt. Technol. Biomed. Life Sci. 1152: 122-224. <u>https://doi.org/10.1016/j.jchromb.2020.122224</u>

17	(* • * *	۱۸ (ینایر	11، ع	؛ مج	البيئية والطاقة	مجلة البحوث
----	----------	-----------	-------	------	-----------------	-------------

- Nassar A.K.; Salim Y.M. and Malhat F.M. (2016). Assessment of pesticide residues in human blood and effects of occupational exposure on hematological and hormonal qualities. Pakistan Journal of Biological Science 19 (3): 95-105. <u>https://doi.org/10.3923/pjbs.2016.95.105</u>
- Osesua B.A; Umar A; Aliyu A.K and Tsafe A.I. (2018). Evaluation of pesticide residues in blood samples of farmers and non-farmers in selected agriculture communities in Suru local government area, Kebbi state, Nigeria. African Journal of Environment and Natural Science Research. 1(2): 20-30.
- Schafer K.S.; Reeves M.; Spitzer S. and Kegley S. (2004). In Chemical trespass: Pesticides in our bodies and corporate accountability, Pesticide Action Network North America. http://www.pesticideresearch.com/site/docs/ChemTresExSumEng.pdf
- Shalaby S.E.M. and Abdou G.Y. (2020). Assessment of pesticide residues in blood samples of agricultural workers in Egypt. Journal of Plant Protection Research. 60(4): 369–376. https://doi.org/10.24425/jppr.2020.134912
- Sustainability of Agricultural Environment in Egypt: Part II: Soil-Water-Plant Nexus. Pp:216.
- United States Environmental Protection Agency (US EPA). (2005). Organophosphate pesticide information: overview of malathion risk assessment. <u>https://www3.epa.gov/pesticides/Malathion-Human-Health-Draft-Risk-Assessment-for-Registration-Review.pdf</u>
- Usui K.; Hayashizaki Y.; Hashiyada M. and Funayama M. (2012). Rapid drug extraction from human whole blood using a modified QuECHERS extraction method. Legal Medicine 14: 286–296. <u>https://doi.org/10.1016/j.legalmed.2012.04.008</u>

Vega S.S. (1994). Note on the toxicity of pesticides used in tropical crops. Ciencias Ambientales, 11: 181.