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Derivation of Optimal Guidance and Control Problem 
 

G.A. El-Sheikh*

1. Introduction 

 
 
Abstract: New tactical missile requirements are so stringent that weapon subsystem 
technology must be utilized at the highest possible level consistent with cost, reliability, and 
performance. This is particularly true with the guidance and control subsystems, which are the 
nerve center or backbone of a weapon. As a result of this, there is continuing requirement for 
more and better tools for analyzing performance, predicting requirements, determining error 
sources, and selecting suitable concepts. Among these concepts is the optimal guidance and 
control which is indispensable for advanced guidance processes where ever-increasing 
performance requirements are to be achieved with minimum control or actuation and 
minimum cost. This cost is the performance index that mathematically weights different flight 
variables including the time constraints, the guidance commands or actuating signals or 
commanded acceleration and miss distance especially near the target interception. That is, 
tackling such problems necessitates formulation, solution and design with synthesis which is 
mathematically cumbersome and boring for researchers. Therefore, this paper is devoted to 
formulate the problem in a systematic and concise approach with detailed and complete 
derivation of riccatti equations and its impact on the controller\autopilot design. Then, the 
theory is also derived for the regulator and servomechanism\ tracking problems. Each theory 
is augmented with analytical case study to clarify the impact of optimality and riccatti 
equation solution upon the system’s performance. 
 
Keywords: Guidance and Control, Optimal Control, Riccatti Equations 
 
 

Among the huge control design techniques is the optimal control in which a performance 
index (P.I.) is to be specified for penalizing the states, the tracking error the control effort or 
both in accordance to the performance requirements. That is, the key to a successful problem 
formulation is the translation of performance requirements into the mathematical P.I. No 
matter what theoretical techniques are used to develop the optimal control strategy, they will 
always be based on the minimization (or maximization) of that performance index which 
necessitates the translation of its ingredients into concise mathematical terms. In addition to 
the performance index, two other formulations will impact the optimal control strategy, 
namely, the mathematical model of the system and the additional equality and inequality 
constraints to be placed on the system. 
 
In general, a more detailed system model results in a more accurate control strategy, but this 
is achieved at the expense of additional complexity in both the derivation and resulting 
algorithms. The selection of appropriate equality/inequality constraints can be based upon 
either actual system parameters or trajectory properties (operational characteristics) that the 
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optimal solution should possess. Some of the modern control techniques that have been 
investigated and/or applied are (1) reachable set theory, (2) singular perturbation theory, (3) 
differential game theory, (4) robust control theory and (5) adaptive control theory. 
 
The performance index (cost functional) study is a fundamental but extremely complex 
problem as the choice of the parameters/states constituting the performance index is 
influenced by the performance objectives and the interrelationships of the steps involved in 
the modern control problem formulation. Specifically, for every different performance index 
or cost functional there is a different optimal guidance law, the measure of its performance 
will be the ability of the missile to intercept the target with, say, minimum terminal miss 
distance in various engagement scenarios. Additional measures of performance involve 
considerations about (1) launch envelope, (2) fuel considerations, (3) flight time, (4) power 
supply, (5) maneuver capability and (6) external disturbances. 
 
Unfortunately, the cited pertinent literature (more than the listed) presents the theory in a 
discrete and very complex form such that applicants and researchers got bored from tailoring 
this theory to their real applications. In addition, it will be very difficult to own the know how 
in this context and consequently lagging from time to time in an era of ever-increasing 
requirements with accelerating technologies. Therefore, this paper is devoted to present a 
novel derivation for the state-space optimal control theory starting from the P.I. until the 
riccatti equation and the optimal controller with implementation and evaluation. The novelty 
of this approach stems from formulating the problem in a systematic and concise detailed 
approach towards the riccatti equations and its impact on the controller design. The theory is 
tailored for the two control problems, regulator and servomechanism\ tracking, augmented 
with analytical case study for each of them. 
 
2. Optimal Control Theory 
This section is devoted to the derivation of the optimal 
control problem via following the Hamiltonian and 
Lagrangian approach. 
 

2.1 Proof 
The optimal control problem is to find an admissible 
control vector Uu* ∈  that makes the system 

)t ,u ,x(fX =  follow an admissible state trajectory 
Xx* ∈  such that the following performance index (P.I.) 

is minimized 

∫+=
f

o

t

t
ff dt  ]t),t(u),t(x[L}t ),t(X{ FI  

 
(1a) 

With the following assumptions: 
 System state space 
 The initial time ot  

and the initial state 
oo x)t(x =  are 

specified 
 The state and the control regions are not bounded 

)t ,u ,x(fX =  
)t(u )t(B)t(X )t(A)t(X +=  

)t(X )t(C)t(Y =  

 
(1b) 

u 

I 

u* 

I1 

I1+Constant 

Fig. 2: Global minima 

Fig. 1: State Feedback Closed Loop 
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 The integral }t),t(x{F}t),t(x{Fdt  }t),t(x{F
dt
d

ooff

t

t

f

o

−=∫   (1c) 

 Initial time  to and final time is tf 
Thus, the performance index (P.I.) can be put in the following form: 

}t ),t(x{ Fdt  }t ),t(x{ F
dt
d]t),t(u),t(x[LI oo

t

t

f

o

+






 += ∫  

 
(2a) 

Where }t ),t(x{ F oo  is a constant term and it does not affect the calculation of the P.I. and its 
value because it is independent of the control vector u. Thus, this term can be discarded from 
subsequent discussions and consequently the P.I. is shortly rewritten as; 

 ∫ 





 +=

f

o

t

t

dt  
dt
dFLI  

 
(2b) 

That is 

∫ 







∂
∂

+
∂
∂

+=
f

o

t

t

T dt  }]t ),t(x{ F[
t

X }]t ),t(x{ F[
x

]t),t(u),t(x[LI   
 
(3) 

The solution of the state equation (1b), )t ,u ,x(fX = , is obtained as follows 
X]t,)t(u,)t(X[f0 −=  (4a) 

This relation can be adjoined to the cost function by means of a Lagrangian multiplier λ  as follows: 
0}X)t ,u ,x(f{  T =−λ   (4b) 

Thus the augmented P.I. has the following form: 

∫ 





 −λ+

∂
∂

+
∂
∂

+=
f

o

t

t

TT dt  ]X}t ),t(x{ f[}]t ),t(x{ F[
t

X }]t ),t(x{ F[
x

]t),t(u),t(x[LI   
 
(5a) 
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∂

+
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∂

+=λ ]X}t ),t(x{ f[}]t ),t(x{ F[
t

X }]t ),t(x{ F[
x

]t),t(u),t(x[L}t , ,u ,x ,x{L TT
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 (5b) 

Where, [ ]Tn21 x....xxX = , 
T

n21 x
F....

x
F

x
F

x
F









∂
∂

∂
∂

∂
∂

=
∂
∂ , 



















−

−
−

=



















λ

λ
λ

=λ

nn

22

11

n

2

1

xf

xf
xf











 

That is augmented P.I. becomes as  

∫ λ=
f

o

t

t
aa dt  }t , ,u ,x ,x{LI   

 
(6) 

Considering the perturbations (
ftuxx  , , , , δδδδδ λ ) the perturbation in the P.I. should be zero 

and it is given as follows: 

f

f

o

tff
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f
*

f
*

f
*

a

t

t

T
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u

T
a

x

T
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T
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 }t ),t( ),t(u ),t(x ),t(x{L                                                                       

dt  
L

u
L

x
L

x
L

)u(

δλ+
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+δ
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=δ ∫ λ




  

 
(7a) 

Iaa II δ+=          &      
fa taaLa

f
a  LLLL δ+=δ+=   (7b) 

The integration of the derivative of two multiplied functions; 
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 (8) 
Also this integration can be carried out normally as follows: 

)t(
x
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x
)t(L
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(9) 

Considering 0)t( ox =δ  yields that Eqn (9) becomes 

)t(
x

)t(L
dt  
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L

dt
d
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∂
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(10) 

From Eqn (8) and Eqn (10) it is clear that  

∫∫ 
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(11) 

Substituting Eqn (11) into Eqn (7) yields 
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Since, 
ff tffXX  )t(X)t( δ+δ=δ  ; then 

ff tfXfX  )t(X)t( δ−δ=δ   and consequently, Eqn (12) 
can be written as follows: 
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Rearranging this equation yields 
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From this equation, the following equalities can be considered: 
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Since λ is a function of time; 
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i.e. 

0)t(
x

)t(F  
t

)t(F)t(f )t()t(L
ff X

T

f
f

t
f

ff
T

f =δ



 λ−

∂
∂

+δ








∂
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(18) 

 
Let us define the Hamiltonian matrix as follows: 

)t,u,x(f )t,u,x(LH Tλ+=  (19) 
 
Then the following equations can be obtained 

State equation 
λ∂

∂
=

HX   {Eqn (19) yields X)t,u,x(fH ==
λ∂

∂ } 

Costate equation 
x
H
∂
∂

−=λ   {Eqn (17-a) yields 
x
H    

x
f

x
L )19(

T

∂
∂

−=





∂
∂

λ+
∂
∂

−=λ } 

Control equation 
u
H0
∂
∂

=   {Eqns (17-b) and (19) } 

Boundary conditions obtained by substituting (19) into (18) to yield 

0)t(
x

)t(F  
t

)t(F}t),.......,t(x{H
ff X

T

f
f

t
f

ff =δ



 λ−

∂
∂
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∂
∂

+  

 
 
 
 
 
(20) 

According to whether tf and/or Xf are specified, there are different cases that can be tackled 
following different approaches. 
 

2.2 Case Study-1 
The fin drive of a guided missile is described by the following state equations; 

)t(u)t(x)t(x
)t(x)t(x

22

21

+−=
=




 

and it is required to be controlled such that the control effort is conserved assuming that the 
admissible states and controls are not bounded. 

(a) Find the necessary conditions that must be satisfied for optimal control 
(b) Calculate and plot the optimal states and control functions for x(0)=0 and x(2)=[5  2]T 
(c) Solve part (b) for the following P.I. 

∫+−+−=
2

0

22
2

2
1 dt u

2
1]2)2(x[

2
1]5)2(x[

2
1I , where x(0)=0 

Solution: 
• It is clear that 0t o =  and 2t f =  
• The cost function has the following form 

∫+=
f

o

t

t
ff dt  ]t),t(u),t(x[L}t ),t(X{ FI  

with number of states n=2 and control m=1. 
• For minimum control effort 
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• The Hamiltonian has the following form 
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• The Costate equations 
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• The Control equation 
u
H0
∂
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=  is 

0u 2 =λ+  
i.e. 2u λ−=  

• Substituting the control equation into the state equations and considering the other 
equations yield 
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with boundary conditions 
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0
0

)0(x  and 







=

2
5

)2(x  



Paper: ASAT-14-015-GU 
 
 

8 

• Since both ft  and fx  are specified, there is no need for the boundary condition; where 
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)2(x)t(x f  

• The integration of the above equations can be carried out as follows: 
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The above equation can be solved as follow; 
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∫
 

• Considering the initial and final conditions, the integration constants can be found as 
follows: 

4321 c c c
2
10)0(x ++−==  (a1) 

3212 cc
2
1 c0)0(x −−−==  (a2) 

4
2

3
2

211 ce ce c
2
1c 25)2(x ++−−== −  (a3) 

2
3

2
212 e ce c

2
1c 2)2(x −−−−==  (a4) 

(a1)+(a2) yields  0c c c 421 =−+  (a5) 
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 (a3)-(a4) yields   3c e c 2 c 4
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31 =++−  (a6) 
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32 =  (a7) 
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• The optimal control is given by: 
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* e 392.13289.7u −=λ−=  
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e 593.0e 696.6103.6t 289.7x
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−
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Now, the optimal variables (control and states) are programmed within MATLAB 
environments from which the system responses are plotted versus time as shown in Fig. 5. 
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2
1]2)2(x[

2
1]5)2(x[

2
1I  

Then 

{ } { }
2

2
2

2
1

u 
2
1L

2)2(x
2
15)2(x

2
1F

=

−+−=
 

Where tf is specified while xf is free and 0x)0(x = .  

x
}t),t(x{F)t( ff

f ∂
∂

=λ  which represent the boundary equation. 

5)2(x)t(
x

}t{F
1f1

1

f −=λ=
∂

∂
 

2)2(x)t(
x

}t{F
2f2

2

f −=λ=
∂
∂

 

x
H
∂
∂

−=λ  

λ∂
∂

=
Hx  

u
H0
∂
∂

=  

The Hamiltonian has the following form 

[ ]

)}t(u)t(x{- )t(x 
2

u

x x 
2

u
x
x

 
2

u)t,u,x(f )t,u,x(LH

2221

2

2211

2
2

1
21

2
T

+λ+λ+=

λ+λ+=









λλ+=λ+=







 

11
1

1 C               0
x
H

=λ⇒=
∂
∂

−=λ  

1212
2

2 C
x
H

−λ=λ−λ=
∂
∂

−=λ  

i.e. 

1
t

22

t

2

12

212

2
12

122

ce c

e
c

c
)c(nt)c(n

dtd
c

1c

+=λ⇒

=
−λ

⇒

+=−λ⇒

=λ
−λ

⇒−λ=λ





 

The State equations 
λ∂

∂
=

HX  are 
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uxHx

xHx

2
2

2

2
1

1

+−=
λ∂
∂

=

=
λ∂
∂

=





 

The Control equation 
u
H0
∂
∂

=  is 

22 u      0u λ−=⇒=λ+  
Thus 1

t
2222222 ce cxx                        xx −−=λ−=+⇒λ−−=   

⇒
4

t
3

t
211

t
3

t
212

ce ce c
2
1 tc)t(x

e ce c
2
1 c)t(x

++−−=

−−−=

−

−

 

Considering the initial and final conditions, the integration constants can be found and the 
optimal variables (control and states) can be plotted versus time as before. 
 
3. Linear Regulator Problem 
 

3.1 Theory 
It is required to find the admissible optimal control vector Uu* ∈  for the linear system 
described by the state equation (1) to follow an admissible state trajectory Xx* ∈  such that 
the following performance index (P.I.) is minimized 

∫ ++=
ft

0

TT
ff

T dt  )]t (u R )t(u)t (X Q )t(X[ 
2
1)t (X S )t(X 

2
1I  

 
(21) 

Where; S, Q, and R are square symmetrical weighting matrices to be selected by the designer. 
If the initial time ot  and the final time ft  are specified, the final state ff x)t(x =  is free and 
the admissible state and control regions are not bounded. Comparing Eqn (21) with the general 
form of cost function (1a) yields: 

)t (X S )t(X 
2
1F ff

T=   
(22) 

{ })t (u R )t(u)t (X Q )t(X 
2
1L TT +=   

Thus, the Hamiltonian matrix, Eqn (19), can be obtained as follows: 

]u BX A[ )t (u R )t(u 
2
1)t (X Q )t(X 

2
1

)t,u,x(f )t,u,x(LH
TTT

T

+λ++=

λ+=
 

 
(23) 

That is, the following equations can be obtained 

 State equation u BX AHX +=
λ∂

∂
=  

 Costate equation λ−−=
∂
∂

−=λ  A)t(X Q
x
H T  

 Control equation λ+==
∂
∂  B)t(u R0

u
H T  or 

x Kx P B R B R)t(u T1T1 −=−=λ−= −−               P B RK    T1−=⇒  

 
 
 
(24) 

Manipulating these equations yields the following differential equations 
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λ−= −  B R BX AX T1  
λ−−=λ  A)t(X Q T  

 
(25) 

These equations can be put in the following matrix form 









λ









−−
−

=








λ

− X
AQ

B R BAX
T

T1




 

 
(26) 

 
Therefore, the block diagram representing the operation of this system can be drawn as shown 
in Fig. 1 and the system equations (26) can be solved either following the state-transition 
matrix or the riccati equation approach. The later approach is the objective of this paper. 
 
Since fx  is free the following equation holds; 

)t(X S
x
F)t( ff =
∂
∂

=λ   
(27) 

Looking at Eqn (27), the Lagrangian multiplier )t(λ  can be calculated through the following 
formula: 

)t(X )t(P)t( =λ  (28) 
Where P is a square matrix obtained from the solution of Riccati equation with S)t(P f = .  
Thus, differentiating Eqn (28) and using both (24, 26) and (28) yield the following: 

X P AX Q AX QX PX P TT −−=λ−−=+   (29) 
The left side can be substituted for using Eqns(1) and (24) to yield 

X P AX QX P B R B PX A PX P TT1 −−=−+ −  (30) 
 
Rearranging yields the Riccati equation as follows: 

P B R B PQP AA P P T1T −+−−−=  (31) 
where S)t(P f = . This equation can be solved in P that is used to obtain the Lagrangian 
multiplier )t(λ and consequently the control signal u(t). The process of design, 
implementation and evaluation can be described in block diagram as shown in Fig. 6. 
 

 
For time invariant systems 0P =  and consequently Eqn (4-16) reduces to the following form: 

0P B R B PQP AA P T1T =−++ −  (32) 
 

3.2 Case Study-2 
Find out the solution of a linear regulator problem concerning the system described by 

ux ax +=   
such that the following performance index (P.I.) is minimized 

∫+=
ft

0

2
f

2 dt  u  
4
1)t (X S  

2
1I  

 

Where a=-2, x(0)=5, tf=15 [sec] and S=5, or 0.05 

System matrices 
and weights 

P  
)t(λ   

u(t) Implement the 
controller and evaluate 

Fig. 6: Sequence of optimal control regulator design 
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Solution: 
Substituting the given data (A=a=-2, B=1, R=1/2, Q=0) into the Riccati equation (31) yields 

)aP( P  2
P 2P a 2

P 20P aa PP
2

2

−=
+−=

+−−−=

 

 
 
(b1) 

That is 

dt 2
)aP( P

dP
=

−
 

 
(b2) 

Since 

a/1c    &     a/1c         
)aP(

c
P
c

)aP( P
1

21
21 =−=⇒
−

+=
−

 
 

Then Eqn (b2) becomes as follows: 

{ }
t a 2

t a 2

t a 2t a 2

t a 2t a 2

t a 2

e  c-1
e a cP

e a ce  c-1P
e a ce P cP

e
)aP( c

P

t a 2
)aP( c

Pn

)c(nt a 2)aP(n)P(ndt a 2
)aP(

dP
P

dP

−

−

−−

−−

−

−
=⇒

−=⇒
−=⇒

=
−

⇒

−=








−
⇒

+−=−−⇒−=
−

−





 

 
 
 
 
 
 
 
 
 
 
(b3) 

 
The value of c can be obtained from the boundary conditions as follows: 
At t=tf the unknown P is given by S)t(P f =  i.e. 

a  S
e Sc

)a  S(e  cS
e a ce  c SS

e a ce  c SS
e  c-1
e a cS

f

f

ff

ff

f

f

t a 2

t a 2

t a 2t a 2

t a 2t a 2
t a 2

t a 2

−
=⇒

−=⇒
−=⇒

−=−⇒
−

=

−

−−

−−
−

−

 

 
 
 
 
(b4) 

Substituting Eqn (b4) into Eqn (b3) yields 

)tt( a 2

)tt( a 2

t a 2
t a 2

t a 2
t a 2

t a 2

t a 2

f

f

f

f

e S-a-S
e a S

e  
a  S

e S-1

e 
a  S

e a S

e  c-1
e a cP −

−

−

−

−

− −
=

−

−
−

=
−

=  

 
 
(b5) 

Considering the given data 










=
+

=
+=

+
=

−−

−−

−−

−−

−−

−−

05.0Sfor
}e-{1 05.02

e .10

5Sfor
}e-{1 52

e 01

}e-{1 S2
e S 2P

)t51( 4

)t51( 4

)t51( 4

)t51( 4

)t51( 4

)t51( 4

 

 
 
(b6) 
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The system states as function of time can be obtained as follows: 

{ }
 xP) 2-{-2

 xP B R a
 xP B Rx a

 B Rx a
ux ax

T1

T1

T1

=
−=
−=

λ−=
+=

−

−

−



 

 
 
 
 
 
(b7) 

Since the initial condition upon x(t) is given, Eqn (b7) can be solved numerically as follows: 
tiii  )1n(x)1n(x)n(x ∆−+−=   (b8) 

Where i is a counter for the states, n for the step of integration and analogous to time, and t∆  
is the sampling period or integration time-step i.e. t nt ∆= . 
 
Now, the solution of the problem in a step-wise form can be summarized as follows: 

1. the intermediate variable 










=
+

=
+=

−−

−−

−−

−−

05.0Sfor
}e-{1 05.02

e .10

5Sfor
}e-{1 52

e 01

P

)t51( 4

)t51( 4

)t51( 4

)t51( 4

 

2. the instantaneous state tiii  )1n(x)1n(x)n(x ∆−+−=   
3. the instantaneous state-rate  xP) 2-{-2x =  
4. the instantaneous lagrangian multiplier x P=λ  
5. the instantaneous control vector λ−=λ−= −  2 B R)t(u T1  

These equations are solved against time, say, t=0 to 15 [sec]. 
 
4. Servo Mechanism (Tracking) Problem 
 

4.1 Servomechanism Theory 
It is required to find the admissible optimal control vector Uu* ∈  for the linear system 
described by the state equation (1b) to follow an admissible state trajectory Xx* ∈  such that 
the following performance index (P.I.) is minimized; 

[ ] [ ] [ ] [ ]{ }∫ +−−+−−=
ft

0

TT
ff

T
ff dt )t (u R )t(u)(tr)x(t  Q )(tr)x(t 

2
1)(tr)x(t S )(tr)x(t 

2
1I  

 
(33a) 

Or 

[ ] [ ]

[ ] [ ] [ ] [ ]{ }∫ −−+−−+

−−=

ft
TT

T

dtuRuyQy

ySyI

0
rrrr

ffrffr

 )(t)(tu   )(t)(tu)(t)(ty   )(t)(ty 
2
1                           

)(t)(ty  )(t)(ty 
2
1

 

 
(33b) 

Where; S, Q, and R are square symmetrical weighting matrices to be selected by the designer. 
If the initial time ot  and the final time ft  are specified, then the final state ff x)t(x =  is free 
and the admissible state and control regions are not bounded. The variables ry  and ru  
represent respectively the reference output and control signals. According to the nature of 
these variables there are different control design problems; 
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• If 0ttanconsyr == , 0ttanconsu r ==  and C=I, then the problem is known as state 
regulator problem. 

• If 0ttanconsyr == , 0ttanconsu r ==  and IC ≠ , then the problem is known as output 
regulator problem. 

 
Comparing Eqn (33) with the general form of cost function (1) yields: 

[ ] [ ])(tr)x(t S )(tr)x(t 
2
1F ff

T
ff −−=   

(34a) 

[ ] [ ] )t (u R )t(u)(tr)x(t  Q )(tr)x(t 
2
1L TT +−−=   

or 

[ ] [ ])(ty)(ty S )(ty)(ty 
2
1F ffr

T
ffr −−=   

(34b) 

[ ] [ ] [ ] [ ])(tu)(tu  R )(tu)(tu 
2
1)(ty)(ty  Q )(ty)(ty 

2
1L r

T
rr

T
r −−+−−=   

Thus, the Hamiltonian matrix (19) can be obtained as follows: 

[ ] [ ] ]u BX A[ )t (u R )t(u)(tr)x(t  Q )(tr)x(t 
2
1

)t,u,x(f )t,u,x(LH
TTT

T

+λ++−−=

λ+=
 

 
(35a) 

or 

[ ] [ ] [ ] [ ] ]u BX A[ )(tu)(tu  R )(tu)(tu 
2
1)(ty)(ty  Q )(ty)(ty 

2
1

)t,u,x(f )t,u,x(LH
T

r
T

rr
T

r

T

+λ+−−+−−=

λ+=

 
 (35b) 
That is, the following equations can be obtained 

 State equation u BX AHX +=
λ∂

∂
=  

 Costate equation [ ]{ }λ+−−−=
∂
∂

−=λ  AX Cy Q C
x
H T

r
T  

 Control equation λ+−==
∂
∂  B]u -u[ R0

u
H T

r     or     λ−= −  B Ru)t(u T1
r  

 
 
 
(36) 

Manipulating these equations yields the following differential equations 
r

T1 u B B R BX AX +λ−= −  

r
TTT y Q C A)t(X C Q C +λ−−=λ  

 
(37) 

Since fx  is free, the final value of the Lagrangian multiplier (boundary condition) is given by 

[ ] )(ty S C)(tX C S C)(tX C)(ty S C
x
F)t( fr

T
f

T
ffr

T
f −=−−=

∂
∂

=λ  (38) 

Let us consider the Lagrangian multiplier as follows: 
)t()t(X )t(P)t( ζ−=λ , where )(ty S C)t(     &      C S C)t(P fr

T
f

T
f =ζ=  (39) 

 
Differentiating Eqn (39) and substituting into Eqn (37) yields 

r
TTTT y Q C AX P AX C Q CX PX P +ζ+−−=ζ−+   (40) 

 
r

TTTT
r

T1 y Q C AX P AX C Q C]u B)X P( B R BX A[ PX P +ζ+−−=ζ−+ζ−−+ −   
{ } { } 0y Q C- u B P ]AB R B P[X P B R B P- C Q CP AA PP r

T
r

TT1T1TT =+ζ−+ζ−++++ −−   
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Thus, assuming that 0X ≠  yields the following two Riccati equations for the servo 
mechanism problem: 

P B R B P C Q CP AA PP T1TT −+−−−=  (41a) 

r
T

r
TT1 y Q C- u B P ]AB R B P[ +ζ−=ζ −  (41b) 

With the optimal controller as 
ζ+−= −−  B RX P B Ru)t(u T1T1

r  (42) 
 
This equation can be solved in P and ζ  which are used to obtain the Lagrangian multiplier 

)t(λ and consequently the optimal control signal u(t). The process of servo design, 
implementation and evaluation can be described in block diagram as shown in Fig. 7. 
 

 
For time invariant systems 0P = , 0=ζ  and consequently Eqn (41) reduces to the following 
form: 

0P B R B P C Q CP AA P T1TT =−++ −  (43a) 

0y Q C- u B P ]AB R B P[ r
T

r
TT1 =+ζ−−  (43b) 

 
4.2 Case Study-3 

Design an optimal controller to form a tracking problem with the following system,  

1

2

21

xy
ux
xx

=
=
=





 

such that the following performance index is minimized 

∫
∞

+=
0

22
1111   ])-( [ 

2
1 dtuxxqI r  

Assuming that the weight 16q11 =  and the reference state is t
r ex −−= 11  (i.e. t

r e1y −−= ), 
find

X
x
x

x
x

u
⋅
≡








=


















+













1

2

1

2

0 1
0 0

0
1

 the closed loop transfer function, analyze the system performance using MATLAB and 
comment your result. 
 
Solution: 
It is clear that the state equation representing the plant is obtained as follows: 

 

[ ]Y
x
x

=








1 0 1

2

 

 
 
(c1) 

i.e.  

System matrices (A, B, C, D) 
and weights (S, Q, R) 

P 
ζ  

)t(λ
  

u(t) Implement the 
controller and evaluate 

Fig. 7: Sequence of optimal control servomechanism design 
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X AX BU
Y CX

⋅
= +
=

 
 

Consequently, the different system matrices are as follows: 

[ ]

11  ,1  ,0

]0[  ,01  ,
1
0

  ,
00
10

qQRS

DCBA

===

==







=








=

  

 
(c2) 

Thus 









=

2221

1211

pp
pp

P ,   







=

2

1 
ζ
ζ

ζ  and 







=

2

1 
λ
λ

λ  
 
(c3) 

 
Substituting the given data into the Riccati equations (43) yield: 

[ ] [ ][ ] 0
pp
pp

 10 1 
1
0

 
pp
pp

01 q 
0
1

pp
pp

 
01
00

00
10

 
pp
pp

2212

1211

2212

1211
11

2212

1211

2212

1211 =























+








−
















−
















−  

 (c4) 

[ ][ ] 0  
0
1

 
1
0

  
01
00

 -10 1 
1
0

 r11
2212

1211

2

1

2212

1211 =







−
















+









































yqu

pp
pp

pp
pp

rζ
ζ

 
 

 
The algebraic manipulation of this equation (c4) yields five algebraic equations as follows: 

0
pp p

p pp p
00
0q

pp
00

p0
p0

2
222122

2212211211

121112

11 =







+







−
+








−−

+







−
−

 
 
(c5) 

0 
0
y q

u 
p
p

  
01
00

 -
10
00

 
pp
pp r11

r
22

12

2

1

2212

1211 =







−








+








ζ
ζ

































 

 

or 

0
pp p

p pp p
p 2p

pq
2
222122

22122112

1211

1111 =







+








−−
−−

 
 

0 
0
y q

 
u p
u p

 
0

 
 p
 p r11

r22

r12

1222

212 =







−








+








ζ

−







ζ
ζ

 
 

i.e. 

0
 2 

  
2
2221212211

221211211211 =







+−+−

+−+−
ppppp
pppppq

 
 

0 
u p p

u p py q

r222221

r12212r11 =







+ζ+ζ−
+ζ+−

 
 

which yields the following equations 

0u p p
0u p py q
0pp 2
0p pp
0p pq

r222221

r12212r11

2
2212

221211

211211

=+ζ+ζ−
=+ζ+−
=+−
=+−
=+−

 

 
 
 
(c6) 

 



Paper: ASAT-14-015-GU 
 
 

18 

The solution of these equations yields the elements of the Recatti matrix P as follows: 

r11
12

r11
2

r
4/3

112221

4/1
1122

1112

4/3
1111

   
    2 

  2

  2

yq
p

yq
yqp

qp
qp

qp

==

==
=
=
=

ζ

ζζ
 

 
 
 
(c7) 

The optimal controller is obtained as follows: 

[ ] [ ]

r112
4/1

11111

2222112

2

1

2

1

2212

1211

11

     2  
  -

 10  10

     

yqxqxq
xpxp

x
x

pp
pp

BRXPBRu TT

+−−=
+−=









+
















−=

+−= −−

ζ
ζ
ζ

ζ

 

 
 
 
 
 
(c8) 

Or 

{ } yqyyq
yqyqyqu





   2  
   2    

4/1
11r11

4/1
1111r11

−−=
−−=

 
 
(c9) 

Using the given value of 1611 =q  and the reference roll angle yield 

yyu

p
p
p

 2 2 4)e-1(  4
)e-1(  4

)e-1(  2 8
2 2

4
2 8

t-

t-
2

t-
1

22

12

11

−−=
=
=
=
=
=

ζ
ζ

 

 
 
 
(c10) 

Thus, the optimal roll-autopilot is 
[ ] [ ]2 2421 == kkK  (c11) 

 
Now, the designed closed loop has the form shown in Fig. 8, from which the system output is 
given by: 

4  8284.2
)e-1(  4

4  2 2
)e-1(  4 

4  2 2
4

2

-t

2

-t

2 ++
=

++
=

++
=

ssss
y

ss
y r  

The response of this system can be evaluated using the program built by the author within the 
MATLAB environments as shown in Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 

 1/s   
y  y  

 

4 

 u 

Fig. 8: Designed stabilization system 

 

2 2  

 1/s   ry    

4 
T1  

T2  
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5. Conclusions 
This paper presented the derivation of the optimal control theory, state space approach, in a 
novel form following a systematic approach which is more concise, clear and general. The 
derivation was based on a general system structure which contains colored input disturbance 
and measurement noise. The theory is presented in a more concise, clear and general form to 
help those looking to use it without any details as well as those looking for detailed 
understanding and tailoring the theory to their real problems. The cost function weights may 
be dynamical (frequency-dependent) to allow various performance characteristics (including 
integral action) to be easily introduced and robustness characteristics to be modified. The 
derivation is complemented with the two control problems; regulator and servo-mechanism in 
addition to case study for each to clarify the application of these theories. The future work is 
concerned with the numerical solution procedure of the riccatti equation(s) and carrying the 
derivation procedure presented here with quantification of different sources of uncertainty and 
its impact upon the controller design. 
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