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Abstract: The great developments in applied mathematics and computational capabilities 

facilitate the design and implementation of robust control. In addition, the huge developments 

in nanotechnology and its availability in civilian level with less cost, size and weight attract 

many of the researchers allover the world towards embedded systems especially the 

embedded flight control. Among the real applications are the guided missiles especially the 

antitank guided missile systems which are commanded to the line of sight (CLOS) against 

ground and short range targets. The present work is concerned with improving the 

performance of an antitank guided missile system belonging to the first generation via robust 

synthesis of autopilot and guidance systems. The design and analysis necessitates somehow 

accurate model with different uncertainties (objective of Part-1 of the paper) for the system, a 

robust autopilot design (objective of Part-2 of the paper) and implementation via hardware in 

the loop (HIL) simulation (objective of Part-3 of the paper).  

 

This part of the paper is devoted to the derivation of the missile-control system transfer 

functions representing the system dynamics in pitch plane based on the designed 6DOF 

simulation model in Part-1 of the paper. These transfer functions are augmented with 

mathematical formulation for the system uncertainty to be considered during the robust (H) 

design. Then, it presents the results of 6DOF simulation with justification and validation 

against previous work. The next objective for this part is the autopilot design using H  

technique with justification against previous work and reference flight data concerning the 

performance requirements of time responses and flight path characteristics. The new design is 

implemented within the 6DOF simulation from which the obtained results clarify its 

capability to stabilize the system in presence of un-modeled dynamics and satisfy the 

performance requirements with disturbance rejection and measurement noise attenuation. 

However, the selection of the weighting functions necessary for the H  design is 

cumbersome and necessitates more investigation to stay on some rules of thumb as guidelines 

to subsequent research. Towards this objective the next part of the paper is a first trial via 

conducting the simulation with some hardware (pitch and yaw) in the loop. 

 

Keywords: Command Guidance Systems, Robust Control, Uncertainties 

 

 

1. Introduction 
The ever-increasing development of tanks capabilities necessitates the design of accurate 

control and guidance system for an antitank missile in presence of disturbance, measurement 

noise, and un-modelled dynamics. To achieve this objective, the first part of this paper [17] 
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extracted a nonlinear mathematical model representing the dynamical behaviour of the 

underlying missile for different flight phases with uncertainty quantification. The system 

uncertainties included thrust variation due to different causes, variation in aerodynamic 

coefficients and parameters, wind velocity in different directions and different trim 

conditions. To overcome different sources of uncertainty, robust control is used to design the 

autopilot such that the system is stable with the ability to overcome un-modelled dynamics, to 

reject the disturbances and minimize the effects of measurement noises overall the missile 

flight envelope. The performance specifications include overshoot, speed of response, steady 

state error, and system stability in addition to flight paths with different engagement 

scenarios. To overcome the effects due to uncertainties and achieve the performance 

requirements this paper is devoted to design a robust guidance and control for the underlying 

command to line-of-sight (CLOS) system using the H   with evaluation. This control system 

is said to be robust when it maintains a satisfactory level of stability and performance over a 

range of plant parameters, disturbances and noises [7]. Thus, the objective is to investigate the 

robustness of the designed autopilot against uncertainties due to different sources. The 

designed controller is implemented within the missile control system and should be 

insensitive to model uncertainties and be able to suppress disturbances and noise over the 

whole envelope of operation to prove its robustness. This paper is devoted to the autopilot 

design including the jetevator control using the H  in state space form and its 

implementation for guidance and control performance analysis. 
 

A feedback-control system must satisfy certain performance specifications and it must tolerate 

model uncertainties. The feedback control system has three components: the plant, sensors to 

measure the plant outputs, and a controller to generate the plant's input or control signal [5], 

Fig. 1. Generally, this system has three inputs that contribute to three outputs [the actual 

output y(t), the tracking error )(te , and the controller/ actuator signal, u(t) ] as described by 
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where the sensitivity function (S), the complementary sensitivity function (T) and the control 

sensitivity function (R) are defined as [8]  
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Where, L denotes the loop transfer function (L=FPC) and (T=1-S). 

 

2. Robust Control 
One way to describe the performance of a control system is in terms of the size of certain 

signals of interest. For example, the performance of a tracking system could be measured by 

the size of the error signal. There are several ways of defining a signal’s size (i.e. several 

norms for signals), among these norms is the  -Norm. The  -Norm of a signal  u(t) is the 
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least upper bound of its absolute value )(sup: tuu
t




. There are several robust techniques, 

among them is the H  where a quantitative measure for the size of the system uncertainty is 

considered. The infinity norm of the transfer function relating the input to the output is the 

worst-case gain between the two, where both the input and output are measured either by their 

energy or peak value [4]. Other measures of gain can also characterize worst-case 

amplifications, but in ways which seem to be less useful in practice.  

 

The set of all stable transfer functions whose infinity norms are finite forms a Hardy space  

[2, 3, 4] and denoted by 


H . Moreover, it is the approach which gives much of recent 

robust control theory its name. The theory is of great interest because it gives solutions to 

realistic robust control problems known as 


H  optimization problems. One would expect it 

to be harder than LQG theory, because min-max optimization problems are usually harder 

than quadratic ones, but in fact recent developments have shown the theory to have 

remarkable similarities with the LQG theory, and LQG problems can even seen as special 

cases of 


H  problems. In addition to the theoretical advances, one should add that a major 

reason why this theory is of practical interest is the availability of low-cost interactive 

software, like MATLAB, which makes it possible to perform all the necessary computations 

quickly and easily. 

 

2.1 Types of Uncertainties 
No mathematical system can precisely model a real physical system; there is always 

uncertainty and we cannot predict exactly what the output of the system will be even if we 

know the input [3]. The real problem in robust control system design is to synthesize a control 

law which maintains system response and error signals to be within pre-specified tolerances 

despite the effects of uncertainties. Uncertainty may take many forms among them are the 

noise/disturbance signals and transfer function modeling errors in addition to un-modeled 

nonlinear distortion. Consequently, it had adopted a standard quantitative measure for the size 

of the uncertainty using H  norm, as shown in Fig. 2 [1,3,14]. The model error   can be 

represented by an unknown transfer function that indicates the difference between the actual 

process and the model. This general setup allows a control system designer to capture all 

these uncertainties, both structured and unstructured, and formulate them into the design. 

There are two types of uncertainty defined in robust control and known as unstructured and 

structured [11,14]. 

 

 

 

 

Fig. 2: Canonical Robust Control Problem 
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2.2 H  Control Theory 

The methods of H  synthesis are powerful tools for designing robust feedback control 

systems to achieve singular value loop shaping specifications. The standard H  control 

problem is sometimes also called the H  small gain problem. The small-gain theorem states 

that if a feedback loop consists of stable systems, and the product of all their gains is smaller 

than one, then the feedback loop is stable [1,7,19]. That is, assuming that the blocks P  and C  

in Fig. 3 are stable, then the closed loop system remains stable if 1
11
uyT , where 

11uyT  is the  

feedback closed loop transfer function. The small gain problem shows a general setup, and the 

problem of making 1
11




uyT  is also called the small-gain problem. 

 

For 
H  design problem, the state-space model of an augmented plant P(s) with weighting 

functions )(sWp , )(sWu , and )(sWt  which penalize the error signal, control signal and output 

signal, respectively, is formulated as shown in Fig. 4 so that the closed-loop transfer function 

matrix is the weighted mixed sensitivity; 
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In practice, it is usually not necessary to obtain a true optimal controller, but it is often 

simpler to find a sub-optimal controller. Suppose that min is the minimum value of 


),( CPFi
 

over all possible stabilizing controllers C. Then, the H  sub-optimal control problem is: 

Given a min  , find all stabilizing controllers such that 


),( CPFi
. 

This problem can be solved efficiently using the algorithm of Doyle et al. (1989), by reducing 

 iteratively to yield the optimal solution [5]. 

 

2.3 Controller Performance Evaluation 
Considering the feedback control system shown in Fig. 1, the stability margins and 

performance of such systems can be quantified using the singular values of the closed-loop 

transfer function matrices from r to each of the three outputs e, u, and y as defined in Eq
n
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and 2. The singular value bode plot of each of the three transfer functions S(s), R(s), and T(s) 

play an important role in robust control system design. Considering the augmented plant 

shown in Fig. 4, the singular values of )( jS  determine the disturbance attenuation, because 

S(s) is the closed-loop transfer function from disturbance (d ) to the plant output (y). Thus 

disturbance attenuation performance specification can be written as:  

)()}({ 1  jWjS p

  (3) 

where )(1 jWp

  is the desired disturbance attenuation factor. Allowing )( jWp
 to depend on 

frequency   enables you to specify a different attenuation factor for each frequency  . The 

singular value Bode plot of R(s) and of T(s) are used to measure the stability margins of 

feedback designs in the face of additive plant perturbations  A  and multiplicative plant 

perturbations M , respectively. The singular value Bode plot of complementary sensitivity 

T(s) determines the stability margin for multiplicative perturbation M , where the 

multiplicative stability margin is the ‘size’ of the smallest stable )(sM  that destabilizes the 

system when 0 A . 

 

Multiplicative robustness: Taking )}({  jM  to be the ‘size’ of )( jM , the 

‘multiplicative’ stability robustness is characterized by the size of the smallest destabilizing 

multiplicative uncertainty )(sM  as  

)}({

1
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jT
jM   (4) 

The smaller is )}({  jT , the greater will be the size of the smallest destabilizing 

multiplicative perturbation and hence the greater will be the stability margin. 

 

Additive robustness: taking )}({  jA  to be the definition of the ‘size’ of )( jA  at 

frequency  , the size of the smallest destabilizing additive uncertainty )(sA  is  
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As a consequence of robustness Eq
n
 4 and 5, it is common to specify the stability margin of 

the control system via singular value inequalities such as: 
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where )( jWu
 and )( jWt

 are the respective sizes of the largest anticipated additive and 

multiplicative plant perturbations. It is common practice to lump the effects of all plant 

uncertainty into a single fictitious multiplicative perturbation M , so that the control design 

requirements can be  written in the form: )(
)}({

1



jW

jS
p

i

   and  )())(( 1  jWjT ti

 . 

In addition, the following trade-offs should be exercised: good command following and 

disturbance rejection necessitates L to be large while good noise attenuation and robust 

stability necessitates L to be small. That is, compromise between conflicting requirements 

should be experienced. 

 

2.4 Model Order Reduction 
The robust controller’s design for complex systems necessitates model reduction to simplify 

the obtained controller to a reasonable order. The order reduction can be carried to the 

original system, to the obtained controller or to the system as whole. In this work a good 
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model reduction algorithm (based on Hankel singular values) is applied to the control law 

(designed controller) to reduce its complexity with little change in control system 

performance. Eigenvalues define system stability whereas Hankel singular values define the 

energy of each state in the system [10]. Thus, keeping larger energy states of the system 

preserves most of its characteristics in terms of stability, frequency, and time responses. 

Therefore, for a given stable state-space system (A,B,C,D) the Hankel singular values are 

defined as follows: 

)(PQiH    (7a) 

where P and Q are controllability and observability grammians satisfying the following 

equations: 

CCQAQA

BBPAAP
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(7b) 

There are several algorithms for model approximation and order reduction that can be used to 

control the absolute or relative approximation error based on the Hankel singular values of the 

system [10,14]. Generally, model order reduction approaches can be put into two categories: 

Additive error method in which the reduced-order model Gred has an additive error bounded 

by the 


 redGG  error criterion. 

Multiplicative error method where the reduced-order model has a multiplicative or relative 

error bounded by the 


  )(1

redGGG  error criterion. 

The error is measured in terms of peak gain across frequency ( H  norm), and the error 

bounds are functions of the neglected Hankel singular values. 

 

 

3. Problem Formulation 
Towards the autopilot design, the guidance equations [17] have to be linearized for extracting 

the necessary transfer function or state space models. That is, consider equations which 

describe equations of motion for the intended guided missile, with the assumptions [4,6,9,15]: 

pitch motion, constant velocity, neglect g, small firing angles ( ,  ), and small thrust 

jetivator angles jp  and jy  such that 
11 TTx FF  , jyTTy FF 

11
 , and  jpTTz FF 

11
 . 

 

3.1 Pitch Jetivator and Airframe Dynamics  
The performance of the underlying system is measured through the minimum miss distance 

and its capability to overcome different sources of uncertainty and achieve the missile 

interception with its target. The guidance process is devoted to correct the missile trajectory 

through its flight and to overcome the external and internal error sources. Toward this 

objective the guidance equations have to be linearized and yield the airframe transfer function 

that can be used for robust autopilot design and analysis. A simple method for selecting 

weight functions for the H  control technique is followed by considering the plant P(s) as the 

actuator cascaded by the missile airframe augmented with the two weighting functions pw  

which penalizes error signal (e) and tw  that penalizes the output (y). The equations describing 

dynamics of the guided missile c.g motion, rotation around c.g. and geometrical relations can 

be summarized as follows: 
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where S represents the characteristic area, (q) represents the dynamic pressure given by 
2)(5.0 bvq  [Kg/m/sec

2
],  air density [kg/m

3
], and bv  is the missile velocity in BCS. As a 

consequence of algebraic manipulation to Eq
n
  8 the obtained airframe transfer functions are 

considered as:    
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The pitch control system structure is shown in Fig. 5, where the gyro is a free gyro used to 

measure the body pitch angle. The airframe transfer function ( jp ) expressed in Eq
n
  9 is 

obtained via conducting the 6DOF simulation with target at distance 500 [m] and considering 

10 operating points during the flight envelope. The extracted airframe transfer function has 

the form 
sbsbs

asasa
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 . The frequency response of the airframe at different operating 

conditions is shown in Fig. 6 which clarifies that the max gain variation is 53.9 [dB] at low 

frequency and 26.2 [dB] at high frequency. In addition, the maximum phase variation is 22.5 

[deg] at low frequency and 80 [deg] at high frequency. 
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3.2 Pitch Airframe-Jetivator with Uncertainty Modelling 
The main variation of coefficients for perturbed motion happens in the aerodynamics 

coefficients z

zzyx mmCC
 ,,,  which are usually determined experimentally as functions of the 

Mach number that may vary in sufficiently wide intervals. Thus, the aerodynamic coefficients 

are supposed to exercise about 25 % variations in the perturbed motion and this level of 

uncertainty will be useful for justifying the robustness of the designed controller. In deriving 

the uncertain model of the system dynamics the angle   is eliminated by using the 

relationship    (Eq
n
 8) which allows to avoid the use of the angle   itself and works 

only with its derivatives   and  . This in turn makes it possible to avoid the usage of an 

additional integrator in the plant dynamics that violates the conditions for controller existence 

in the H  design. The five uncertain coefficients of the perturbed motion equations are 
1yM , 

1y
M , 

jp
M 

, 
n  and 

jp
n  with about 25% for each. Each uncertain coefficient (c) may be 

represented in the form )1( ccPcc   where c is the nominal value of the coefficient c  (at a 

given time instant), cp  is the relative uncertainty ( cp =0.3 for uncertainty 25%) and 

11 c  . The uncertain coefficient may be further represented as an upper linear fractional 

transformation (LFT) [4] in c : ),( ccu MFc   where 

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
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0
 as is shown in Fig. 7. 

The uncertainty model corresponding to the system of Eq
n
 8 is difficult to be obtained 

directly. That is why the uncertain model is derived corresponding to its individual equations 

and combining them in a common model. Consider the equation (  
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Pulling out the uncertain parameters from the known part of the model yields uncertain model 

in the form of upper LFT [12,16,18] as shown in Fig. 9  with a 5×5  matrix   of uncertain  

parameters, i.e. ),,,,(
11 


yjpyjp

MMMnndiag . Due to the complexity of the plant, the easiest 

way in simulation and design is to define the uncertainty model and implement the 

interconnection system, where the plant input is considered as the reference signal u(t) to the 

fins servo-actuator, and the plant output is the body angle  . The equations describing 

dynamics of guided missile c.g motion, rotation around its c.g  and geometrical relations are 

shown in Eq
n
 9. Consequently, the block diagram describing the pitch stabilization system can 

be depicted as shown in Fig. 10. The extracted transfer function has the form  
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 , the coefficients of which are obtained by conducting the 

6DOF simulation with  a target at range 500[m] and the flight envelope is divided into 10 

operating points. The frequency response of the pitch airframe jetivator is shown in Fig. 11 

for the 10 operating points. This figure clarifies maximum gain variation of about 53.3 [dB] 

and phase variation of about 387.5 [deg]. 
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4. Robust Autopilot Synthesis 
 

4.1 Nominal Pitch Channel Modeling  
Let us consider either the 6

th
 pitch airframe transfer function or the 4

th
 one as a nominal 

airframe which have a moderate frequency response compared with the remainder trim points, 

then find the overall plant transfer function which is the jetivator (
commandpjp  ) cascaded with 

the airframe (
jp ) as shown in Fig. 10. The Jetivator transfer function has the form [13]: 

10079.0s106.33

85.2
25- 


 s

commandp

jp  

 

Case-A: The 6
th

 pitch airframe transfer function is considered and thus the overall plant 

transfer function is 

 

sssss

ss

commandp

6263445

4528

10959.110246.410934.46.392

10385.510362.110024.1








  
(10) 

 

Case-B: The 4
th

 pitch airframe transfer function is considered and yields the overall plant 

transfer function is 

 

sssss

ss

commandp

5263445

4529

10179.510731.110947.21.234

10342.310387.110559.2








  
(11) 

 

4.2 Autopilot Design using H  Loop Shaping 

This approach is utilized for the autopilot design without uncertainty modelling i.e. there is no 

certain structure for the uncertainty during the design. 

 

4.2.1 Autopilot Design trials 
Let us consider the following weights: 
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5.11.0





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s
Wp
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1510




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s

s
Wt

 (12) 
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5.11.0






s

s
Wp
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59.1

32






s

s
Wt

 (13) 

015.0

5.11.0






s

s
Wp

,  
59.1

9954.25.3






s

s
Wt

 (14) 

 

Trial-1: Considering the nominal plant Case-A, the weights (12) and the optimal H  robust 

control yield the controller CA1 as: 

8
101.892  s

10
101.311 

2
s

10
103.272  

3
s

9
101.994  

4
s

7
102.327 

5
s

5
101.553 

6
s 612.4  

7
s

143.3  s
12

101.478
2

s
12

103.765  
3

s
12

101.255  
4

s
10

101.444  
5

s
8

101.133  
6

s
5

102.867
A1C




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The frequency response of sensitivities and weights are shown in Fig. 12a, b, c and the closed 

loop step response using the obtained controller is shown in Fig. 12d. 

 

Trial-2: Considering the nominal plant Case-A, the weights (13) and the optimal H  robust 

control yield the controller CA2 as:  
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Trial-3: Considering the nominal plant Case-A, the weights (14) and the optimal H  robust 

control yield the controller CA3 as:   
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Trial-4: Considering the nominal plant Case-B, the weights (12) and the optimal H  robust 

control yield the controller CB1 as: 
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Trial-5: Considering the nominal plant Case-B, the weights (13) and the optimal H  robust 

control yield the controller CB2 as: 
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The results obtained from these design trials can be summarized in following Table: 

 
Trial 
Number 

Obtained 
controller 

Rise 
Time 

Settling 
time 

Sp  


Tt  

1 C_A1 0.99 2.21 0.4635 3.0008 

2 C_A2 0.756 1.79 0.3297 0.6786 

3 C_A3 1.36 2.91 0.6438 0.8713 

4 C_B1 0.99 2.21 0.4635 3.0008 

5 C_B2 0.752 1.79 0.3330 0.6810 

 

The results clarify that the weights (13, 14) yield designs with 


SWp  and 


TWt <1 and the 

closed loop step response has settling and rise times smaller than that obtained from another 
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controller obtained using the weights (12) which yields that 


SWp
 <1 and 


TWt

>1. In 

addition, the angle of departure between sensitivity and complementary weighting functions 

in the first case with 


SWp
 and 


TWt

<1 is greater than those obtained in the second case 

where 1SWp 


 and 1TWt 


. The model order reduction techniques are applied to the 

obtained autopilots at different design trials and the obtained results clarify that the 

multiplicative method yields better results and consequently it is used forward in this work. 

 

4.2.2 Autopilot Robustness Evaluation 
Un-modelled Dynamics: The five designed controllers are implemented at the remainder 

operating points. The results clarify that the controller obtained taking the 6
th

 operating point 

as a nominal transfer function (Case-A) is not robust against all unmodeled dynamics with the 

1
st
 and 2

nd
 controllers in the early operating points while it is robust against all unmodeled 

dynamics for the third controller (Trial-3) but with slower response. On the other hand the 

controller obtained taking the 4
th

 operating point (Case-B) as a nominal transfer function is 

robust against all unmodelled dynamics but with slower response than that obtained with 

Case-A especially in the final operating points. These results are summarized in Fig. 13, 

which clarifies that the controller CA2 which has smallest values of  


Sp and  


Tt has 

faster response than CA1 and CA3. However, the obtained controller have a large control effort 

at the beginning of action with lowest values at steady state compared to original controller as 

shown in Fig. 14. 

 

 

Noise Attenuation 

Applying noise on the gyro output the obtained control effort is shown in Fig. 15, which 

clarify that CA1 and CB1 which have 


Tt >1 is less sensitive to additive noise compared to 

other controllers. 
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Disturbance Rejection 

Applying a disturbance on the jetivator output, the obtained closed loop step response is 

shown in Fig. 16 which clarifies that the controller CA2 is the best compared to other 

controllers as it rejects 50% within 0.1 [sec] and 95% within 0.5 [sec]. Also control effort is 

shown in Fig. 17 which reveals that this controller has the lowest control effort after applying 

the disturbance. These results clarify that the designed robust controllers CA1 and CA2 is less 

sensitive to noise and disturbance and consequently they have the lowest control effort, but 

they are not robust against unmodelled dynamics in the early operating conditions. 

 

 

 

4.3 Autopilot Synthesis with Uncertainty Modelling 
This section is devoted to the design of a robust system for attitude/horizontal stabilization of 

a time-varying thrust vector control. The linearized equations of the longitudinal motion are 

derived with the consideration of variations in the aerodynamic coefficients as parametric 

uncertainties in the design such that the desired closed-loop performs in the presence of 

uncertainty, disturbances and noises. Robust stability and robust performance of the closed-

loop system with the implementation of each controller are investigated. 
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The stabilization channel is to achieve and maintain the desired body angle in the presence of 

uncertainties. A block-diagram of the closed-loop system including the feedback and 

controller as well as the elements reflecting the model uncertainty and weighting functions 

related to performance requirements is shown in Fig. 18. This system has a reference signal r 

and two weighted outputs pe  and ue  which characterize performance requirements. The 

transfer function Wg represent the free gyro dynamics that measures  . The system M is the 

ideal model to be matched by the designed closed loop system. The rectangular box, shown 

with dotted line, represents the perturbed plant model ),(  misu GFG , where 
misG  is the 

nominal model of the rocket and   parameterizes the model uncertainty. The matrix   is 

unknown but has a diagonal structure and is norm bounded, i.e.  


 <1. For robust 
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performance, it is required that the transfer function matrix from r to pe  and ue  should be 

small in the sense of 


. , for all possible uncertain matrices  . The transfer function matrices 

pW  and uW  are employed to represent the relative significance of performance requirements 

over different frequency ranges. The measured output feedback signal is gWy   and the 

gyro transfer function is chosen as 
1022.0

044.0




s
Wg

. That is, the synthesis problem of the missile 

attitude stabilization system is to find a linear, stabilizing controller C(s), with feedback 

signals y to ensure the required properties of the closed-loop system. 

 

 

Nominal performance:  The closed-loop system achieves nominal performance where the 

perturbation matrix   is zero. Let us denote by ),( CG   be the transfer function of the 

closed-loop system from r to pe  and ue ,  )()(
)(

)(
srs

se

se

u

p








 . The criterion for nominal 

performance is to satisfy the inequality 1)( smis  where )(smis  is the transfer function matrix 

of the closed-loop system for the case =0. This criterion is a generalization of the mixed 

sensitivity optimization problem and includes performance requirements by matching an ideal 

system M. 
 

Robust Stability: The closed-loop system achieves robust stability if the closed-loop system 

is internally stable for all possible, perturbed plant dynamics ),(  misu GFG . 
 

Robust Performance: The closed-loop system must remain internally stable for each 

),(  misu GFG  and, in addition that the performance criterion 1)( 


s  must be satisfied 

for each ),(  misu GFG . 
 

The ideal system model to be matched with and satisfies the requirements to the closed-loop 

dynamics is chosen as 
22

2

10080

100




ss
M  and the performance weighting functions are 

015.0s3

5s1.0
)s(Wp




  and 

5s9.5

9.0s4.0
)s(Wu




 . The performance weighting functions are chosen so as 

to ensure an acceptable trade off between the nominal performance and robust performance of 

the closed-loop system with control action which satisfies the constraint imposed. The 

frequency response of the inverse of performance weighting function 
1

pW  is shown in Fig. 19 

which clarifies that over the low frequency range it is required to have a small difference 

between the system and model and small effect on the system output due to disturbances. This 

ensures good reference tracking and small error in the case of low-frequency disturbances. 
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The internal structure of the open loop interconnection for the missile stabilization system 

with 7 inputs and 8 outputs is shown in Fig. 20a, where the open loop system is of 10
th

 order. 

The reference signal is the variable (ref), the control action is the variable control (u) and the 

measured output is the variable (y). A schematic diagram showing the specific input/output 

ordering for the system variables is shown in Fig. 20b. Consider the 6
th

 operating point as a 

nominal transfer function (Case-A) with the previous weights from which the designed 

controller obtained is of 10
th

 order. The frequency response of the structured singular value 

(µ) for the case of robust stability analysis is shown in Fig. 21, where the maximum value of 

structured singular value µmax = 0.47578, which means that the stability of the closed-loop 

system is preserved under all perturbations that satisfy  
47578.0

1




. 

 

 

The nominal performance of the closed loop system transfer matrix is tested via the frequency 

response as shown in Fig. 22. The obtained peak value of   is 2.5863 which is not less than 1 

and shows that the nominal performance has not been achieved. The robust performance of 
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investigated by means of the µ analysis. The robust performance (in respect to the uncertainty 

and performance weighting functions) is achieved if and only if, over a range of frequency 

under consideration, the structured singular value )(  j
p  at each   is less than 1. The 

frequency response of µ for the case of robust performance analysis is given in Fig. 23, where 

the peak value of µ is 3.2273, which shows that the robust performance has not been 

achieved. In other words, the system does not preserve performance under all relative 

parameter changes. 

 

To check if the designed controller achieves robust stability and robust performance of the 

closed-loop system at other time instants of flight, further analysis should be conducted with 

corresponding dynamics. The closed loop simulation is conducted via a program designed and 

corresponds to the structure shown in Fig. 24, in which the performance weighting functions 

pW  and uW  are absent. The simulation shows the transient responses of the closed loop 

system with the designed H  controller for a step command is shown in Fig. 25, where the 

system is under damped with accepted characteristics. 

 

The singular value plot of closed loop poles is shown in Fig. 26, which reveals that there exist 

some singular values > 1 and that the H  norm of the closed loop system is greater than 1, 

i.e. the condition 1)( 1 


GCIWp
 is not satisfied in this case. 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0.41

10
0.411

10
0.412

Singular Value Plot of clp

Frequency [rad/sec]

M
a
g
n
it
u
d
e
 [
d
B

]

Fig. 26: Singular values of closed loop poles 

Fig. 22: Nominal closed-loop performance 

10
-3

10
-2

10
-1

10
0

10
1

10
2

2.565

2.57

2.575

2.58

2.585

2.59
NOMINAL PERFORMANCE

Frequency [rad/sec]

M
a
g
n
it
u
d
e
 [
d
B

]

Fig. 23: Robust closed-loop performance 

10
-3

10
-2

10
-1

10
0

10
1

10
2

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
ROBUST PERFORMANCE

Frequency [rad/sec]
m

u
 [
d
B

]

 

 

Upper limit

Lower limit

uW

 

misG

 

gW

 


 

y

 

command

 

C 

pW

 

Gyro 

gain 

ue

 

pe

 

+ - 
ref 

Fig. 24: Closed loop Structure 

Uncertainty 

inputs 

Uncertainty 

outputs 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Step Response 

Time [Sec]

T
h
e
ta

 [
d
e
g
]

 

 

Ref

Theta

Fig. 25: Closed loop transient response 



Paper: ASAT-14-018-GU 

 

 

17 

 

Redesign the robust controller using the following performance weighting functions 

015.0s2522.27

5s1.0
)s(Wp




  and 

5s9.5

9.0s4.0
)s(Wu




  at the same operating point which results in a 

controller of 10
th

 order. The frequency response of the structured singular value for the case of 

robust stability analysis is considered, where µmax = 0.47705, which means that the stability of 

the closed-loop system is preserved under all perturbations that satisfy 
47705.0

1



. From 

the frequency response of the nominal performance it is seen that the obtained peak value of 

  is 1.001 and less than 1 in the high frequency range which shows that the nominal 

performance has achieved. In addition, the peak value of µ is 1.6, and less than 1 in the high 

frequency range which shows that the robust performance has achieved. That is, the system 

does preserve performance under all relative parameter changes. The transient response of the 

closed loop system with the designed H  controller for a step command is obtained, where 

the system is under damped with accepted characteristics. The singular value plot of closed 

loop poles reveals that all singular values < 1 which show that the H  norm of the closed 

loop system is less than 1, and the condition 1)( 1 


GCIWp  is satisfied in this case. 

 

4.3.2 Yaw Plane Performance Requirements  

The performance weighting functions are 
02.0s5.18

261.4s1.0
)s(Wp




  and 

5s9.5

9.0s4.0
)s(Wu




  from which 

the designed controller obtained is of 10
th

 order. For the case of robust stability analysis, the 

maximum value of structured singular value µmax= 0.40335, which means that the stability of 

the closed-loop system is preserved under all perturbations that satisfy  
40335.0

1



. The 

nominal performance of the closed loop system transfer matrix is tested via the frequency 

response. The obtained peak value of   is 1.0009 and less than 1 at high frequency range 

which shows that the nominal performance has been achieved. For the case of robust 

performance analysis, the peak value of µ is 1.5821, and less than 1 at high frequency which 

shows that the robust performance has been achieved. In other words, the system does 

preserve performance under all relative parameter changes with uncertainty range (25 %). The 

simulation shows the transient responses of the closed loop system with the designed H  

controller for step command where the system is under-damped with accepted characteristics. 

The singular value plot of closed loop poles is considered, which reveals that all singular 

values < 1 and that the H  norm of the closed loop system is less than 1, i.e. the condition 

1)( 1 


GCIWp  is satisfied in this case. Note that, the model order reduction techniques 

are applied to the obtained controller using multiplicative method and yields 4
th

 order 

autopilots. 

 

4.3.3 Autopilot Robustness Evaluation 
Unmodeled Dynamics 

The two designed controllers in pitch plane and the designed controller in yaw plane are 

implemented at the different operating points, two (early and final operating points) for each 

are illustrated in Fig. 27, which clarify the robustness of these designed controllers against all 

unmodelled dynamics. 

 

The results are summarized in Fig. 28a and clarify that the designed robust controllers with 

uncertainty modeling has faster response than those designed without modeling the 

uncertainty and the classical one. In addition, the obtained robust controller with uncertainty 
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modeling have a lowest control effort at the steady state compared to others as shown in 

Fig. 28b,c which illustrate the fast Fourier transform spectrum of the control signal and reveal 

that the control effort obtained via designed robust controllers with uncertainty modeling has 

a lowest band of operating frequencies. 
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Noise Attenuation 

Applying noise to the gyro output the obtained control effort is shown in   Fig. 29a,b which 

clarify that the designed robust controller with uncertainty modeling is less sensitive to 

additive noise compared to other controllers. 

 

 

Disturbance Rejection 

Applying disturbance on the jetivator output the obtained step response of closed loop system 

is shown in Fig. 30a which clarifies that the designed robust controllers with uncertainty 

modelling is the best compared to other controllers as it rejects 50% within 0.1 sec and 95% 

Fig. 29b: FFT of (a) original (b) CA2 (c) Optimal-1 (d) Optimal-2 controllers 
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within 0.25 sec. Also the control effort shown in Fig. 30a,b reveals that this autopilot has the 

lowest steady state control effort. 

 

The same evaluation of yaw plane clarifies that the designed robust controllers with 

uncertainty modeling has faster response a lowest steady state control effort than classical one 

and the obtained robust controller without modeling the uncertainty. In addition, applying 

noise clarify that designed robust controllers with uncertainty modeling is less sensitive to 

additive noise compared to others. Also the response results to disturbance on the jetivator 

output clarify its capability reject 50% within 0.09 sec and 95% within 0.22 sec. 

 

 

 

 

 

Flight Path Evaluation  

The obtained controllers are evaluated with the flight path trajectory at the minimum and 

maximum tactical data (500 [m]), (2800 [m]), respectively, at different flight conditions. For 

simplicity a sample of obtained results is shown. 

 

Thrust Variation: The designed autopilots are evaluated with the flight path against classical 

autopilot and using different thrust values as shown in Fig. 31a-b. 
 

The robust autopilot proved its robustness to thrust uncertainties to about 30% degradation with little 

oscillation at the gathering phase compared to nominal thrust case. 
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Variation in Aerodynamic coefficients: The designed autopilots are evaluated against 

perturbations in the aerodynamic coefficients of about ±30% and the results are shown in   

Fig. 32a-b. 
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after which the missdistance will be large or missile ground impact occurs. While the 

robustness of designed autopilot, with uncertainty modeling, is limited to about 30% of 

nominal value. 

 

Wind Speed in X Direction: The simulation is conducted with considering the wind speed 

along the X-axis from which the results are shown in Fig. 33a-b. 

 

 

 

The results obtained with considering wind velocity along the X-axis clarify that the 

robustness of designed autopilots without uncertainty modeling is limited to about -5:30 

[m/sec], while the robustness of designed autopilots with uncertainty modeling is limited to 

about -19:30 [m/sec]. 
 

Wind Speed in Y Direction: The simulation is conducted with considering the wind speed 

along the Y-axis from which the results are shown in Fig. 34a-b. 

 

The results obtained with considering wind velocity along the Y-axis clarify that the 

robustness of designed autopilots with uncertainty modeling is limited to about 30 [m/sec], 

while the designed robust autopilots without uncertainty modeling is limited to about 15 

[m/sec]. 

 

Wind Speed in Z Direction: The simulation is conducted with considering the wind speed 

along the Z-axis from which the results are shown in Fig. 35a-b. The results obtained with 

considering wind velocity along the Z-axis clarify that the robustness of designed autopilots 

with uncertainty modeling is limited to about 20 [m/sec], while the designed robust 

autopilots without uncertainty modeling is limited to about -20:15 [m/sec]. 
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The results obtained reveal that the designed robust controller with uncertainty modelling 

which satisfy the equality 1)( 1 


GCIWp  (sub-optimal2) is the best design. This 

controller proves its robustness against un-modelled dynamics, stable flight path with the 

consideration of different sources of uncertainties (thrust degradation, aerodynamic 

coefficient variation and wind speed), low miss-distance, low control effort, and less 

sensitivity to additive noise and disturbance. The remainder designed autopilots are sorted in a 
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descending order from the best performance to lowest one as: sub-optimal1, CA2, CA1, CB2, 

CB1, CA3 and finally the classical autopilot. 

 

 

5. Flight Performance Evaluation 
The obtained sub-optimal controllers in both pitch and yaw planes are evaluated via the flight path 

trajectory at different flight scenarios with existence of additive random noise applying on the 

measuring devices (gyros). 

 

5.1 Thrust Variation with Measurement Noise 
The 6DOF simulation is conducted with target at 2800 [m] (500 [m]) and separated from line 

of sight in yaw plane with angle ψs = 2.8
o
 at thrust (nominal - 90% - 85%) values and additive 

noise on pitch and yaw gyros. The additive noise is shown in Fig. 36a and its influence on 

gyros outputs are shown in Fig. 36b,c,d. The flight path trajectories are shown in Fig. 37. 
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Fig. 36b: Gyros outputs with conventional autopilot in pitch and yaw planes 

Fig. 36a: Additive noise on pitch and yaw gyros 
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Fig. 36c: Gyros outputs with optimal pitch autopilot and conventional yaw autopilot 
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These results reveal that the optimal autopilot has the least sensitivity to measurement noise in 

addition that the conventional autopilot has less stable trajectory compared to the optimal one. The 

miss-distance [m] is summarized as follows: 

 

 
Range [m] Thrust [%] Conventional-pitch 

Conventional-yaw 

Optimal-pitch 

Conventional-yaw 

Optimal-pitch 

Optimal-yaw 

500 100 2.3174 3.329 2.2893 

90 2.1433 3.414 1.2436 

85 Ground impact 2.733 1.2086 

2800 90 0.9317 1.596 0.8417 

85 Ground impact 1.78 0.4254 

 

 

5.2 Effect of Yaw Separation Angle (ψs) 

The 6DOF simulation is conducted using the target distance at 500 [m] and separated from 

line of sight in yaw plane with angle (ψs = 1.5
o
, ψs = 1

o
, ψs = 0.5

o 
(9mils)) at 90% thrust values 

and additive noise on pitch and yaw gyros. The sample influence of the measurement noise on 
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Fig. 37: Pitch Trajectory with controllers at 85% thrust 
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Fig. 36d: Gyros outputs with optimal autopilot in pitch and yaw planes 
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the flight path trajectories is shown in Fig. 38. The results reveal that the conventional 

autopilot has less stable trajectory compared with the optimal one and the miss-distance [m] is 

summarized as follows: 

 

ψs [deg] 
Conventional-pitch 

Conventional-yaw 

Optimal-pitch 

Conventional-yaw 

Optimal-pitch 

Optimal-yaw 

1.5
o
 2.0569 2.9406 1.1713 

1
o
 1.9040 2.7252 1.1600 

0.5
o
 1.9520 2.9014 1.7157 

 

 

5.3 Effect of Target Motion 
In this case outgoing / incoming target with average speed VT = 65 [Km/hr] and range 2800 

[m] (500 [m]) is considered. In addition, the LOS separation angle in Yaw plane is ψs = 2.8
o 

(ψs = 0.5
o
) without measurement noise and at nominal thrust value. The 6DOF simulation is 

conducted using the designed autopilots from which the flight path trajectories are shown in 

Fig. 39. 

 

These results reveal that the sub-optimal autopilots have successful engagements against 

outgoing / incoming targets and the miss-distance [m] is summarized as follows: 

 

Range [m] Target 
Conventional-pitch 

Conventional-yaw 

Optimal-pitch 

Conventional-yaw 

Optimal-pitch 

Optimal-yaw 

3000 Outgoing ground impact 1.038 1.1782 

Incoming 0.4180 0.754 0.6466 

500 Outgoing 1.6183 1.3756 1.4593 

Incoming 3.6435 2.04 2.2389 

 

 

6- Conclusion 

This paper presented the robust control theory in the form of two approaches; the H  and 

sub-optimal H  designs with different sensitivities and norms. In addition, it presented the 

model reduction techniques that can be utilized for reducing the controller order. Then, the 

underlying system is formulated in structures appropriate for utilizing these design 

techniques. The autopilots designed using the two techniques are evaluated against stability, 

un-modeled dynamics, disturbance rejection, noise attenuation and flight path. The obtained 
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results clarify that the sub-optimal H  controller, where the uncertainties are modeled during 

the design process, is more robust than the other H  technique, where the design process is 

carried out without modeling the uncertainties, and the classical one. These autopilots proved 

its robustness to thrust uncertainties within 30% degradation, and about 30% of nominal 

aerodynamic coefficients. In addition, it is limited to wind speed of about Vwx = -19:30 

[m/sec], Vwy =30 [m/sec], and Vwz=20 [m/sec]. It proved its capability of faster response 

with the lowest steady state control effort, less sensitivity to measurement noise and reject 

disturbance of 50% within 0.09 sec and 95% within 0.22 sec. 
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