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Abstract: This paper is concerned with the dynamic analysis of a rotating composite shaft. 

The numerical finite element technique is utilized to compute the eigen pairs of laminated 

composite shafts. A finite element model has been developed to formulate the stiffness 

matrices using lamination theory. These matrices take into account the effects of axial, 

flexural and rotating on the eigen-nature of rotating composite shaft. The Campbell diagram is 

utilized to compute the critical speed of rotating composite shaft and instability regions to 

achieve accuracy and for controlling the dynamic behavior of the system in resonance state. 

 

The influence of laminate parameters: stacking sequences, fiber orientation, boundary 

conditions and fiber volume fractions effect on natural frequencies and instability thresholds 

of the shaft are studied. The results are compared to those obtained by using the finite element 

method and experimental measurements using frequency response function method (FRF) by 

applying the autogenously excitation "from self excitation due to driving motor". In the 

experimental part, the response of composite shaft with various types of boundary conditions 

and five lamina orientations were recorded and analyzed by utilizing fast Fourier transform 

dual channel analyzer in conjunction with the computer. 

 

The comparison between the numerical and experimental results proves that the suggested 

finite element models of the composite shaft provide an efficient accurate tool for the 

dynamic analysis of rotating composite shaft. 

 

Keywords: Rotating Composite Shaft, Finite Element, Damping, Dynamic analysis 

 

 

1. Introduction 
Composite materials have interesting properties such as high strength-to-weight ratio, 

compared to metals, which make them very attractive for rotating systems. Attempts are being 

made to replace metal shafts by composite ones in many applications: drive shafts for 

helicopters, centrifugal separators, and cylindrical tubes for the automotive and marine 

industries. They also provide designers with the possibility of obtaining predetermined  

behaviors, in terms of position of critical speeds, by changing the arrangement of the different 

composite layers: orientation and number of plies.  
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On the other hand, these materials have relatively high-damping characteristics. For a rotor 

made with composite materials, internal damping is much more significant companied with 

those associated with a metal rotor. O. Bauchau [1] described a boron/epoxy composite tail 

rotor drive shaft for a helicopter. The critical speeds were determined using equivalent 

modulus beam theory (EMBT), assuming the shaft to be a thin-walled circular tube simply 

supported at the ends. The shaft critical speed was determined by extrapolation of the 

unbalance response curve which was obtained in the subcritical region. E. Chatelet et al. [2] 

published analytical investigations on thin-walled layered composite cylindrical tubes. In part 

III of the series of publications, the beam element was extended to formulate the problem of a 

rotor supported on general eight coefficient bearings. Results were obtained for shaft 

configuration of Zinberg and Symmonds. The authors have shown that bending-stretching 

coupling and shear-normal coupling effects change with stacking sequence, and alter the 

frequency values. LW. Chen, and WK. Peng [3] studied the effect of shear-normal coupling 

on rotor natural frequencies and modal damping. MS. Darlow and J. Creonte [4] have 

formulated the problem of determination of critical speeds of a composite shaft including the 

effects of bending-twisting coupling. The shaft was modeled as a Bresse-Timoshenko beam. 

The shaft gyroscopics have also been included. The results compare well with Zinberg’s rotor 

[1]. In another study, Y.S. Lee and  Y.W. Kim [5] have analyzed the dynamic instability of a 

composite drive shaft subjected to fluctuating torque and/or rotational speed by using various 

thin shell theories. The rotational effects include centrifugal and Coriolis forces. Dynamic 

instability regions for a long span simply supported shaft are presented. 

 

JC. Pereira et al. [6] published the vibration behaviors of the rotating composite shafts. In the 

model, the transverse shear deformation, rotary inertia, and gyroscopic effects, as well as the 

coupling effect due to the lamination of composite layers have been incorporated. The model 

is based on a first-order shear deformable beam theory (continuum based Timoshenko beam 

theory). A. AL. Kimball [7] presented the dynamic behavior of the rotating composite shaft 

on rigid bearings. A p-version, hierarchical finite element is employed to define the model. A 

theoretical study allows the establishment of the kinetic energy and the strain energy of the 

shaft, necessary for formulating of the equations of motion. In this model the transverse shear 

deformation, rotary inertia and gyroscopic effects, as well as the coupling effect due to the 

lamination of composite layers have been incorporated. 

 

M. Lalanne et al. [8] presented the dynamic performance and cross-section deformation of 

shafts made of metals (steel and aluminum), composites (CFRP and GFRP) and hybrids of 

metals and composites have been studied. A layered finite degenerated shell element with 

transverse shear deformation and dynamic behavior is employed. Results obtained show that 

improvements in dynamic performance and reduction of cross-section deformation of hybrid 

shafts over metallic and composite shafts are possible. 

 

A mathematical model, based on Timoshenko beam assumption, for a rotating cylindrical 

shaft with cylindrical constrained layer damping treatment is developed by Ghoneim and 

Lawrie [9]. The model is developed for a shaft made of composite materials, and treated with 

a cylindrical constrained layer damping partially covering the length span of the shaft. The 

discrete equations of motion are developed using two methods: the finite element method and 

the assumed mode method. The developed equations are applied to study the effect of some 

geometric and material parameters on the flexural stiffness and damping of the shaft, with 

emphasis on the coverage length of the cylindrical constrained layer treatment. 

 



Paper: ASAT-14-150-ST 

 

 

3 

 

The present work is concerned with the dynamic analysis of a rotating composite shaft. The 

numerical finite element technique is utilized to compute the eigen pairs of laminated 

composite shafts. A finite element model has been developed to formulate the stiffness 

matrices using lamination theory. These matrices take into account the effects of axial, 

flexural and rotation on the eigen-nature of rotating composite shaft. The Campbell diagram is 

utilized to compute the critical speed of rotating composite shaft and instability regions to 

achieve accuracy and for controlling the dynamic behavior of the system in resonance state.  

 

The results are compared to those obtained by using the finite element method and 

experimental measurements using frequency response function method (FRF) by applying the 

autogenously excitation. 

 

 

2. Materials and Production of Laminates Composite Shaft 
Glass fiber is used as reinforcement in the form of bidirectional fabric (Standard E-Glass 

Fiberglass) and polyester with catalyst addition as matrix for the composite material. The 

mechanical properties of the composite are calculated analytically using the mixture rule [10]. 

 

Through hand lay-up process followed by a cure process, five sets of symmetrical laminates 

with a total of five layers each one are produced: 

 

Set1: [0/0/0/0/0], Set2: [0/30/0/30/0], Set3: [0/45/0/45/0] Set4: [0/60/0/60/0] and Set5: 

[0/90/0/90/0]. The numbers mentioned in the above sets indicate the angle of fiber inclination 

measured in degrees. 

 

After the cure process, the laminated composite shaft dimensions with length of 790 mm and 

18 mm diameter and average mass specimen equal to 0.250Kg. 

 

A typical specimen made from fiber reinforced plastic FRP composite shafts formed from 

five plies with 1mm thickness for each ply is shown in Fig. 1. Three composite levels were 

selected for each code number. These are specimens with low fiber volume fraction Vf = 25% 

and two level of average fiber volume fraction Vf = 45 % and 65%. The fiber volume fraction 

in the specimens is determined experimentally, using the firing processes method [11] 

 

In order to study the effect of lamina orientation and staking sequence on the modal 

parameters, five code numbers of the specimens were fabricated and stated for each fiber 

volume fraction.  

 

 

 
 

Fig. 1   Three-dimensional specimen of composite shaft. 

 

 

 

790 mm

18.3 mm
φ



Paper: ASAT-14-150-ST 

 

 

4 

 

3. Theoretical Investigation  
The present theoretical study is used to compute the mechanical properties of laminated 

composite shaft using mixture rule shown in Fig. 2. The laminate extensional, coupling and 

bending stiffness matrices of composite symmetric laminated composite shaft with different 

predetermined lamina orientations are computed on the basis of the classical lamination 

theory [12]. 

 

Table 1   Mechanical properties of the composite shaft using the mixture 

 rule with (Vf = 25%, 45% and 60%). 

 

 

Elastic modulus 

Results using Mixture rule 

Vf =25℅ Vf =45℅ Vf =65℅ 

E11,  [Gpa] 

E22,  [Gpa] 

G12,  [Gpa] 

ν12 

ν21 

20.75 

4.60 

2.29 

0.27 

0.06 

34.51 

6.12 

2.58 

0.29 

0.052 

48.3 

9.2 

2.9 

0.302 

0.058 

 

 

 
 

Fig. 2   Composite laminated shaft [13]. 

 

3.1 Finite Element Formulation 
The cylindrical composite shaft shown in Fig. 2 is assumed to be built up by a number of 

lamina perfectly bonded together [13]. There are no relative displacements between adjacent 

layers [14]. 

 

The finite element used has eight nodes as shown in Fig. 3. For each node, the element has 

four degrees of freedom: two displacements u and w, and two slopes about the x and y axes 

denoted, respectively θ and φ. In this case, the beam axis is z. Referring to Fig. 3, the 

displacement field at a point in the element can be expressed in global coordinates as 

 

 ,    -  ∑ [  ̅̅ ̅̅ ]*  + 
    (1) 

where [  ̅̅ ̅̅ ] the generalized shape function matrix and *  +  ,        -  is the nodal 

displacement vector. The strain matrix [B] relating the strain components in the local system 

to the element nodal variables can be expressed as 

 

ξ

ζ

η

h0h1

hk-1

hk

t/
2

1

2

K

N

Mid surface



Paper: ASAT-14-150-ST 

 

 

5 

 

 * +  ∑ ,  -*  + 
    (2) 

As shown in Fig. 2, the natural coordinate ζ varies from -1 to +1, is determined at the middle 

point of each layer and strain–stress components and stiffness contributions are computed at 

the midsection of each layer. Consequently, the volume integral may be split into integrals 

over the area of the shell midsurface and through the thickness t. Thus the stiffness can be 

written as 

 

 ,  -  ∫ ∫ ∫ , - , ̅-, -| |
 

  

 

  

 

  
   ξ   (3) 

where | | is the determinant of the Jacobian matrix for layer j. The matrix , ̅- is the material 

transformed stiffness matrix which can be expressed as , ̅-  , -  , -, -. Here [T] and [D] 

are the transformation and material stiffness with respect to the local coordinates matrices 

respectively. Different elements of the [D] matrix can be written as 

 

 , -  

[
 
 
 
 
        
        
       
        
        ]

 
 
 
 

 

 

where       ⁄ ,       ⁄ ,           ⁄ ,            . K is shear correction factor.  

 

The element consistent mass matrix at layer j linking nodes i and j can be written as 

 

 ,  -  ∫ ∫ ∫ ,  -  [  ]
 

  

 

  

 

  
       (4) 

where, ρc is the density of composite shaft; [Ni], [Nj] are the matrices of shape function. 

 

The free vibration of an undamped system results into an eigen-value problem. The 

generalized eigen-value problem can be expressed as 

 

 [, -    , -]* +    (5) 

where [K], [M] and {X} are the global stiffness, mass and displacement matrices which are 

generated through the assembly of elements local matrices; ω is the undamped natural 

frequency. 

 

In view of Eq. 5, the program has been coded into computer using Matlab (7.1) [15]. The 

program computes the eigen-values and eigenvectors for five code numbers and for four 

boundary fixations namely C-C, C-S, S-S and C-F. The results of FEM are listed in Table 2. 
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Fig. 3   Finite elements of composite shaft. 

 

Table 2   Values of fundamental frequency in Hz for various laminated 

orientations and different boundary fixation (Finite Element Method) 
 

Lamina orientation and 

boundary fixations 

C-C C-S S-S C-F 

FE FE FE FE 

[0/0/0/0/0] 

V
f 
=

 2
5

℅
 268.3 176.2 115.2 43.1 

[0/30/0/30/0] 224.6 147.1 96.1 37.2 

[0/45/0/45/0] 179.1 115.1 75.7 29.6 

[0/60/0/60/0] 156.2 104.1 66.9 26.1 

[0/90/0/90/0] 124.5 83.5 54.1 21.4 

[0/0/0/0/0] 

V
f 
=

 4
5

℅
 325.2 215.4 135.1 50.4 

[0/30/0/30/0] 273.4 178.1 116.4 44.5 

[0/45/0/45/0] 218.1 139.8 91.5 36.0 

[0/60/0/60/0] 187.3 121.3 79.6 29.7 

[0/90/0/90/0] 151.3 97.0 65.3 24.1 

[0/0/0/0/0] 

V
f 
=

 6
5

℅
 399.4 261.3 168.6 61.5 

[0/30/0/30/0] 332.1 219.8 140.6 50.7 

[0/45/0/45/0] 261.2 169.7 112.8 39.9 

[0/60/0/60/0] 229.7 148.5 96.7 36.2 

[0/90/0/90/0] 178.3 117.4 75.6 28.9 

 

 

3.2 Fundamental Frequency of Transverse Vibration 
Dunkerley deduced that the whirling speeds were equal to the natural frequencies of 

transverse vibration, there being the same number of whirling speeds as natural frequencies 

for a given system. Thus a theoretical value for the critical speed may be obtained from the 

formula for the fundamental frequency of transverse vibrations: 

 

    [
     

    
]
   
  (6) 

where: 

Ec = computed elastic modules of composite shaft (MPa) 

fs = natural frequency of transverse vibrations (Hz) 

Nodes 1 - 8

Nodes 16 - 24

Nodes 32 - 40

Nodes 48 - 56

Y

X

Z

w

u

φ

θ

section 1 (Z = 0)

section 7 (Z = L)

section 3

section 5
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Is = second moment of area of shaft 

Ws = weight per unit length of shaft 

g = acceleration due to gravity 

C = constant dependent upon the boundary conditions 

 

The elastic modules of composite shaft of five layers ware calculated using lamination theory 

according to lamina orientation and layer thickness [16]. The value C1 is the constant for use 

in calculating the first natural frequency and C2 is that necessary for the second mode [17]. 

 

 

4. Experimental Investigation 
In the present experimental part the measurements of laminated composite shaft for various 

five lamina orientations, three different fiber volume fraction ratio and four boundary 

fixations are constructed and manufactured using winding layup method. The boundary 

conditions of a rotating composite shaft were achieved using a combination of various bush 

width and a rate level of bearing clearance two obtain a proper boundary fixation state. 

 

The dynamic analysis in the experimental results in qualitative and quantitative manner is 

presented to investigate their dynamic eigen-parameters including natural frequencies, 

damping factors and critical speed. 

 

4.1 Composite Shaft Specimen Preparations 
Figure 4 shows the rotating composite shaft manufacture at various types of lamina 

orientations angles. The preparation and manufacturing of specimens are achieved by 

following the standard procedures [18]. Five layers of (1mm) thickness were wound by the 

required angle and spread on a wood Die at various orientation fibers. A layer of resin is 

spread on a wood Die treated by release agent (Wax or medical Vaseline). The wood Die 

(1000 long × 18.3 mm diameters) is then placed on the glass fiber and assembled together by 

copper wire, closing gap by cement. The press die was removed after 24 hours and the 

laminate has been completely cured at room temperature. The laminate composite shafts are 

cut to the required length (790mm long) using mechanical fine sawing machines.  

 

 
 

Fig. 4   Composite shafts manufacture. 

 

4.2 Critical Speed of Rotating Shaft 
This state occurs when the rotating speed of the shaft is equal to the natural frequency of 

lateral vibration of rotating shaft. 

 

The rotor dynamic apparatus system used to measure and analyze the whirling phenomena is 

the TM1 whirling of shafts apparatus shown in Fig. 5  
 

[0/0/0/0/0]

[0/30/0/30/0]

[0/45/0/45/0]

[0/60/0/60/0]

[0/90/0/90/0]
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Fig. 5   TM1 MKII whirling of shafts machine. 

 

The critical speed can be calculated related to the natural frequency of rotating shaft in this 

form  

     
  

  
√
 

 
  (7) 

The results from previous formula are calculated and presented in Table 3 at fiber volume 

fraction Vf = 65%. where: δ is the static deflection = (Ws L
4
/ EcIs) [19] , L is the shaft length, 

Ws is the shaft weight and Is is the moment of inertia of the shaft.  

 

 

Table 3   Values of critical speed in [RPM] for various laminated orientations 

 and different boundary fixation (theoretical result) 
 

Lamina 

orientations 
C-C C-S S-S C-F 

MI MII MI MII MI MII MI MII 

[0/0/0/0/0] 15888 37374 10422 33732 6678 26698 2376 - 

[0/30/0/30/0] 13290 31254 8712 28206 5574 22348 1986 - 

[0/45/0/45/0] 10488 24672 6876 22266 4398 17622 1566 - 

[0/60/0/60/0] 9066 21318 5946 19242 3798 15228 1356 - 

[0/90/0/90/0] 7242 17028 4746 15372 3036 12163 1080 - 

 

 

4.2 Experimental Modal of Vibration Damping of Composite Shaft FRP 
The frequency response tests were performed on composite shaft made from fiber reinforced 

plastic (FRP) by utilizing fast Fourier transform dual channel analyzer in conjunction with the 

computer as shown in Fig.5. The corresponding fundamental frequency and damping factor 

for various lamina orientation and different boundary conditions are measured and recorded 

using FFT analyzer in the range of (800:1600 Hz). The comparison between theoretical 

analysis using FEM and Experimental measurements were performed and listed in Table 4. 

 

 

Ch. B

Desktop computer

Dual channel
Signal analyzer

2034

Dot. Matrix
Printer
ND-15

Accelerometer
4374ShaftBearing BearingMotor

Foundation
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The peak response frequencies were identified from the peaks in the frequency spectra FRS. 

In addition, the system damping ratio ξ was evaluated from the quality factor Q from ω1 and 

ω2 corresponding to half-power as: 

 

   
 

  
 

  

     
 (8) 

 

4.3 Eigen Parameter Measurements 
The equation of motion of a damped multi degree of freedom system in matrix form: 

 

 , - ̈  , - ̇  , -  * + (9) 

 

By expressing the solution of X as a linear combination of the natural modes of the system as:  

 

       (  ) (10) 

 

Table 4   Values of fundamental frequency in Hz and damping factor “ξ”  

for various laminated orientations and different boundary fixation  
 

Lamina 

orientation and 

boundary 

fixations 

C-C C-S S-S C-F 

ξ 
f, [Hz] 

ξ 
f, [Hz] 

ξ 
f, [Hz] 

ξ 
f, [Hz] 

Th Ex Th Ex Th Ex Th Ex 

[0/0/0/0/0] 

V
f 
=

 2
5

℅
 

0.112 264.8 260 0.136 173.7 167 0.146 111.3 109 0.176 39.6 37 

[0/30/0/30/0] 0.144 221.5 219 0.156 145.2 141 0.164 92.9 87 0.196 33.1 29 

[0/45/0/45/0] 0.197 174.8 170 0.227 114.6 111 0.246 73.3 70 0.347 26.1 21 

[0/60/0/60/0] 0.227 151.1 148 0.294 99.1 87 0.322 63.3 59 0.403 22.6 18 

[0/90/0/90/0] 0.287 120.7 117 0.331 79.1 75 0.363 50.6 46 0.478 18.0 14 

[0/0/0/0/0] 

V
f 
=

 4
5

℅
 

0.095 320.4 318 0.114 210.1 208 0.140 131.3 129 0.170 47. 1 44 

[0/30/0/30/0] 0.127 268. 1 263 0.143 173.6 169 0.159 114.4 113 0.192 40. 1 38 

[0/45/0/45/0] 0.156 211.5 207 0.183 136.4 134 0.219 87. 3 85 0.296 31.5 29 

[0/60/0/60/0] 0.199 182. 3 177 0.235 116.2 115 0.273 76. 3 74 0.365 27.3 26 

[0/90/0/90/0] 0.243 145. 4 140 0.292 93. 1 90 0.314 62.2 60 0.425 21.3 20 

[0/0/0/0/0] 

V
f 
=

 6
5

℅
 

0.061 396.2 392 0.091 258.4 255 0.135 164.3 161 0.165 58.4 56 

[0/30/0/30/0] 0.105 328.1 326 0.121 216.3 214 0.155 137.1 135 0.186 48. 2 43 

[0/45/0/45/0] 0.134 257.3 253 0.164 167.1 163 0.188 108.2 105 0.232 38.1 35 

[0/60/0/60/0] 0.169 226.2 224 0.197 144.2 141 0.237 93.4 89 0.291 33.3 30 

[0/90/0/90/0] 0.196 175.4 172 0.231 113.7 109 0.291 74. 2 71 0.348 26.5 24 
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Table 5   The damping factors, natural frequency and coefficients α and β. 
 

Lamina orientation 1ξ 2ξ 1ω 2ω α β 

[0/0/0/0/0] 

V
f 
=

 2
5

℅
 0.112 0.107 264.8 432.2 39.38 2.84*10

-4
 

[0/30/0/30/0] 0.144 0.136 221.5 361.5 43.03 4.23*10
-4

 

[0/45/0/45/0] 0.197 0.191 174.8 285.3 44.76 7.89*10
-4

 

[0/60/0/60/0] 0.227 0.220 151.1 246.6 44.61 1.1*10
-3

 

[0/90/0/90/0] 0.287 0.281 120.7 196.7 44.36 1.7*10
-3

 

[0/0/0/0/0] 

V
f 
=

 4
5

℅
 0.095 0.087 320.4 522.8 42.8 1.76*10

-4
 

[0/30/0/30/0] 0.127 0.122 268. 1 437.5 44.85 3.23*10
-4

 

[0/45/0/45/0] 0.156 0.150 211.5 345.2 43.41 5.05*10
-4

 

[0/60/0/60/0] 0.182 0.177 182. 3 297.5 42.93 7.04*10
-4

 

[0/90/0/90/0] 0.243 0.236 145. 4 237.3 85.81 1.2*10
-3

 

[0/0/0/0/0] 

V
f 
=

 6
5

℅
 0.061 0.053 396.2 672.9 5.59 2.72*10

-4
 

[0/30/0/30/0] 0.105 0.101 328.1 540.9 45.41 2.18*10
-4

 

[0/45/0/45/0] 0.134 0.128 257.3 431.2 46.04 3.46*10
-4

 

[0/60/0/60/0] 0.169 0.162 226.2 385.3 51.01 4.97*10
-4

 

[0/90/0/90/0] 0.196 0.190 175.4 323.8 46.21 7.33*10
-4

 

 

 

For the applied harmonic load of        (  )  at the rotating composite shaft 

 

By substituting Eqn. 10 into Eqn. 9, one obtains 

 

 * +  [   , -    , -  , -]
  
* + (11) 

 , -   , -   , - (12) 

 , -, -  , -  , -, -  , - (13) 

    
 

   
 
   

 
 (14) 

The eigen value problem of proportional damped system can be resolved to two standard 

eigen value problem [20] and the form. 

 

 [, -  , -    , -]    (15) 

 [, -  , -   , -]    (16) 

 

The damping matrix [C] can be calculated as a proportional damping (Rayleigh damping) as 

shown in Eqn. 12, where α and β are coefficients determined by experimental investigation. 

The necessary and sufficient conditions of proportional damping system are given by Eqn. 13. 

In this case, the response of the rotating composite shaft was separated into the responses at 

each mode by spectral analysis and the damping ratio ξi and coefficients α and β are identified 

by Eqn. 14. 

 

The results of the coefficients α and β are listed in Table 5 where: ξi and ωi are the damping 

ratio and natural frequency of i
th

 mode respectively and u is the eigen values of inertia 

damping matrix, u = 2ξω. 
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The specimen location in the TM1 whirling of shafts apparatus and the boundary conditions 

can be achieved using suitable bearing then the ratio of clearance and bush bearing width 

adjustable.  

 

 

5. Results and Discussion 
The dynamic analysis of laminated composite rotating shaft with various fiber orientations 

and different boundary fixations, are investigated analytically and experimentally. The fiber 

orientation, critical whirling speed and boundary fixation of the rotating composite shaft have 

significant influences on the dynamic properties taking into account the types of fiber, and 

matrix materials. The equivalent stiffness and mass of laminated composite shaft have been 

derived by using the lamination theory. The eigen parameters can be computed using 

Dunkerley approach for dynamic analysis of rotating composite shaft have been proposed. 

The specimens of orientation sequences [0]5 and [0/90/0/90/0] have highest and lowest 

frequencies respectively compared with the specimen of the other orientation sequences for 

the same boundary fixation. This was expected since its orientations sequences make the 

rotating composite shaft more stiff in the respective direction. 

 

A possible increase of both the flexural frequency and damping ratio can be achieved by 

applying a very stiff and light material for the constraining shaft, such as high modulus is 

achieved using specimen of fiber orientation [0\0\0\0\0] and high damping factors in the 

specimen of [0\90\0\90\0] fiber orientation. However, the added cost of this special material 

application, does not justify the slight increase in both frequency and damping. When the 

spinning speed is considered, the branching effect of both the fundamental frequency and 

damping ratio is observed. That is, as the shaft spins, the natural frequency as well as the 

damping ratio splits into a lower and a higher value. As the spinning speed increases, the two 

split values branch off farther apart. 

 

The mechanical properties, eigen parameters and critical speed of rotating composite shafts 

are presented and discussed from experimental and analytical work. Various specimens of 

different orientations are fabricated utilizing winding layup method.  

 

The developed discrete equation (6) is solved for the natural frequencies and damping ratios 

using MATLAB. The current analysis is mainly for non-spinning shafts (Ω = 0). However, 

the effect of the spinning speed is covered at the end of the present work in order to 

demonstrate the branching phenomenon observed in the case of the vibration of rotating 

shafts. Since the analysis is concerned primarily with finding the fundamental flexural natural 

frequency of the shaft, which limits the frequency range studied. 

 

Three sets of results are presented. The first set is aimed at checking the validity of the 

mathematical model and techniques of solution (EXM and FEM). In the second set, a 

parametric study is conducted to investigate the effect of geometric and material parameters 

on the fundamental flexural frequency and damping ratio of the constrained layer treated 

shaft. The third set presents the effect of the spinning speed on the fundamental flexural 

natural frequency and damping ratio.  

 

5.1 Effect of Stacking Sequences and Fiber Volume Fraction on Eigen 

      Parameters and Critical Speed 
Figure 6-(a) shows the effect of stacking sequences and fiber volume fraction on frequency 

value based on mathematical modeling under clamped-clamped boundary fixation. From 
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Fig. 6-(a) it can be noted that the frequency values significantly varied with the state of 

stacking sequences. This is due to the fact that outer staking layer has more effect on the 

stiffness compared with the inner layer. The fiber volume fraction has slightl effect on the 

eigen parameters. For the specimen [0/0/0/0/0] and volume fraction 65%, frequency values 

slightly increase. The low value of frequency at [0/90/0/90/0] and volume fraction 25% may 

be attributed to the low level of potential energy at this condition.  

 

In view of lamina orientations, the rate of change of the critical speed via fiber volume 

fraction is relatively high compared with the rate of change due lamina orientations as shown 

in Fig. 6-(b). From Fig. 6-(b), it can be observed that specimen [0/90/0/90/0] has the lowest 

critical speed compared with the other specimen while the specimen [0]5 has the highest 

values this is due to the minimum and maximum values of flexural elastic modules and 

stiffness at this orientation respectively. The change of lamina orientations from [0/0/0/0/0] to 

[0/90/0/90/0] decreases by 54.4%.  

 

From Figs. 6 (a) and (b) it can be noted that, the fiber volume fraction has a limited effect on 

frequency and critical speed value because the effect of lamina orientations has a dominant 

influence. 

 

From Fig. 6 (c), it can be observed that specimen [0/90/0/90/0] has the lowest critical speed 

compared with the other specimen while the specimen [0/0/0/0/0] has the highest values this 

is due to the minimum and maximum values of flexural elastic modules and stiffness at this 

orientation respectively. In view of different fixation, the rate of change of the critical speed 

via different fixations are relatively high compared with the rate of change due to the use of 

the various code numbers of fiber orientations as shown in Fig. 6 (c) and Table 2.  

 

Figure 6 (d) declares the effect of stacking sequences and fiber volume fraction on damping 

factor under one case of clamped-clamped boundary fixation. It is clear that the damping 

factor values significantly varied with the state of lamina orientations and fiber volume 

fraction in a reverse trend as compared with frequency Fig. 6. (a) The high value of damping 

factor occurs under [0/90/0/90/0] and 25% volume fraction. 

 

5.2 Campbell Diagram 
The Campbell diagrams shown in Fig. 7, representing the evolution of natural frequency with 

respect to the speed of rotation, illustrate the significant influence of stacking sequences on 

frequencies and instability thresholds.  

 

In Fig. 7 the composite rotor is in a balanced and symmetrical configuration: [0/0/0/0/0]. In 

this case, instabilities (symbolized in the figure) occur just after the second critical speed.  

 

The Campbell diagrams associated with the fifth sequences Table 4 are presented, 

respectively in Fig. 7 and illustrate the advantage of using stacking sequences as an 

optimization parameter for both frequencies and instability thresholds. The differences 

between the two configurations is up to 51% for frequencies at rest for the first forward whirl 

(FW) and about 31.25% for instability thresholds (2750 and 4000 rpm). For the fifth 

sequence, rotor speed can exceed the third critical speed without generating instability, 

whereas, instability occurs at speeds higher than the second critical speed for the second 

sequence. Such behavior is explained by the fact that the greater the number of fibers oriented 

close to the longitudinal direction of the rotating composite shaft, the more they contribute to 

shaft rigidity and, consequently, the higher frequencies are. In parallel, the lower the 
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orientation angle, the lower the internal damping due to the composite materials is and, 

consequently, the later instability occurs. 

 

5.3 Dynamic Response of Rotating Composite Shaft 
Programming codes based Matlab program, version (7.1) are implemented to analyze the 

dynamic response of the rotating composite shaft under autogenously excitation on the bases 

from the experimental test. The analysis are performed for composite shaft of three types of 

fiber volume fraction (25%, 45%, and 65%) and various types of lamina fiber orientations. 

 

Figures 8 represent the frequency response of the composite shaft at the clamped-clamped 

boundary fixation of the specimen with three types of fiber volume fraction and different 

types of fiber lamina orientations. The results indicate that there is apparently a correlation 

between the theoretical and experimental results, Table 4, shows the damping factors, natural 

frequency for three types of fiber volume fraction and various lamina orientations and the 

coefficients α and β. 

 

From Fig. 8 it can be noticed that the amplitude of specimens [0/90/0/90/0] are higher than 

those of the other specimen and [0/0/0/0/0] has lower ones. And the maximum amplitude at 

25% fiber volume fraction compared with the 65% fiber volume fraction by almost 0.9%. .    

 

 

 

Fig. 6   Effect of lamina orientations on frequency, critical speed and 

 damping factor at different fiber volume fractions. 
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Fig. 7   Campbell diagram and instability regions with various types 

of lamina orientations. 

 

 

Conclusions 
The dynamic analysis of laminated composite shaft with different fiber orientations, three 

level of fiber volume fraction and four boundary fixations are investigated analytically and 

experimentally. From the numerical and experimental results one can conclude: 

 

- For prediction of the dynamic analysis of composite shaft Campbell diagram present a 

suitable tool for controlling the rotating to achieve accuracy and overcome critical speed in 

resonance state. 

 

- The present comparison between the numerical and experimental results proves that the 

suggested finite element models of the composite structural shaft with boundary fixations 

provide an efficient tool for the dynamic analysis with proper accuracy. 
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- The avoidance of rapid failure of the composite shaft due to the shear effect (particularly at 

the resonant modes) can be attained by selecting the proper fixation type for example the 

composite shaft with clamped-clamped fixation and lamina orientation [0/45/0/45/0] is 

more convenient. 

 

- It can be control of the dynamic behavior of composite shaft for the operation state through 

stiffness, high damping capacity and low inertia.  

 

- The developed proportional damping by utilizing the proper weight factors permits the 

utilization of normal coordinate systems for uncoupling equations of motion of composite 

structure with the high confidence level at 99.5%. 

 

- Dynamic response gives proper information about resonance avoidance for certain 

operation conditions particularly composite shaft. In the other hand mode shape provides 

information about vibration level and the location of nodes and modes at each position. 

These important parameters from designers point of view. 

 

 

 
 

Fig. 8   Results of the theoretical model for the frequency response of the rotating 

composite shaft at three types of fiber volume fraction and various types 

of fiber lamina orientations. 

 

 

 

10
0

10
1

10
2

10
3

10
4

10
5

10
-5

10
0

10
5

Frequency (Hz)

R
es

p
o

n
se

 (
d

B
)

Frequency response at Vf = 25%

[0/0/0/0/0]

[0/45/0/45/0]

[0/90/0/90/0]

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

10
2

10
4

Frequency (Hz)

R
e
s
p

o
n

s
e
 (

d
B

)

Frequency response at Vf = 45%

[0/0/0/0/0]

[0/45/0/45/0]

[0/90/0/90/0]

10
0

10
1

10
2

10
3

10
4

10
5

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Frequency (Hz)

R
e
s
p

o
n

s
e
 (

d
B

)

Frequency response at  Vf = 65% 

[0/0/0/0/0]

[0/45/0/45/0]

[0/90/0/90/0]



Paper: ASAT-14-150-ST 

 

 

16 

 

References 
[1]  O. Bauchau, Optimal design of high speed rotating graphite/epoxy shafts, J Compos 

Mater, Vol. 17 (3),170–81, (1983). 

[2]  E. Chatelet, D. Lornage, and G. Jacquet-Richardet, Dynamic behavior of thin-walled 

composite shafts: a three dimensional approach, In: Fifth annual engineering system 

design and analysis conference, ASME, Montreux Switzerland, 1–5, (2000). 

[3]  LW. Chen, and WK. Peng, Dynamic stability of rotating composite shafts under 

periodic axial compressive loads, J Sound Vib. Vol.  212 (2), 215–30, (1998). 

[4]  MS. Darlow and J. Creonte, Optimal design of composite helicopter power transmission 

shafts with axially varying fiber lay-up, J Am Helicopter Soc, Vol. 40 (2), 50–60, 

(1995). 

[5]  Y.S. Lee and  Y.W. Kim, Nonlinear free vibration analysis of rotating hybrid cylindrical 

shells, Computers and Structures, Vol.  70, 161–168, (1999). 

[6]  JC. Pereira and ME. Silveira, Evaluation and optimization of the instability regions on 

rotors in wounding shaft, In: II congress nacional de engenharia mechanic, Joaho 

Pessoa, (2002). 

[7]  AL. Kimball, Internal friction as a cause of shaft whirling, Philos Mag., Vol. 49(1):724, 

(1925). 

[8]  M. Lalanne and G. Ferraris, Rotordynamics prediction in engineering, 2nd ed. John 

Wiley and Sons, (1998). 

[9]  H. Ghoneim and D. J. Lawrie, Analysis of the Flexural Vibration of a Composite Drive 

Shaft with Partial Cylindrical Constrained Layer Damping Treatment, Journal of 

Vibration and Control, Vol. 12(1), 25–55, (2006). 

[10]  V. Tita, J .de Carvalho and J. Lirani, Theoretical and experimental dynamic analysis of 

fiber reinforced composite beams, J. of the Braz. Soc. Mech. Sci. 7 Eng. XXV, Vol. 3  

p. 306, (2003). 

[11]  S. M. Ghoneam, A. A. Hamada and M. I. EL-Elamy, Experimental and Analytical 

Investigations of the Dynamic Analysis of Adhesively Bonded Joints for Composite 

Structures, Solid State Phenomena Vols. 147-149 p. 663-675, (2009). 

[12]  J. Richardet, E. Chatelet and D. Lornage, A three dimensional modeling of the dynamic 

behavior of composite rotors, Proceedings of ISROMAC-8 (The 8th International 

Symposium on Transport Phenomena and Dynamics of Rotating Machinery), March 

2000, Honolulu, Hawaii, USA, p. 988–994, (2000). 

[13]  H.B.H. Gubran, Dynamics of hybrid shafts, Mechanics Research Communications, Vol. 

32 368–374, (2005). 

[14]  M. Guo, I.E. Harik and W.X. Ren, Free vibration analysis of stiffened laminated plates 

using layered finite element method, Structural Engineering and Mechanics, Vol. 14 (3), 

245–262, (2002). 

[15]  M. R. Hatch, Vibration simulation using Matlab and Ansys, Chapman and Hall/CRC, 

(2001). 

[16]  R.M. Jones, Mechanics of Composite Materials, Scripta Book Co., Washingtion, D.C. 

1975.  

[17]  F.M. Dimentberg, Flexural Vibrations of Rotating Shafts, Butterworths, (1961). 

[18]  Z. Kristin and L. Dahsin, Geometrical parameters in composite repair, Journal of 

Composite Materials, Vol. 29, (11), p. 1473, (1995).  

[19]  S. Rao, Mechanical Vibrations, SI Edition, Prentice Hall, New York, (2004). 

[20]  A. Maher, Notes on Dynamic of machine, Printed Lecture p. 3-3 – 3-4, (2000).  


