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Abstract: Stiffened plates are used in several applications, such as aircrafts, ships and 

aerospace structures. Geometric nonlinearity and stability analyses of stiffened and 

unstiffened composite laminated plate are presented in this paper using the high order finite 

element. Strain energy method has been used in the derivation. The strain energy has been 

divided into infinitesimal strain energy for small deformation and finite strain energy fro large 

deformation. The shear effect has been taken into consideration in the element derivation. The 

coupling effect of small and large deformation on the strain energy has been introduced to 

define the finite force vector. The results of the proposed element derivation have been 

validated through the comparison with published, software (ANSYS-12) and experimental 

results with geometric nonlinearity and stability analyses. Parametric investigations have been 

carried out on different case studies with different boundary conditions, number of layers, 

stacking sequence and aspect ratio. 

 

Keywords: Composite material; Finite element method; geometric nonlinearity, stability 

analysis 

 

 

1. Introduction 
The technology of composite materials has experienced a rapid development. The main 

reason for this development is requirements for high performance materials, especially in 

military applications and aerospace structures. Plates are the most commonly structural forms 

used in these applications. Linear analysis of plates using finite element method was 

formulated by Zienkiewicz [1] using different types of elements. 
 

The study of the review articles and other recent publications reveals that geometrical 

nonlinear problem for laminated composite plates even now have attracted the attention of 

many researchers and investigators. In particular cases, geometrical nonlinearity is discussed 

to introduce the effect of large deformation based on several approaches and using different 

elements (Mindlin, Serendipity … etc.) [2-3].  
 

In the literature, basically two different theories were used in order to study laminated 

composite plates; the classical laminated plate theory and the shear deformation plate 

theories. The effect of transverse shear stress is neglected in the classical theory which can be 

used for thin plates. The transverse shear strains in composite layered plates are very effective 

parameters to estimate an accurate deflection and stresses. The first order shear deformation 

theory was proposed by Mindlin [4] and Reissner [5] where the shear effect was taken into 

consideration and the normal to the midsurface remain line but not normal. 
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Ferreira and Barbosa [6] used finite element model to present a geometric non-linear analysis 

of composite shell structures. The material was assumed to have an orthotropic behavior and 

the performance of the model has been tested in some buckling examples. In the same field of 

buckling analysis, Istvan and Laszlo [7] introduced formulas for the calculation of the 

buckling load of rectangular orthotropic plates with clamped and/or simply supported edges. 

 

The higher-order shear deformation theory was proposed to satisfy the plate boundary 

conditions and to explain the plate deformation which can be used for different types of 

analyses (frequency analysis, buckling analysis … etc.) [8-10].  

 

An analytical approach for buckling analysis of thick functionally graded rectangular plates is 

presented by Bodaghia and Saidi [8] where the equilibrium and stability equations are derived 

according to the higher-order shear deformation plate theory.  

 

The onset of buckling in square laminated multi-layered composite plates, subject to 

unidirectional in-plane loads, is investigated by Fiedler, et. [9] within the framework of a 

generalized higher-order shear deformation theory suitable to capture significant transverse 

shear and thickness-wise deformation effects. The displacement field is expanded in a Taylor 

series of the thickness coordinate with arbitrary polynomial degree. 

 

From the previous review it can be conclude that the higher-order theory for the analysis of 

laminated plates has received increased attention in the last decade. The aim of this paper is to 

provide a geometric nonlinear and stability analyses of composite laminated plate using a new 

derivation. The proposed element derivation based on the strain energy method which can be 

divided into infinitesimal and finite strain energy which corresponding to infinitesimal 

stiffness and stress matrices. This technique gives us the ability to avoid the problem of 

unsymmetry of stiffness matrix due to large deformation effect. A new derivation of high 

order shear element has been discussed. The effects of number of layers and degree of 

orthotropy are studied with different case studies by different boundary conditions and aspect 

ratio. The accuracy of the proposed derivation of the element has been verified through the 

comparison of the results with published, software (ANSYS-12) and experimental results. 

 

 

2. Nodal Displacement Formulation 
Plates are structural elements which are usually defined in terms of a midplane and thickness 

distribution. It may be classified into thin or thick according to the ratio of the thickness to 

span length. The displacement components at a general point may be resolved into in-plane 

displacements u, v and out-of plane displacement w which can be expressed as; 

 















0

xx0

yy0

  w  

 f(z)    z     v  

 f(z)    z   u    

w

v

u





         (1) 

where u0, v0, w0 are the displacement components of the midplane in x, y, and z directions 

and 
x

  and 
y

  are the additional rotations due to transverse shear. 

 

For an n-node element, the degrees of freedom at any point on the midplane are defined in 

terms of in-plane displacements, out-of plane displacements, and transverse shear strain. The 

nodal displacement vector of the element (at time t) can be defined as follows: 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYC-4YMK1S3-8&_user=9472507&_coverDate=11%2F30%2F2010&_alid=1408229289&_rdoc=1&_fmt=high&_orig=search&_cdi=5615&_sort=d&_st=4&_docanchor=&_ct=15&_acct=C000053061&_version=1&_urlVersion=0&_userid=9472507&md5=5e34832c6c385b646fb5eb7f69bf0ca7#implicit0
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 (t) (t) (t)    (t) 
b0 t

                                                               (2) 

 

where      
element  noden    000

   (t) 
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3. Strain-Displacement Relations 
For simplification of derivations, the strains are defined in terms of two separate vectors: 

     (i) x-y components vector  T

yx xy        

     (ii) Transverse shear vector  T

yzxz        

 

Then according to Green’s strain displacement equations the vector of x-y strain components 

can be expressed in terms of displacement components as follows [11]: 
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Hence, the strain-displacement equations can be rewritten in matrix form as follows; 

 

           LS                                                                                                  (4) 

 

where the subscript "s" represents small strains and "L" represents large strains. 

 

  g(z)  z     tb0S                                                                                    (5) 
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where the infinitesimal strain components can be defined in terms of nodal displacements and 

strain shape function matrices B   as follows: 
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The finite strain components can also be expressed in terms of rotation vectors   and A  as 

follows: 
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and the rotation vectors   can be related to the nodal parameters as; 
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4. Strain Energy Equations 
Due to a differential displacement field, the corresponding change of strain energy density is,  

 

  d   d  Ud
TT

                                   (10) 

 

where  
xyyx   ,   

yzxz    represent  x-y stress and shear stress vectors 

respectively. 

 

The stress at any point inside a composite laminate can be related to strain as follows: 

 

  D   &                                                                              (11) 

where D ,   represent the stiffness matrix of material. 

 

Hence, the x-y stress vector can be partitioned similar to the strain vector in equation (4) as: 

 

LS                               (12) 

 

where S , L  represent the stress vectors due to infinitesimal and finite strains, respectively, 

i.e. 

SS  D    & LL  D          

 

Hence, the strain energy density can be written as follows: 
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which can be rewritten as follows: 

 

SLLS Ud  Ud  Ud  Ud                                    (14) 

 

where SUd  contains infinitesimal strain effect and LUd , SLUd  contain finite strain effect, i.e. 

 

    d   d  Ud
T

S

T

SS  ,   d   Ud
T

LL  , L

T

SSL  d   Ud   

 

Then, the change of element strain energy is obtained by integrating the strain energy per unit 

area over the mindplane area as follows: 
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5. Infinitesimal and Stress Stiffness Matrices [10] 
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which may also be rewritten as follows: 
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
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where K  represents the infinitesimal stiffness matrix  
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where 
element

L k j Lk  j i dydx   B D B  ki

T

iK  

and D are the material stiffness matrices and


K  represents the stress stiffness matrix, which 

is defined as follows: 
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where  
element

L k j Lk  j i dydx   G S G  ki

T

iK
  and  S matrices contain the values of the stresses which 

need to be integrated over the thickness. 
 
 

6. Finite Force Vector  
The coupling effect of small and large effect on the strain energy density SLUd can be 
represented as; 
 

  L

T

tboUd   d g(z)  d z - d   SL     

 
By integration over the thickness, the strain energy per unit area is obtained as; 
 

   
t

T

tSLd   d    d  -  d  U b

T

bo

T

o

\       

where        



N mZ

mZ

tbo

U

L
1m

)(

)(

L dz    g(z) , z , 1   ,,   

 
This can be defined as shown; 
 

  btmotttmobbbwmooo DD  D   D   D)(D  

  tmbtbmbbbwmobb
DD  D D   D)(D  

  bmtttmbttwmott
DD  D D   D)(D    

 
where 

 

    



N mZ

mZ

btotobttbboo

U

L

DzggzgzDDDDDD
1m

)(

)(

(m)22 dz   ,,,,,1   ,,,,,

    



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tbtb

U

L

DggzgzgzgzgzgzzDDDDDDDDD
1m

)(

)(

(m)4332422323 dz ,,,,,,,,  ,,,,,,,, 
 

 and  
)()( zfzzg   

 

Hence, 

btbo

\  B  B  B   B 
T

bt

T

t

T

tt

T

t

T

bb

T

b

T

oo

T

oSL dddddU   

 

By integration over the midplane then: 

 
L

bt

T

t

L

tt

T

t

L

bb

T

b

L

oo

T

oSL dddddU F F F  F    

which can be rewritten in matrix form : L

T

SL FddU      

where 
L

F  represents the element force vector due to coupling effect which is defined as 

follows: 

 TL

bt

L

tt

L

bb

L

ooL FFFFF      

where 

                        


element

dxdy  B  
i

T

ij

L

ijF 
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7. Geometric Nonlinear Static and Stability Analyses 
An equivalent nodal force F  can be defined such that the work done by the actual applied 

forces due to a virtual displacement field is the same as that done by F . The corresponding 

change of strain energy can be deduced from the strain energy as follows: 

 

   F d   K  K d  L

TT
dU 


  

 

Applying the principle of virtual work, then;   0  F d  - F d   K  K d L 
TTT




 

 

Hence, d  contains arbitrary values, then;   0  F   - F    K  K L  


which represents the 

generalized equations of equilibrium  

 

Let     represent the exact solution of the equilibrium equation, then     R    K  K  


 

where the residual nodal force vector R  can be defined as 

 

    F  -   K  K  - F    L


R  

 

This can be solved by means of iterative algorithm until acceptable value of error. 
 

In general, the critical load is the load corresponding to large deflection, and 


K  is 

proportional to the stress level. Thus, a small deflection analysis can be carried out with a 

small load representing the distribution of actual load, and has equivalent nodal loading vector

0F . Just before instability, the strains can always be considered infinitesimal, and if 

instability occurs at 0F     cNF  , where Nc denotes the increase factor on stresses necessary 

to achieve neutral equilibrium (critical buckling load for unit force 0F ). This means that 

  0    K    


cNK  which leads to the following eigenproblem; 

 

  0  K   


cNK
 

 

8. Numerical and Experimental Validation 
To ensure the accuracy of the proposed finite element derivation with buckling analysis, 

experimental and numerical case studies have been carried out.  

 

8.1 Experimental Validation 
Two types of fibre reinforced materials have been used in this work, carbon/epoxy (Fiberite 

977-2 toughened epoxy resin) by Cytec Fiberite Ltd. E1= 128 Gpa E2= 11 Gpa G12 = G23 = 

G31 = 4.48 Gpa 12 = 0.25  and layer thickness = 0.25 mm and glass/epoxy (Fibredux 914G-E-

5-30%) by CIBA-GEIGY Ltd. E1 = 35 Gpa E2= 8.22 Gpa G12 = G23 = G31 = 4.1 Gpa 12 = 

0.26 and layer thickness = 0.18 mm. A compression testing, which was manufactured by 

Denison Mayes Group, has been used in the buckling test. The machine can also be used with 

100 kN as a maximum allowable load. The buckling test is applied on the two types of 

composites with three different dimensions. The buckling analysis is carried out by increasing 

the applied compression load to the buckling mode is observed. 

 

Rectangular carbon/epoxy and glass/epoxy plates of length 180 mm and width 40 mm have 

been employed in the experimental tests and for the finite element package with coarse mesh 

(72 4-node elements). The plates have 12 layers of stacking sequence [0
o
/90

o
/45

o
/0

o
/-
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45
o
/90

o
]S.  Table 2 shows the critical buckling loads obtained experimentally compared with 

the theoretical results and with the results by ANSYS (SHELL99). It is clear from the results 

that the theoretical results have a good agreement with the experimental results which were 

slightly influenced by the effect of supports.  

 

Table 2. Critical buckling loads 

 

Material Carbon/epoxy Glass/epoxy 

Finite Element Package 7964.24 N 545.53 N 

ANSYS-12 (shell 99) 8107.48 N 551.65 N 
Experimental 8100.00 N 540.00 N 

 

 

8.2 Numerical Validation 
The numerical validation has been carried out to illustrate the accuracy of the proposed finite 

element derivation with geometric nonlinearity and stability analyses. The results have been 

compared with published results and with ANSYS software results. 

 

Geometric Nonlinear Static Analysis of a Clamped Free Curved Shell 
An important factor, which has to be verified before the proposed finite element program can 

be used safely for the analysis of shell structures, is the ability of the package to deal with 

composite structures with different local coordinate systems. For this purpose, a curved shell 

made of E-glass/epoxy has been studied numerically. The shell is clamped free with 0.1 

N/mm lateral distributed line load at the free end, 100 mm radius and 40 mm width. This case 

was discussed before by Attia [12], where the material properties were isotropic properties 

expressed as orthotropic material properties. In that case the effect of material axes in 

different layers does not appear as the material is actually isotropic. The shell has 8 layers 

[0
o
/90

o
/+45

o
/-45

o
]s with 2 mm thickness and mechanical properties as follows; E1= 45 Gpa 

E2= 12 Gpa G12 = 5.5 Gpa and ν12=0.19 

 

Two different types of meshes were attempted; coarse meshes with 40 and 80, 4-node and 3-

node elements, respectively, and fine meshes with 80 and 160, 4-node and 3-node elements, 

respectively, as shown in Figure 3. For the purpose of validation the same meshes were also 

used in the ANSYS commercial package with SHELL99 element. 

 

    
40 elements 

(coarse) 

80 elements 

(fine) 

80 elements 

(coarse) 

160 elements 

(fine) 

4-node quadrilateral elements. 3-node triangle elements. 

 

Fig.(2) Meshes of curved shell 
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Fig. (3) Nodal deflection in z-direction versus polar angle θ  

 

Fig. (3) shows the variation of the nodal displacement shell in the load direction of the curved 

shell with the polar coordinates θ. The results illustrate the comparison between the proposed 

finite element program results and the corresponding ANSYS results with coarse and fine 

meshes. The first observation is that the two types of meshes provide very close results to 

each other. It can also be seen in the figures that the package results have a good agreement 

with the ANSYS commercial package results. Hence, from the last two types of analyses, it is 

convenient to use only the 4-node elements with coarse mesh. 

 

Stability Analysis due to in-plane load 
Numerical validation of the stability analysis was carried out with two different types of 

stacking sequence [30
o
] and [30

o
/-30

o
/30

o
] with square and rectangular composite plates. The 

plates are made of E-glass/epoxy materials with the following material properties [13], E1 

=60.7 GPa, E2 =24.8 GPa, G12 = G23 = G31 =12.0 GPa & ν12 = 0.23 

 

The plates are simply supported on all four edges and subjected to in-plane uniform edge 

load. The buckling analysis is numerically validated with thin (L/t =100) and thick (L/t = 10) 

plates with different number of layers. The buckling analysis is represented by the buckling 

parameter λ as follows [13]: 

 

o

2

c

D

L F
 -    Where 

)-(1 12

 t

2112

3

1



E
Do 

 and Fc is the critical buckling load per length.  

 

The critical buckling load Nc is obtained by solving the eigenvalue problem. For practical 

purposes, the lowest mode of the eigenvalue problem is corresponding to the actual buckling 

load. In that case, the critical buckling load per length Fc = Nc/b. The buckling parameters 

provided by the package are compared with the ANSYS and the published results by Narita & 

Leissa [13] as shown in Table 5. The results are shown for different types of elements and 

different plate geometry. It can be seen from the table that the results of the package are in a 

good agreement with the ANSYS and the published results. 
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Table 5.   Buckling parameter λ of the composite plates. 
 

L/t L/b No. of Layers Narita & Leissa[13] ANSYS (shell 99) FEP 

100 

1 
[30

o
] 25.17 25.64 25.19 

[30
o
/-30

o
/30

o
] 25.40 25.75 25.31 

2 
[30

o
] 100.9 101.77 99.93 

[30
o
/-30

o
/30

o
] 101.8 102.51 100.73 

 
10 

1 
[30

o
] --- 22.84 22.01 

[30
o
/-30

o
/30

o
] --- 22.96 22.13 

2 
[30

o
] --- 74.49 70.89 

[30
o
/-30

o
/30

o
] --- 75.38 71.88 

 

9. Parametric Investigation 
The stiffened plates are used in several applications, such as aircrafts and ships. This section 

provides a parametric study for composite laminated cantilever stiffened and unstiffened 

plates and demonstrates the effect of some parameters on the stability analysis. The stability 

analysis is shown in terms of the increase factor on stresses necessary to achieve neutral 

equilibrium Nc (critical buckling load) under in-plane compression load. This analysis was 

carried out on stiffened and unstiffened plates with different number of layers to show the 

ability of the proposed element to deal with this type of structures and to show the effect of 

stiffener on the structure stability.   
 

The stiffened cantilever plate [10] consists of four stiffeners with the same boundary 

conditions of the unstiffened one. Fiber orientation angles are measured with respect to the 

local x-axis which is parallel to the stiffener direction. The layers are arranged in symmetry 

stacking sequence, such as for 4-layers plate [θ/-θ/-θ/θ] and asymmetry stacking sequence, 

such as for 4-layers plate [θ/-θ/θ/-θ]. The fibre orientation angle θ has been varied from 0
o
 to 

90
o
 with 15

o
 increments with two different aspect ratios L/b (square plate L/b=1 and 

rectangular plate L/b=2) and with different number of layers. 
 

Tables 6-7 show the critical buckling load of stiffened and unstiffened cantilever plate for 

carbon/epoxy and glass/epoxy, respectively. The tables illustrate the variation of the critical 

buckling load with the fibre orientation angles for two different aspect ratios (L/b=1 & 2) and 

with three different number of layers (4-layers, 8-layers and 12-layers). 
 

Some observations can be summarized as, the critical buckling loads of the carbon plates are 

higher than the glass plates in stiffened and unstiffened cases with different number of layers. 

The critical buckling load of the unstiffened plate is found lower than the stiffened plates at 

different fiber angle. The critical buckling load is decreased by increasing the aspect ration. 

At the same fiber angle, the critical buckling load increases by increasing the number of 

layers in stiffened and unstiffened plates. The maximum values of the critical buckling load 

for the carbon or glass unstiffened plates are found at fiber angle 0
o
 at any number of layers 

with the two aspect ratios and decrease gradually as the fiber angle θ increases. The maximum 

critical buckling loads for the carbon or glass stiffened plates are found at different fiber angle 

based on the number of layers. The maximum critical buckling loads of the carbon and glass 

stiffened plates increase by increasing the number of layers while the fiber angle decrease or 

constant such as; The maximum critical buckling load of 4, 8 and 12 layers square carbon 

plates occurs at 45
o
, 30

o
 and 15

o
 respectively. The maximum critical buckling load of 4, 8 and 

12 layers rectangle carbon plates occurs at 30
o
, 15

o
 and 0

o
 respectively. The maximum critical 

buckling load of 4, 8 and 12 layers square glass plates occurs at 45
o
, 45

o
 and 30

o
 respectively. 

The maximum critical buckling load of 4, 8 and 12 layers rectangle glass plates occurs at 45
o
, 

15
o
 and 0

o
 respectively. 
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Table 6. Critical buckling load of stiffened and unstiffened 

Carbon/Epoxy cantilever plate 
 

L/b 
Fiber 
angle 

Unstiffened stiffened 

4 layers 8 layers 12 layers 4 layers 8 layers 12 layers 

1 
  
  
  

0 165.08 1319.5 4447.0 5671.5 43446 1.36E+05 

15 120.55 1102.3 3792.6 6601.9 63943 1.97E+05 

30 69.448 673.20 2329.2 10070 91675 1.55E+05 

45 33.654 312.62 1074.6 11539 57910 93685 
60 17.935 150.43 510.68 9791.4 36418 59137 

75 14.282 114.47 386.36 6533.4 24112 39176 

90 14.161 113.27 382.24 5034.2 19581 31826 

  
  
  
 2 
  
  
  

0 41.230     329.77     1112.6     5471.6 39846 70781 

15 28.291  268.62     930.54     6564.2 41905 66687 
30 14.903     149.69     520.68     9813.5 27238 44902 

45 6.9015     63.364     217.43     7138 16334 28808 

60 4.0511     33.561     113.76     4536.8 10667 19687 

75 3.5202     28.201     95.189     3045.2 7191.4 13412 

90 3.5372     28.297     95.498 2507.9 5886.5 10874 

 
 

Table 7. Critical buckling load of stiffened and unstiffened 

Glass/Epoxy cantilever plate 
 

L/b 
Fiber 
angle 

Unstiffened stiffened 

4 layers 8 layers 12 layers 4 layers 8 layers 12 layers 

 
 
 

1 
 
 
 

0 9.8208 78.558 265.09 812.17 6223.2 20685 

15 8.3408 69.699 236.99 812.74 7086.5 23966 

30 5.784 50.218 171.74 968.29 9113.2 29220 

45 3.7779 32.106 109.41 1055 10022 22741 

60 2.7203 22.17 75.051 979.88 8951.3 17193 
75 2.3597 18.907 63.825 821.4 6977.5 14157 

90 2.2983 18.386 62.049 754.65 5970.1 13077 

 
 
 

2 
 
 
 

0 2.4467 19.573 66.056 782.22 6186.1 12411 

15 2.0318 17.184 58.559 810.23 6798.5 11521 

30 1.3634 12.035 41.271 962.27 5677.6 8956.5 
45 0.88571 7.5486 25.735 1046.4 4028.8 6407.4 

60 0.65632 5.3395 18.07 974.9 3015.4 4834.7 

75 0.58432 4.6805 15.8 818.78 2487 3988.1 

90 0.57272 4.5817 15.463 753.95 2315.9 3706 

 
 
Table 8 illustrates the critical buckling loads of 6-layers carbon and glass stiffened and the 
unstiffened cantilever plates with two different stacking sequences. It is clear from the results 
that the stacking sequence has no effect on the stability analysis for the stiffened and the 
unstiffened plates at fiber angles 0

o
 and 90

o
 but a small, not effective, difference in the rest of 

the fiber angles, 15
o
, 30

o
, 45

o
, 60

o
, 75

o
 has been observed. Observations similar to those found 

for the previous case can be noticed. These conclusions agree with the observations of the 
effect of fiber angle and number of layers investigation on the stability analysis. 
 

Figures 4-7 show the mesh and buckling mode shapes for the unstiffened and stiffened plates 

with 12-layer asymmetric laminates at fiber angle θ = 45
o
 for glass/epoxy material. 
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Table 8. Critical buckling load of 6- layer stiffened and unstiffened 

 plate with the symmetric and asymmetric stacking sequence 
 

L/b  fiber 
angle 

Symmetric Asymmetric 

Unstiff. Stiff. Unstiff. Stiff. 

 
 
 

1 
 
 
 

C
ar

b
o
n

/E
p

o
x

y
 

0 556.95 18794 556.95 18794 

15 453.52 26329 445.67 29193 

30 274.57 43624 267.95 47425 

45 128.4 40930 127.61 40100 
60 62.898 26229 63.164 26112 

75 48.276 17400 48.302 17496 

90 47.79 13681 47.79 13681 

 
 
 

2 
 
 
 

0 139.14 18167 139.14 18167 

15 109.69 25515 108.48 27072 
30 60.663 19371 59.96 19092 

45 26.092 11455 26.023 11200 

60 14.066 7341.6 14.121 7344.5 

75 11.894 4921.3 11.902 4981.6 

90 11.938 4047.8 11.938 4047.8 

 
 
 

1 
 
 
 

G
la

ss
/E

p
o
x

y
 

0 33.144 2722.3 33.144 2722.3 

15 29.14 2938.8 28.965 3109.2 

30 20.844 3724.3 20.646 4020 

45 13.383 4094.4 13.314 4426.6 

60 9.3176 3704.3 9.306 3933.7 
75 7.9739 2924.8 7.9723 3021.8 

90 7.7567 2536 7.7567 2536 

 
 
 

2 
 
 
 

0 8.2575 2628.4 8.2575 2628.4 

15 7.1662 2922.5 7.1505 3091.3 

30 4.9788 3649 4.9678 3750.6 
45 3.1452 2922.2 3.1402 2859 

60 2.245 2195.8 2.2438 2189.7 

75 1.9741 1812 1.9738 1812.2 

90 1.9329 1682.1 1.9329 1682.1 

 
 

10. Conclusions 
The present work contributes to the development of geometric non-linearity analysis and 
stability analysis of composite laminated structures using high order finite element. The 
proposed technique and finite element derivation have been validated by comparing the 
obtained results with published results and with results obtained by ANSYS commercial 
package for the same case studies. Good comparison with the finite element results ANSYS 
were observed from previous test cases, confirming the accuracy and reliability of the new 
derivations and the programming package. 
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Fig.(4) Buckling mode of 12-layer 

 stiffened square cantilever plate 

 

 

 
 

Fig.(5) Buckling mode of 12-layer 

unstiffened square cantilever plate 

 
 

Fig. (6) Buckling mode of 12-layer 

 stiffened rectangular cantilever plate 

 
 

Fig. (7) Buckling mode of 12-layer 

unstiffened rectangular cantilever plate 
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