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Abstract: Composite materials are used in several industrial and military applications due to 

its weight to strength ratio. From the advantages of composite materials, it may pass through 

different modes of failure before reaching the complete failure. Many analyses have been 

developed to predict the failure of composite laminates. This paper presents the development 

of a progressive damage analysis methodology for stress analysis of composite laminated 

structures using high order finite element. It is an extension to the work developed by Moutaz 

[10] where the large effect force vector has been introduced separately to show the geometric 

nonlinear effect. A simple failure analysis technique has been developed to predict the mode 

of failure of composite laminated structures. This technique is performed based on the stress 

and strain values in longitudinal (fiber direction) and transverse (matrix direction) directions 

of the composite. The mode of failure has been detected and defined at each increment based 

on the value of stress and strain in fiber and matrix directions. The proposed technique and 

finite element derivation have been validated by comparing the obtained results with 

published results and with results obtained by ANSYS-12 commercial package for the same 

case studies. 
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1. Introduction 
Over the past years, Composite materials are used in several industrial and military 

applications due to its weight to strength ratio. From the advantages of composite materials, it 

may pass through different modes of failure before reaching the complete failure. A loaded 

structure goes through several stages to be completely failed; damage initiation, delamination, 

fiber breaking, damage growth, and fracture. Due to applying this load, energy is accumulated 

near flaws and defects that grow and unite, forming small cracks (damage initiation). In some 

applications, the damage initiation is considered a complete failure state of a structure, 

especially for those applications designed by fail-safe design criterion [1]. The next stage is 

the delamination, which is the debonding from one ply to another. It is caused by the 

discontinuities in the path of the load due to the matrix cracks and the small cracks through 

the interface. The critical stage of the damage development of composite materials, which 

leads to complete failure, is fiber breaking. The fiber may fail at the weakest point along its 

length or at a point of high stress concentration. Damage growth process is considered a better 

way to understand the failure phenomena; especially in the applications which have stress 

concentration effects. 
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The fracture is the final stage, which represents a complete failure of a component due to 

rapid progression of the damage modes. The fracture is the final stage of damage 

development, which represents a complete failure of a component due to rapid progression of 

the damage modes. Due to the complexities and restrictions of the existing failure analyses 

methods of composite materials and the existing computational tools, there is a need to 

develop a reliable method to predict the behavior and strength of composite laminates which 

can be used as a design guideline for structures made of composite materials. 

 

Many researches on the progressive failure analysis of composite laminated structures have 

been successfully carried out using the finite element method in order to simulate the failure 

modes in composite materials. T. Y. Kam & T. B. Jan [2] studied the first-ply failure of 

moderately thick laminated composite plates using the layerwise linear displacement theory. 

The accuracy of the finite element in predicting displacements and first-ply failure loads of 

laminated structures was verified by comparing results with experimental data and previously 

obtained analytical results. Since then, there have been numerous literatures regarding the 

progressive failure analysis of composite laminated plates and shells [3–7]. Liu and Zheng [8] 

introduced damage model to predict the progressive failure properties of the3D composite 

cylindrical laminates. 3D finite element technique was developed to investigate the non-linear 

stress–strain relationships and the final failure strengths of composite structures. The results 

were compared with those obtained from experiments and other existing models. Recently, 

Zahari, A. El-Zafrany [9] developed a progressive damage analysis methodology for stress 

analysis of composite laminated plates using new derivations of finite strip methods based on 

Mindlin’s plate-bending theory.  

 

From the literature review, the following points can be concluded.  

- The finite element formulation was considered based on infinitesimal strain. 

- Numerical case studies was reported and validated with commercial software only 

which concerns the analysis. 

- There is a need for a flexible numerical tool, which can be used in assessing the 

composite failure analysis accurately and efficiently. 

- Although, there is very little published work on the use of the finite element method 

for failure analysis of composite materials, most of that work is based on the current 

versions of commercial packages (ANSYS, ABAQUS, …etc.), which means that the 

methodology followed has to be changed corresponding to any new version. 

Furthermore, it is restricted to a certain accuracy of results, while in the failure 

analysis one may need results of six or more digits. 

 

This paper presents the development of a progressive damage analysis methodology for stress 

analysis of composite laminated structures using high order finite element. It is an extension 

to the work developed by Moutaz [10 & 11] where the large effect force vector has been 

introduced separately to show the geometric nonlinear effect. A simple failure analysis 

technique has been to predict the mode of failure of composite laminated structures. This 

technique is performed based on the stress and strain values in longitudinal (fiber direction) 

and transverse (matrix direction) directions of the composite. The mode of failure has been 

detected and defined at each increment based on the value of stress and strain in fiber and 

matrix directions. The proposed technique and finite element derivation have been validated 

by comparing the obtained results with published results and with results obtained by 

ANSYS-12 commercial package for the same case studies.  
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2. Progressive Failure Analysis 
As mentioned in the literature, many analyses have been developed to predict the failure of 

unidirectional composite laminates. Due to some complexities and restrictions of those types 

of analyses, a simple technique is used in this work to predict the failure of composite 

laminates. This technique is based on ultimate strain values of the laminate in fiber and matrix 

direction. The ultimate strain values of the fiber uf and matrix 
um  can be obtained 

experimentally by applying the maximum possible load on a unidirectional ply with [0
o
], on-

axes, and [90
o
], off-axes, respectively, and measuring the corresponding strain values [1]. A 

progressive failure methodology is developed for predicting the failure of laminate composite 

structures under incremental static load taking into consideration the effect of geometrical 

nonlinearity. Procedures and methods for the progressive failure analysis have been 

developed and are illustrated in Fig. 1 The main objects in that assessment are the material 

degradation method, which will be discussed in the next section. 

 

 

 
 

Fig. 1 Progressive failure algorithm 
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The failure analysis is performed based on some assumptions: 

 A complete failure will occur when the strain value in the fiber direction at any element 

f  reaches the ultimate strain value of the fiber uf . 

  uff      (Complete failure) 

 While the strain value in the matrix direction 
m  reaches its ultimate value (ultimate strain 

of the matrix
um ), this implies that matrix cracking has occurred and crack growth will 

develop. At this stage the material degradation process will take place. 

  
umm      (Failure or crack initiation) 

where 
um  represents the ultimate strain of the matrix beyond which the degradation process 

reaches its ultimate in matrix. 

 

 

3. Material Degradation 
Material degradation is the reduction of the material properties of the structure due to certain 

type of applied load. The material degradation rules of composite materials are mainly based 

on experimental data. Due to the difficulty of measurement process, a theoretical solution has 

been introduced based on some assumptions and on the available literatures. For a laminated 

composite under incremental static loading conditions, in the first increments, the strength of 

the plies can be higher than the applied stress. Therefore, during the first increments, there is 

no failure mode that can be detected. Once the number of increments increases and the failure 

takes place in the material, the material properties at the damaged area have to be degraded by 

a set of degradation rules that based on some factors, such as the mode of failure, the original 

properties, the stress-strain state, the strength of the material, …etc.  That type of degradation 

is called gradual material properties degradation. As the density of damaged area increases, 

the stiffness of the laminate decreases. In the matrix mode of failure, the degradation process 

of the mechanical properties is based on several reduction factors [1]. 

 

As soon as the failure condition of the matrix has been satisfied with in the laminate, the 

degradation process of the material properties have to take place. Consequently, the damaged 

area will be increased up to a critical value which is the damaged area of the laminate 

corresponding to the failure condition of the fiber. 

 

Based on the literature, some assumptions are taken into consideration during the material 

degradation process, [2]: 

 

- The material properties are gradually degraded. 

- The material degradation will take place based on the state of strain of the matrix and fiber. 

 

Hence, the new material properties will take place through the damaged area (element) which 

will be replaced with a one having the following properties  

 

 old1fnew1 )E(C)E(                  old12mnew12 )G(C)G(   

 old2mnew2 )E(C)E(    old12fnew12 )(C)(       

 

where mf C ,C represent the material degradation factors. Based on the previous assumptions 

and some experimental data, they can be approximated as follows: 
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where the maximum values of the modulus reduction factor at the start of the applied stress 

will be unity as there is no damaged area (element) at this stage.  

 

 

4. Finite Element Theory and Incremental Static Analysis 
The proposed finite element theory, used in these analyses, has been discussed earlier by the 

author [10 & 11]. The finite element is based on high order shear deformation theory. The 

theory includes the formulation of the displacement equations, strain equation, stress equation 

and the strain energy variation which can be divided into small, large and coupled strain 

energies corresponding to which the element stiffness matrices can be obtained. The change 

of strain energy density can be written as follows: 

 

   
 

where SdU contains infinitesimal strain effect and LdU , SLdU  contain finite strain effect 

 

This can be rewritten in terms of nodal displacements as follows; 

 

    

where 

K       represents the infinitesimal stiffness matrix 


K     represents the stress stiffness matrix 

LF     represents the element force vector due to coupling effect 

 

An equivalent nodal force F  can be defined such that the change of work done by it due to a 

virtual displacement field is equivalent to the change in the strain energy, i.e.  

 

 FddWdU
T

      

Hence, LFKKF  


 

 

The principle of virtual work has been applied to obtain the generalized equations of 

equilibrium. The nodal force F  can be divided into “N” increments of nodal force F . The 

analysis can be carried out at each increment to obtain the global nodal displacement for 

linear or nonlinear case. 

 

The generalized equations of equilibrium in the linear analysis can be represented based on 

the infinitesimal stiffness matrix as:      K    F    
 

At each nodal incremental force, iF , the change of nodal displacement can be calculated as:

 ii    K    F    

 

The nodal displacement vector after “i” increment can be calculated as follows: 

  i1-ii                

SLLS dUdUdUdU 

L

TTT
FdKdKddU 



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While, equation of equilibrium in the nonlinear analysis can be represented as; 

 

    0  F   - F    K  K L  


 

 

Let      represent the exact solution of the equilibrium equation, and then the residual 

force can be derived as;      R    K  K  


  

 

where the residual nodal force vector R  can be defined as       F  -   K  K  - F    R L


  

 

At each nodal incremental force iF the nodal displacement can be solved by means of 

iterative algorithm until acceptable of error as follows: 

 

1- Incremental force iF the initial change of nodal displacement can be calculated according  

  to the linear relation   

2- Update the nodal displacement after “ i ” increment, i1-ii               

3- Calculate the corresponding stress stiffness matrix and load force vector )(K  iiK 


 and 

  )(F  
i

L iLF   

4- Calculate the change of residual force vector,     

5- Obtain the change of incremental displacement,     R     K  K iii 


  

6- Update the change of nodal displacement i1-ii               

7- Calculate the value of the error:   
1i

1ii
 error









 

8- If the error is greater than a certain acceptable value then repeat the procedure from step 2  

  using i  instead of 1  i until an acceptable value of error.  

9- Update the global nodal displacement i1-ii          
 

 

 

5. Validation and Numerical Case Study 
The validation process has been carried out to illustrate the accuracy of the proposed failure 

algorithm and the finite element package with different case studies. The validation has been 

performed by comparing the results of the proposed failure algorithm with corresponding 

results from a commercial finite element package ANSYS-12 and with theoretical and 

experimental published results while the failure analysis using ANSYS has been achieved 

using the Tsai–Wu failure theory [12].  

 

5.1 Clamped Square Plate 
A four-layer clamped square plate with 100 span-to-thickness ratio was employed to carry out 

the incremental static analysis. Two different types of mesh have been applied with this study, 

a coarse mesh (100 4-node elements) and a fine mesh (400 4-node elements) to study the 

mesh convergence. The plate is clamped at all four edges and the history of maximum 

deflection at the centre with the load is represented by a non-dimensional deflection parameter 

 and a load parameter q  as follows [13]: 

ii   K    F  

    F  -   K  K  - F    R
i

Liii 




W
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where wc is the central deflection and t is the thickness of the plate. A quarter-plate mesh has 

been used due to the symmetry of the plate. Different types of stacking sequence of the fiber; 

cross-ply [0
o
/90

o
/0

o
/90

o
] and angle-ply [45

o
/-45

o
/45

o
/-45

o
] have been used. The plate is 

subjected to uniform distributed load. Table 1 demonstrates the central non-dimensional 

deflection parameter history of the angle-ply and the cross-ply plates with the transverse load 

parameter.  

 

It is clear that the proposed element gives good results compared with ANSYS and published 

results by Reddy [13] for the two different types of stacking sequences.  

 

It can also be seen from the shown results that the proposed element provides very close 

results from the published and ANSYS results. It can also be seen from the shown results that 

the proposed element provides very close results to each other with the two types of meshes.  

 

 

Table 1. Central non-dimensional deflection parameter with the load parameter 
 

 Load 

Para. 

4-node 

(coarse) 

4-node 

(fine) 

Reddy 

[13] 

ANSYS 

(coarse) 

ANSYS 

(fine) 

an
g

le
-p

ly
 

[4
5

o
/-

4
5

o
/4

5
o
/-

4
5

o
]  

50 0.4659 0.4677 0.46 0.455 0.456 

100 0.7664 0.7693 0.75 0.746 0.746 

150 0.9803 0.9841 0.95 0.955 0.955 

200 1.148 1.152 1.14 1.121 1.12 

250 1.286 1.291 1.27 1.259 1.258 

300 1.406 1.411 1.39 1.378 1.377 

350 1.511 1.517 1.49 1.484 1.482 

400 1.605 1.612 1.59 1.58 1.577 

450 1.692 1.698 1.68 1.667 1.665 

cr
o

ss
-p

ly
 

[0
o
/9

0
o
/0

o
/9

0
o
] 

 

50 0.4949 0.4949 0.5 0.497 0.497 

100 0.797 0.7981 0.82 0.803 0.802 

150 1.004 1.006 1.03 1.013 1.011 

200 1.163 1.165 1.2 1.175 1.171 

250 1.293 1.296 1.34 1.307 1.303 

300 1.404 1.408 1.46 1.42 1.416 

350 1.501 1.505 1.56 1.52 1.515 

400 1.588 1.593 1.64 1.609 1.603 

450 1.667 1.673 1.72 1.689 1.684 

 

 

5.2 Failure Analysis of a Clamped Square Plate 
Numerical and experimental validation of the proposed failure analysis was carried out with 

the same case study published by Kam & Jan [2] to ensure the accuracy of the finite element 

program with the proposed failure algorithm. Clamped square laminated composite plates 

with two different stacking sequences have been analyzed using the proposed finite element 

package. The plates were made of Graphite/Epoxy with the following material and geometric 

properties [2]; E1 = 142.5 Gpa, E2 = 9.79 Gpa, G12 = G13 = 4.72 Gpa, G23 = 1.192 Gpa, 12 = 

0.27, plate length = 100 mm, layer thickness = 0.155 mm, number of layers = 16 and 32 with 

stacking sequence [04/904]s and [08/908]s and with strength properties as; Xt =2193.5 Mpa, Xc 

t

w
  cW
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= 2457.0 Mpa, Yt = 41.3 Mpa, Yc = 206.8 Mpa. The plates were subjected to centrally applied 

load to the first ply failure.  

Table 2 shows a comparison between the results obtained by the proposed finite element 

program, with and without applying the proposed failure algorithm and material degradation, 

and the published experimental and analytical results by Kam & Jan [2]. The results show the 

central deflection due to 1000 N applied central load and the first-ply failure load for the 32-

layer plate and the first-ply failure load for the 16-layer plate using the same 4x4 mesh for a 

quarter of the plate due to its symmetry. The load has been applied gradually on the laminated 

plates until the first-ply failure in the fiber appear. In general, the results obtained by the 

proposed finite element program are in good agreement with those obtained by Kam & Jan 

[2] experimentally and analytically.  The main observation from the results is that the 

applying of the material degradation process increases the deflection and the failure load due 

to decrease of stiffness and applying the degradation process on the strength properties as 

well, respectively. 

 

 

Table 2. Central deflection and first-ply failure loads for clamped square plates 
 

Without Mat. Deg. With Mat. Deg. Kam & Jan [2] 

 Lin. Nonlin. Lin. Nonlin. Analy. Exper. 

C. deflection [mm] [08/908]s 0.2365 0.2362 0.2381 0.2379 0.212 0.24 

FPF Load [N] 
[04/904]s 672.96 683.34 685.31 689.67 696.2 647.0 

[08/908]s 2220.72 2239.10 2182.52 2189.23 2207.07 2136.0 

 

 

5.3 Progressive failure analysis of a plate with hole under in-plane tensile load 
A 20 kN tensile load has been applied incrementally on a square plate with hole at different 

diameter to width ratio. The plate is fabricated from Graphite/Epoxy composite material with 

the same material and strength properties used with the clamped plate [2]. The effects of 

stacking sequence and the plate thickness have been investigated using different stacking 

sequences as follows; [0
o
/90

o
], [0

o
/90

o
] s, [45

o
/-45

o
] and [45

o
/-45

o
]s. The geometry of the plate 

and the applied load are shown in Fig. 2. A 4-node quadrilateral element has been used with a 

suitable mesh as shown in Fig. 2, where a fine mesh is used near the hole as it is the stress 

concentration zone. Due to the symmetric property of the plate, one quarter of the plate has 

been selected for the finite element analysis. 

 

 

 

Fig. 2 Mesh and geometry of a square plate with hole under tensile load 

 

Twenty increments load have been applied during the stress analysis. Each increment has 

been carried out with new material and strength properties for the damaged area as mentioned 
in the material degradation process.  

 

Sym

. 

Sym

. 

R 

Node 13 
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Table 3 shows the deflection in y-direction at node 13 and the expected failure loads for 

matrix and fiber of plates with hole at different diameter to width ratios and at different 

stacking sequences. The results illustrate that a good prediction of the proposed failure 

algorithm for the start load of failure compared with ANSYS results for different stacking 

sequences and width to diameter ratios. Slight variations in the results between the ANSYS 

results and the Finite element program results may due to the slight difference in the damage 

modeling. 

Figure 3 (a-b) shows the load increment versus damaged area in matrix and fiber for the plate 

of 10 width to diameter ratio for different stacking sequences and different number of layers. 

The main observations of these analyses are the damage occurred firstly in the 90
o
 plies at the 

elements within the stress concentration zone. The damaged area in fiber and matrix increase 

by decrease the number of layers. The plates with [45
o
/-45

o
] stacking sequence have a good 

response to failure than the [0
o
/90

o
] in the in-plane tension load. 

 

Figure 4 shows the progress and the behavior of the failure in matrix and fiber for the [0
o
/90

o
] 

plate of 10 width to diameter ratio. The figures illustrate the damage in matrix and fiber with 

in 0
o
 and 90

o
 layers. The main observation is that, the failure start firstly in the matrix within 

the 90
o
 layers then in 0

o
 layers. The failure starts in the fiber within the 0

o
 layers firstly then 

the failure start at the last three increments in 90
o
 layers for one element only.  

 

 

6. Conclusions 
The present work contributes to the development of progressive failure algorithm of 

composite laminated structures using high order finite element. The proposed technique and 

finite element derivation have been validated by comparing the obtained results with 

published results and with results obtained by ANSYS commercial package for the same case 

studies. Good comparison with the finite element results ANSYS were observed from 

previous test cases, confirming the accuracy and reliability of the new derivations, damage 

algorithm and the programming package. 

 

 

Table 3. Displacement in y-direction at node number 13 and the start load of failure 
 

width/Radius 
Stacking 

sequence 

PFE ANSYS-12 (SHELL99) 

Disp. in  

y-direction 

Start load of 

Failure 

Disp. In  

y-direction 

Failure  

Load 

100/10 = 10 

[45/-45] -0.6887 7 kN -0.6321 7.45 

[45/-45]s -0.3106 No Failure -0.3008 No Failure 

[0/90] -0.09248 7 kN -0.08959 7.12 

[0/90]s -0.0492 No Failure -0.0422 No Failure 

100/30 = 3.3 

[45/-45] -2.579 7 kN -2.387 7.03 

[45/-45]s -1.187 No Failure -1.087 No Failure 

[0/90] -0.6678 5 kN -0.6194 5.67 

[0/90]s -0.3207 11 kN -0.2906 11.06 

100/50 = 2 

[45/-45] -7.702 6 kN -7.528 6.87 

[45/-45]s -3.479 15 kN -3.278 15.13 

[0/90] -2.854 2 kN -2.635 2.11 

[0/90]s -1.368 7 kN -1.226 7.39 
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Fig. 3-a the damaged area of [45

 o
 /-45

o
] fiber and matrix vs. load increments 

 

 

 

 

 
Fig. 3-b the damaged area of [0

o
/-90

o
] fiber and matrix vs. load increments 
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