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Abstract: An explicit cell centered finite volume CFD solver called Pyramid2D has been 

developed for solving Euler’s equations in two dimensions. We modify the flow equations at 

the boundary faces, according to the physical boundary conditions, and solve them in finite 

difference discrete form suitable for unstructured grids. The flow properties at the cell faces 

are constructed using new reconstruction method which allows small oscillations at the shock 

wave region and in the same time contains enough diffusion, so it doesn’t require the use of 

limiters for transonic flows. The developed solver is to be used as an external aerodynamic 

solver; all tests showed that the proposed scheme is robust and its numerical results compares 

well with the published data. 

 

 

1. Introduction 
The improvement of computer’s computational power and the development of state of the art 

numerical simulation techniques encourage aerospace engineers to use computational fluid 

dynamics in aerodynamic design and analysis. Numerical solution of fluid flow using finite 

volume method has been well established during the last three decades [1]. Finite volume 

method is very popular solution technique for aerodynamic simulation problems using 

unstructured grids because it takes the advantage of unstructured grid ability to present 

complex geometry efficiently. Boundary conditions are applied by controlling the boundary 

face flux that crosses it according to the physical boundary conditions at that boundary face; 

however, flow property values at the boundaries are computed using the extrapolation of flow 

property values of the internal flow points. This leads to an incomplete satisfaction of the 

boundary conditions especially at solid surface boundaries; therefore an algebraic correction 

is applied to the extrapolated flow properties to satisfy the physical boundary conditions. This 

extrapolation usually tends to increase the required number of iterations to reach a steady state 

solution. In the other hand, finite difference aerodynamic simulations applies the boundary 

conditions to the discrete form of the governing equations, this leads to more accurate 

satisfaction of the boundary conditions and needs no algebraic correction[2]. The standard 

finite difference discretization needs structured grids to be implemented, which in turn needs 

multi-blocking gridding strategy in order to present complex geometries and requires huge 

programming effort. In this paper we present a new CFD strategy that takes the advantage of 

finite volume as a discretization method for the internal flow field control volumes, and the 
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accurate satisfaction of the boundary conditions obtained by using finite difference at the 

boundary faces mid points. We implement 2
nd

 order finite volume discretization of Euler’s 2D 

flow model for the internal flow points, and we use a new treatment of the boundary faces 

using finite differences on 2D unstructured triangular grid. Results show that the proposed 

scheme contains sufficient diffusion and hence there is no need for using limiters in transonic 

flow simulations. In section two, we present the basics of the cell centered finite volume 

scheme on unstructured triangular mesh. The face property reconstruction needed for Roe’s 

approximate Riemann solver to evaluate the flux at cell faces is presented in section three. 

The new developed finite difference discretization on unstructured grid is applied at the 

boundary faces as shown in section four. In section five we present three test cases to test the 

developed solver, transonic flow around NACA 0012 where the shock wave exist on upper 

and lower surfaces of the airfoil, a transonic flow around NACA 0012 where the shock stands 

at the airfoil trailing edge, and supersonic flow around NACA 0012 with detached shock 

wave in front of the airfoil leading edge. All test cases are done without the use of limiter, 

results shows good agreement with published numerical results. 

 

 

2. Explicit Finite Volume Solver 
The integral form of the two dimensional Euler’s equations can be written as, 
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Figure (1) shows a schematic drawing of a triangular element and its immediate neighbours. 

Equation (1) can be rewritten as, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (1): schematic drawing of an unstructured triangular 

element with its neighbors 
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where  

1 1 2 2 3 3Ni Ni N N N N N N

Ni

R F l F l F l F l           

NiF  is the flux that goes across the face between element i and its neighbour Ni; Nil  is the face 

length of the face between the element and its neighbour. 

The face flux is computed using Roe flux differencing scheme [3]. 

The flow properties at control volume center point is updated as follows, 

 

           (3) 

 

3. Face Flow Property Reconstruction 

In order to evaluate the face fluxes, primitive flow properties  T
pvuq  must be 

constructed at the mid points of the element faces. The flow properties at the faces are 

calculated using the following 2
nd

 order accurate formula, 
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where ifx , ify are the x and y distances between the center of element i, and the face 

midpoint. The gradient components 
y
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,    are computed as follows, 
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Writing equation (5) at the three vertices of the element (i), shown in Figure (2), gives the 

following linear system, 
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Figure (2): Vertices names in an element 

 

The coefficients      and    are found by solving the system of linear equations (7), and 

hence, find  
  

  
  and  

  

  
  needed for face property reconstruction as of equation (4). 
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The face reconstructed flow properties from both sides are used to compute the face flux 

according to Roe flux difference formula [3, 4]  as follows, 
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where all the terms of equation (9) are expressed as of Neal Frink et al. [4]. 

The nodal properties are found using inverse distance interpolation technique [4]. The 

following inverse distance formula is used, 
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Figure (3) shows a general node in triangular mesh grid, in this figure m=6 “the number of 

elements including a node”. 
 

 

 

 

 

 

 

 

 

 
 

Figure (3): Schematic drawing of a node included in 6 elements 
 

If the node is a boundary node, the inverse distance formula, equation (10) is applied to the 

boundary faces that share this boundary node and other elements that share this node are 

neglected when using the inverse distance interpolation rule. 

The above scheme for nodal property reconstruction provides some diffusion in the face 

reconstruction scheme, and hence, a stable solution can be obtained in transonic flows without 

the use of limiters. 
 

 

4. Finite Difference on Unstructured Grids 

Euler’s equations for two dimensional compressible flows can be written as, 
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Traditional finite difference forms are expressed on structured grids where the neighbours are 

known by the structured grid indexing stencil. The spatial derivatives 
 

  
  
 

  
  can be expressed 

easily in structured grids. The challenge in using finite difference on unstructured grids is how 

to find a suitable expression of the spatial derivatives 
 

  
  
 

  
. To do so, differentiation chain 

rule is used as follows, 
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where 
  

  
  depends only on flow properties and known as “primitive variables flux jacobian”, 

and 
  

  
 is computed using the procedure shown in section (3). The same strategy can be 

applied to compute  
  

  
.  

 

 

5. Boundary Conditions 

Boundary conditions treatments play an important role in obtaining a converged solution. In 

this paper the presented boundary condition treatments are based on the work of M. B. Azab 

et al., [2] in which the boundary conditions are used instead of some flow equations at the 

boundary points, the rest of the flow equations in addition to the boundary conditions 

equations are solved in a coupled manner in order to obtain the flow properties at the 

boundary points which lie on the boundary surfaces. Both equations are solved in a finite 

difference discrete form, while the rest flow field solution is obtained using finite volume 

scheme. In external aerodynamics, the two important boundary conditions are the far field 

inflow/outflow and the wall boundary conditions. Numerical treatments of the boundary 

conditions are shown in the next subsections. 

 

5.1 Far Field Inflow 
All flow properties are specified at the far field inflow boundary, flow properties are equal to 

free stream values; therefore the finite difference form of Euler’s equation can be written as, 
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The far field inflow is the far field surface in which, 
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5.2 Far Field Outflow 
Only the back pressure is specified at the boundary face to be equal to the free stream static 

pressure     , the following manipulation is used in order to derive the boundary condition 

numerical treatment in a FD form, 
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Using the above equations, the FD equations at the boundary face will be, 
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The far field outflow is the far field surface in which, 

 

0  ununU xxn  (18) 

 

Using equation (17), the solution update is computed and the flow solution at the boundary 

face is marched temporally as,  
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5.3 Inviscid Wall 
The physical boundary condition for inviscid wall is that the normal velocity to the wall is 

zero, which can be written as, 
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The boundary condition equation (21) will replace one of the momentum equations. The 

implemented strategy is to drop the momentum equation (x or y momentum) which is closer 

to normal direction; in other words, if        the y-momentum equation will be dropped 

and vice versa. 

 

In case of        , the FD equations at the wall face will be, 
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And in case of         the FD equations will be, 
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The computed solution update resulting from equation (22) or (23) is used to update the 

conservative flow properties at the boundary face according to equation (19). 

 

 

6. Test Cases 

In this section, three test cases are presented, flow around NACA0012 at Mach 0.8 and angle 

of attack 1.25
o
, a highly transonic flow around NACA 0012 at Mach 0.95 and angle of attack 

0
o
, and supersonic flow around NACA 0012 at Mach=1.5 and zero angle of attack. 

Comparison with published AGARD [5] data shows good agreement.  

 

6.1 Transonic NACA 0012 Flow (M=0.8, Alfa =1.25
o
) 

In this test case, transonic flow solution of NACA 0012 at Mach 0.8 and 1.25
o
 angle of attack 

is obtained using the developed solver with the new boundary condition treatments. Figure (5) 

shows a comparison between Pyramid2D numerically obtained Cp and the published 

AGARD Cp distribution; a slight deviation is observed at the leading edge region and is 

attributed to the difference of the leading edge grid resolution between the structured grid 

used in AGARD published data and the unstructured grid used in Pyramid2D computations. 

Figure (5) shows also an accurate prediction of the shock waves on the upper and lower airfoil 



Paper: ASAT-14-170-AE 

 

 

8 

surfaces. Figure (5) shows also that there is a slight undershooting in the obtained pressure 

distribution at the shock wave position but this oscillation is not observed elsewhere. As these 

results were obtained without the use of a limiter, it proves that the proposed face property 

scheme together with the node property inverse distance interpolation produce sufficient 

diffusion at the shock wave region to damp oscillation propagation to other regions.  

 

 
 

Figure (5): NACA0012 Cp distribution 

comparison with AGARD  published 

data at Mach=0.8, Alfa=1.25 

Figure (6): NACA0012 Mach 

distribution at free stream 

Mach=0.8, Alfa=1.25 

 

 

6.2 Transonic NACA 0012 Flow (M=0.95, Alfa = 0
o
) 

In this test case, a continuous expansion all over the airfoil surface after the leading edge 

stagnation point followed by a strong oblique shock wave standing at the airfoil trailing edge 

is observed as shown in figure (8). Figure (7) shows a comparison of the obtained Cp 

distribution and the Cp distribution published in AGARD; it shows a very good agreement 

between both Cp distributions. 

 

 
Figure (7): NACA0012 Cp distribution 

 comparison with AGARD published 

 data at Mach=0.95, Alfa=0 

Figure (8): NACA0012 Mach distribution 

at free stream Mach=0.95, Alfa=0 

 

6.3 Supersonic NACA 0012 Flow (M=1.5, Alfa=0
o
) 

In this test case, a strong detached shock wave is formed ahead of the airfoil leading edge 

decreasing the flow speed to subsonic regime ; a rapid expansion along the airfoil upper and 

lower surfaces accelerate the flow to supersonic conditions flowed by an oblique shock wave 
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at the trailing edge as shown in figure (9). No published data for this test case is available for 

the authors, therefore no comparison is presented.  

 

 
Figure (9): NACA0012 Mach distribution at  

free stream Mach=1.5, Alfa=0 
 

7. Conclusions 

New successful property face reconstruction scheme has been presented. The presented 

method together with inverse distance based interpolation for nodal property reconstruction 

produces sufficient diffusion in the shock wave region such that there is no need for limiter 

usage. The proposed boundary conditions treatment was successful and presented accurate 

results matching AGARD published data. The new hybrid finite volume/finite difference 

solver successfully converged to machine zero in all the test cases; extension to three 

dimensions is straight forward. 
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