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ABSTRACT

One of the important themes in complex analysis is the expansion of analytic functions by infinite series in
a given sequence of bases of polynomials. In the present paper, we investigated the representation of analytic
functions in different domains of derived bases of polynomials. The behaviour of the associated representation
of whole functions is directly related to determining the convergence properties (effectiveness) of such bases.
The representation domains are closed hyperellipses, open hyperellipses, and closed regions surrounding a
closed hyperellipse. Also, some results concerning the order of derived bases in hyperellipse are obtained. The
results obtained are natural generalisations of the results obtained in hyperspherical regions.
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1. INTRODUCTION

The base of polynomials is considered a powerful theory with many applications in analysis,
mathematical physics, approximation theory, Geometry, partial differential equations and
mathematical physics. The basic sets (bases) of polynomials of one complex variable was first
introduced by Whittaker in [1] who laid down the definition of bases, basic series, effectiveness, and
order of a base. Many well-known polynomials, including Lagendre, Laguerre, Bernoulli, Euler,
Hermite, Bessel, and Chebyshev polynomials [2-6], have simple bases.

The authors of [3,5] proved that Bernoulli and Euler's polynomials were not found to be effective
anywhere. Furthermore, they determined that each of these polynomials is of order 1. In [2,6] Bessel
polynomials were shown to be everywhere effective. Besides, the authors of [7] studied the
effectiveness of the Chebyshev polynomials in the unit disk. In [8,9] Cannon provided the necessary
and sufficient conditions for the effectiveness of bases in classes of holomorphic functions with finite
regularity radius and entire functions. Mursi and Makar [10] introduced the theory of bases of
polynomials in several complex variables in polycylindrical regions (complete Reinhart domains).
Also, the bases of polynomials in several complex variables in hyperspherical and hyperelliptical
regions are discussed by Nassif [11], kishka and others [12-19].

In [20], Abul-Ez and Constales applied the theory of polynomial bases in one variable to the
context of Clifford analysis. Many authors studied the bases of polynomials in Clifford analysis [5,
20-30]. Also, there are studies on bases of polynomials in Faber regions [31, 32]. The topic of
derivative base of polynomials in one complex variable has been studied by the authors  [33-35],
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they considered the disks in the complex plane. For several complex variables (see [16,18], the
representation domains are hyperspherical and hyperelliptical regions. Recently, in [26,36] the
authors investigated this problem in Clifford setting which is called hypercomplex derivative bases of
special monogenic polynomials, where the representation in closed balls.

In this paper we study the convergence properties (The effectiveness of the derived base)
in several domains (closed hyperellipse, open hyperellipse, closed regions surrounding closed
hyperellipse). Moreover, we shall study the order of the derived base in closed
hyperellipse.These results indicate the generalisation of previous studies on effectiveness in
the hyperspherical regions.

2 NOTATION AND BASIC RELATIONS

The following notations are used throughout this work to prevent long scripts (see [11, 16, 17]).
M = #ly, Flg, e, Ml <M= A + g + 0+ By
h = £y, £2, .., f1i <hzf +&;+ -+ 8
2= 3.3, 0T 2™ =3 gy .....zE’k;l] =(29°,..9%;
2> =172 4 |32 |2 + -+ |5 ]%  R=RyRj..Ryg
R, =R R® __ RY,

: ol = o R o Ba, o R

n n n—1
al[r], [R]) = max rll_[;::; R.r, 1_[ 1 R, Ty l_[ R,
g=2 g=1lezv =1
where My, My, ..., My and #£1.#2, -, £1 are non-negative integers, v = 12,3, ...k — 1}
2
Z
| il <1
In the space 'L"k, an open hyperelliptical region ==o 5 is here denoted by Em: and its
k
=z |ZB|Z
i E =1 _
closure ==1 & , by Er, where Re.s el gre positive numbers. In terms of the introduced

notations, these regions satisfy the following inequalities:

E[R] ={w:|w| =1},
Er1 = Fw: 1w < 1},

D(Ergy) = { W= W+ = 1}, (2.1)

ZB
where W= W W, -, Whe). W = R, and
Definition 2.1 [11, 15] A base of polynomials

{Pu[z]} = (Polz], Py[2]. P2[2]. ... Pylal. .0,
is said to be base when every polynomial in the complex variables Z=:s €I | may only be described

as a finite linear combination of the elements of the base {Pm[z]}. Thus, according to [10] the set

W = (W, W, ..., W), W = ;—jjs el
E .

{Pw[z]} will be base if and and only if there exists a unique row-finite matrix P such that
PP =PP=1 (2.2)

where P = [Pmi] and P = [Pmn] are the coefficient and operator matrices of the bases (Pml[z]}
respectively, and I is the unit matrix. Suppose that f(z) is given by
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f(z) = Z Z oayz®,
m=0

is regular in Em1 and

Al f:Er ] = sup I£(2)I.
B (2.4)

For the base {Pm[Z]}, we have

P,[z] = Z Pon Z%

h (2.5)
z™ = Z = Pop Prlzl.
h (2.6)
For the function £(zJ in (2.3), substituting for Z™ from (2.6) we get

(2.3)

f(z) = Z = My P 2]

2.7
where
M, = Z 7 Py 2,
h (2.8)
- 1P, [z]
The series ‘= is the basic series associated with f(z

Definition 2.2 A base {Pm[z]} is effective in E[RI if (2.7) converges uniformly to every analytic

function in Em: . Similar inclusion can be applied for Er: and D{E[R]} :

We use the following notations for Cannon sums to investigate the convergence properties of such
polynomial bases in hyperelliptical regions (cf. [15, 16]).

AP Efzy) = sup|Pym[z]]

Efg) (2.9)
H(P Bist) = ) 75[PonnA(R Bina)
h (2.10)
k
W(Po Efr)) = O 1_[ R:™ ™ H(Py. Efr1)
=1 (2.11)

where
zmz
o - 1 {<m>)2
m T gEEm o Es
M=ym, (2.12)

mg

on the assumption that mS? =1 ,wheneverm; =0; s €1

ool | e

and 1= Om = {\"’E}

In hyperelliptical regions, a Cannon function was defined for the base of polynomials as
follows:
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1

WP, Erpi] = limsup (W[P. . Erp]157>,
[P, Efg1] {m}qg{ [P Erm1l} 213)

Npy = vamm--vmk be the number of coefficients Fmk that are non-zero in (2.6). A base

Let "'m

{Pm[2]}, satisfying the condition

1
i ==
oJm (Np}em> =aa=1 (2.14)

is called general base and if a = 1, then the base is called Cannon base [10].

Theorem concerning the effectivenss of bases of polynomials in hyperelliptical regions are due to [15,
16].

Theorem 2.1 The necessary and sufficient condition for a base {Pm[zl} of polynomials to be

effective in B, Emy or D(Efm1) is that

k

k
w(P,Eg) = 1_[ 7 R, ¥ (P.D(Em)) = 1_[ 7 R,

==1 W(P,Eg) < e([r].[RD o =1 respectively.

The order of a base {Pm[Z]} in the hyperellipse Eier; is defined in [15] by

log¥[Po; E
w = lim limsup o8 [ = [GR]] .

Rty e < I 2 log << m = (2.15)
The fact of order @ lies in that if the base of polynomials {Pm[z]} is of finite order @ , it will

1

represent in any finite ellipse, every entire function of order less than w. We refer to the work of [3-5,
24, 37-39] in relation to this order of the bases. For more information on the study of polynomials of
bases [2, 18, 2, 39-40].

3 DERIVED BASES OF POLYNOMIALS

The D% -operator which is defined and studied in [40] in the case of three complex variables and is
defined as follows in the case of several complex variables acting also on monomial 2™ :
DN m {(331 + D+ -+ DYY2™; m=#0
1; m=10 (3.1)

D.=2,—.5€¢1
where °© "oz

N: -times the derivatives are applied; s € I . Thus,
N-1
DN,m 1_[ (<m>=>—ijz™; m=0
i=0
1; m=10 (3.2)
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Applying 7 into (2.6) we have

MN-1
1_[ 7 (<m > —Dz™ = Z PP V2l m=0
=0 h

1= Z 7 PonP W [zl m =0
h
where
POV [z] = DB, [2]
N—-1
=Ppot Z Pk 1_[ (< h= —i)zP
hz1l i=0
= Z = SynPmpZ®
h
and

Saeh = 1_[ (<h>-i); h=0
i.=|]'
h=10
The set P Iz is said to be derived base of polynomlals The basic property of the set PVl s
constructed as follows:

:f:n'impm[z]=z Buhthzh—Z pUD 2k

h
where P™ = (8xnPmn) is the matrix of coefficients of the base Pf'"lz]. Also, the matrix of

operators P ~ follows from the representatlon

™
=5 Z Prn PV Z Pon PV 2]
m

h

—[ 1 —
) P = (— Pun ]
that is to say S3.m . Therefore

paop™ _ (Z P, “’-"P'T’)

h

1 _
= ( = 8ynPmn S_Ph.k)
h MN.h

=PP =1

—[M0 5
P PN = (—-“’*"‘ 5[’:) =1,
EMnl

Similarly, we find that

where Sk s the symbol for Kronneker. Therefore the bases property of D operator bases
(P21} follows directly from (2.2).
4 EFFECTIVENESS OF DERIVED BASE OF POLYNOMIALS IN CLOSED HYPERELLIPSE

We consider the following question: In a closed hyperellipseE[R; If the set (Pm[Z]} is effective. Does

the base { [3]} still effective in the same region? The answer to this question will be given in this
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section. Suppose that {Pm [2]} be a base of polynomlals and P [21} be base associated to (Pea 21},

Let P(PSY, Efz)) be the Cannon sum of the base (" [z]} for Em , then
k

—(N)
PPN, Eg)) =0 1_[ H{R }‘"‘:“'m:z;::; ‘th
h

== [y msz [P la (P, Erny)
b o1 (4.1)

A (Pt;: ”}:E[m)

where
AP Eg) = sup|P ]|
E[R
Let, Dm be the degree of the polynomial with the highest degree in the representation (2.6). Hence by
Cauchy’s inequality we get

APV, Epry) = sup|PiV[z]| =
E[R h
— Z S}Lh |th |{HI:=1 {Rs}hs}

Om

Z POV | (MM, 5 {R )
i o

h

= AP, E[R])Z Sy

h (4.2)

N-1

= A(Pu.Eg) |1+ ) © l_[ (< h>—i)
1

i=0

=
Iy

= LDN+14 (Pm,E[R])

where L is a constant.
From the relations (4.1) and (4.2) may be used to derive the relation between the Cannon sums of the

two bases (P [2]} and (P [z]}

LDN+1 _
WP, Efr)) = W(P,,,.Ez1)
Snh (4.3)
Consider the condition
_'::, —
oJm (D, o =1 (4.4)

we have
1

w(P™ Egy) = Imsup [#(POY, Erey )]
oo

1

LDN*L “m=
= limsu o .
e:m:b—>Ec|: E\Ih ( . [R]):|

=¥(PEg)=| [=R,

::r

w
1
[y

(4.5)
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But
k

w(PW Eg) = 1_[ R,
=1 (46)
Then,

k
w(p™N Eg) = 1_[ R,

=1 (47)

According to (4.7) and Theorem 2.1, we may conclude that the effectiveness of the original set

{Pa[zI} in Er; implies the effectiveness of derived base {P:E:N} [2]} in E[R:. Hence, we get the

following theorem:

Theorem 4.1. If the base {Pm[2]} of polynomials for which the condition (4.4) is satisfied, is effective
in Erx:, then the derived base 1P [21} of polynomials associated with the base PemlZl} will be
effective in Emi . If, condition (4.4) is not satisfied then the base (P 21} can not be effective in

Eg: , where the base {Pm[z]} is effective in Er . To ensure this, we give the following example.

Example 4.1 Consider the base {Pm[z]} of polynomials given by

_ szm-l_ﬁcmzcm ;miﬂ
Pmlz] = { OmzZ™ ;otherwise,
where € = d¥™,d > 1 | then
m 1
The Cannon sum P (P Er1) will given by
k
¥ (P, Erwy) = 1_[ [R:m} + ZR:M:""":E—l}ms]

- (4.9)

It turns out that
1

W(P,Er) = limsup [W(P, Eryp )= = 1.
(P.Epy) {mHE[ (P Epg)] (.10)

That is mean that the base (P [Z]} is effective in Bt for Re = Lis €1 |

Now, construct derived base {PSHN} [2]} as follows;

P"‘f}[ ] = Gmaﬂ,mzm + Gr_'mEN,r_'szm im =0
m Zl = & m . nath -
OmOnmE : otherwise,

Hence,we find
1

PR - P[]

™ =

ﬁma}hm

(4.11)
and P(P5Y Erz1) will produce the Cannon sum

ke
o — —_(M) PE—
(P2, Ergy) = Gml_[ {Rs}‘"ﬂ‘-m:Z;::z ‘th a(PN Em)
=1 h
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k k
= 1_[ = REM* 4 F(e) 1_[ —~ pm=t(e-1)ms
- E - g
=1 =1

where Onm is a constant that only depends on ¢ and

W(P,Efy) = limsup[1 +J(c}]€m} = 1.

o

That is, the derived base { [z]} is not effective in ER: for Re = 1.s €I put the original set

{Pmlz]} is effective in Em1. The reason for this is that the set (Pm[Z]} does not satisfy condition (4.4)
as necessary.

5 Effectiveness of derived base of polynomials in open hyperellipse and the region

D(Eqg))

The effectiveness property for the derived base {P:E:N} [2]} in open hyperllipse and the Region

D(Egw1) is established in this section. Assume that the Cannon sum{Pm[z]} is effective in Er: . Then,
based on the properties of Cannon functions, [15], it follows that

W(P.Eg) <ea(rl[RD), v 0<R,<r.sel (5.1)
Constructing the sets of numbers rf.se I}, (cf.[15]), in such a way that
0<Ry=rjsel gng

ple
T = r—%, j,S E I_.
To : (5.2)
(e} 1 Ii > 0
I'isq =7 s et = U
2(r; +1(¥) (5.3)
It follows, easily, from (5.2) and (5.3) that
rple
‘T—? jsel;iz=0
r j (5.4)
Therefore it follows that
=] s
Ro=r™ =r,seliz0 (5.5)

Now, since the base {Pm[z]} accord to (5.1), (2.11) and (2.13), then corresponding to the numbers
(=)
r¥sel , there exists a constant K= 1 such that

I

I.{. <=
i <m—mg ; (
Om 1_[ = {2} (P E ) < H[rl_ﬁ H 93'}

=1 (5.6)

In view of (5.4), we obtain the following inequality

H (PmE[._-J) Euy D fm} {riis}}m:

r.
I"i.‘
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Ll
K & (1) ;
:_H itl e
o e
ms:i ri_
Ll
K & () ;
_ H i41 =
= — o
Om @

]
Il
[ury

i (5.7)
K ¢ m,
-—[1= {rif}l} L m. = 0sel

-

[y

£=
Therefore, we have at least one of the following cases for the integers Reiteis €1 :
Ry 1y

=—5el
@R or
R, .1,
“=f~— EEI'U—ZCITECIT ork—1
(b) Rs or
R
k= k.s el
(c) R. " r.
{ r'® s e I}
Assuming the relation (a) is satisfied, we can deduce from the construction of the sets ' :
that
|1:|
%Er—l: r‘,‘?.se I
€]
= Ty (5.8)

Using eq.(5.7) and (5.8), the cannon sum of the base { [3]} for Em1, we obtain
oy — —(N)
WP Em) = cmn {RE}‘*"‘:‘-'“:Z ‘th

4 (R Er)
2

-2 o T a5 )

Lﬁﬂ {R_}Sm- msz |ﬁmh|A{PhJE[r]:l

:L—mﬂ R H (P, Epy)

‘S\I m
- I{L' ﬁ- {R }Cm}—mg {r_':s} }m!
53‘-{.!31 L —ltte i+1
k Mg

R
— KL = '3:' < T
“Sml ) ) { } [ [F®a
k
EL reyy s (T
T
N’m3=1
k (1 =k
KL o (eyyme I
SLE B {:;} [[m=
T E=1 +1 e=2

EL

S2im {lﬂ }{m}
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which implies that

1
PP, Epgy) = limsup [¥(P20, Epgy ) [
< —4oo
k
= 1_[ 7 R,
g=1
k
<1y 1_[ R,
g=2

where

N-1 k R(e hg
L=1+ } = nz:zi}: h = —i) n{ I,"B}} ¥V o=<R.<r; sel
i

h=1 i=0 ==1 i

In addition, if relation (b) holds for v=2or3er..erk—1 we will get

(v}
R, r, T
e Y 1
R, r. @

i+1

Thus (5.7) and (5.10) lead to

o0 B < ] [otmremmo

k Mg k
KL (= Rx' <
sl PR [ smae

=1 e=lz=y
Mg k
KL — [.(=) mg | Ty,
=— | |= {r.l*_fl} ]f—} Z{R ™
SNJm e=1 e BJ;L‘.
L (v) Mg L
KL N R - RITE]
=—| |=ir! : Z{R ™
2 e[ [ o
Mmooy Tis1)  a=1iey
KL

I\} — <=
Sﬂsm{ i+1 Hs 1y ™ B}

Therefore,

_1_
¥(P. Eqy) = limsup [P (P?, Egey )] =™
o oo

k k
I:\'I:I - -
= ri.y i Rs = Iy | | i Rs
g=1.52v s=1s=v

Similarly, if relation (c) is satisfied, we proceed as before to demonstrate.
k-1

WP Eg) < rkﬂ R..
e=1

Thus, it follows in view of (5.9), (5.11) and (5.12) that
'-I-'{P':N},E[R]} < a([r]. [R]).

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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As a result of (5.13) and Theorem 2.2, the derived base { [z]} is effective for Er1 when the
original base {Pm[Z]} is effective for Er1. Hence, we get the following theorem:
Theorem 5.1. If the base Pm[z]} of polynomials is effective for Em:, then the derived base

(P22} of polynomials associated with the base e [Z]} will be effective for Em:. Now, using a

reasoning similar to that used to prove Theorem 5.1, the following relationship emerges.
k k

w(P™ D(E)) = H R, when ¥(P,D(Ewr)))=]| [=R.
£=1 =1 (5.14)
As a result of (5.14), and Theorem 2.3, hence the following theorem

Theorem 5.2. If the Cannon base {Pm[2]} of polynomials is effective for D{_[R]} then the derived
base { [3]} of polynomials associated with the base {Pm [Z]} will be effective for D{_[R]}

6 THE ORDER OF DERIVED BASE

Let (Pmlz]} be a base of order P and the derived base (P [z} is of order P™ . The following

theorem gives the relation between the orders of the two bases (Pm[2]} and (P&" [2]} |

Theorem 6.1. If the base {Pm[Z]} is of order P and satisfying the condition
Dp=0[<m=>%] ,a=1 (6.1)

Then the base {P }[3]} will be of order P™” = p The upper bound is attainable .
Proof. From (4.3),we have
10g% (P2, Erosy (N + 1)logD,,, — logdyy, + log® (ij E[:R]:]

lim limsu = lim limsu
R"“‘:::m:b—}E: zm=>logam> " R—:*ﬁcazm;:._mpc “m>log<m>

Through the definition of order, we have the order p™ of the base { [3]} is at most P . To show

that the two bases (Pm[2]} and {P" [21} s of the same order, we give the following example:

Example 6.1 Let (Pm[Z]} be base given by

Polz]l == m =™ +g,z™ Bzl =1
Hence
™ = 1
ﬁm[Pm[z] —=m :}d:m}] (62)
and
Kk
W(Py, Efar)) = 2 < m ><m> fRIm> 1_[ a.
=1
l{ R < M=
=< m > z+1_[;::; as( - ]
o < m =

Hence this base is of order ? = 1 .Construct the base { [z]} as follows:

Prflm' [z] == m > 1o, Synz™
then
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< m >TmF

<m
2% O (%) ] 6.3)

W(PY, Efery) =

S}Lm

Therefore the order of (P [z]} is of order 1 That is to say that each of the bases Pelz]} and

{P:Q‘:”} [3]} are of the same order. Now ,we will give an example to show that the condition (6.1) is
necessary for the validity of

Theorem 6.1.

Example 6.2 Consider the base {Pm[2]} given by
m [ [T
P_[z] = O E +h2uﬁ“z :m=0
O,LZ™ ;otherwise,

Applying the definition of the order, To obtain the result p™ = p  we can follow the same steps as in
example. i.e., Theorem is not verified .

7 CONCLUSION

The derived set of polynomials forms a base, as demonstrated in this study. Also, a study
concerning the convergence properties of derived base of polynomials, such as effectiveness and the
order in hyperelliptical will be carried out. The current work suggests exploring other possible
generalizations using other derivative in different regions (e.g., polycylindrical regions, Faber
regions). Also, in the future, it is likely to study the convergent properties of new sets of polynomials
of several complex variables in different regions (e.g., Laguerre, Legendre, Hermit, and Gontcharoff
polynomials) where the derived of these sets can be studied in the same regions. To derive the results
for effectiveness and order in hyperspherical regions as special cases from the results for

hyperelliptical regions, put 's = s €I = {12,..,k} in Theorem 4.1, 5.1, 5.2 and 6.1. When the

original base, {Pm [z]} is general base, similar results for the derived base {P:Q:nx} [3]} can be found in

hyperelliptical regions.
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