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Abstract: This paper introduces a comparison study of different error models used in 

strapdown inertial navigation system (SINS) to enhance the overall positioning accuracy. 

These models are used to represent the stochastic errors included in the MEMS sensors used 

in the IMU. First-order Gauss-Markov (GM) model, Random walk (RW) model and 

autoregressive (AR) process model are used to describe the stochastic nature of these errors 

and their effect on positioning accuracy. 
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1. Introduction 
The last two decades have shown an increasing demand for low-cost and miniature inertial 

sensors in many navigation applications. However MEMS-based inertial sensors efficiently 

meet this demand, due to their lightweight and fabrication process. MEMS sensors still have 

some performance limitations, which consequently affect their obtainable accuracy and 

sensitivity. One of the main problems of MEMS sensors is that the remaining uncertainties of 

the sensor errors which are very large and sensitive to surrounding environmental changes [1]. 

 

Integration between MEMS-based inertial sensors and another aiding system, like GPS, has 

become one of the most important and attractive low-cost solutions to navigation applications. 

However, the most important challenge when working with MEMS INS/GPS is to develop an 

integration algorithm (estimators) that can deal with the large instrument errors and the 

corrupted GPS data in signal-degraded environment. The INS/GPS integration is commonly 

performed using Kalman filter (KF) estimator. When a GPS outage occurs, KF operates in 

prediction mode, correcting the INS information based on the system error model. KF has 

widely been used for data fusion and is considered as the most famous tool for INS/GPS 

integration. The most commonly used integration scheme in many literatures is loosely (used 

in this application) and tightly coupled integration schemes. 

 

In loosely coupled integration algorithm, the INS and the GPS receiver operate as 

independent systems and process data in parallel. INS raw measurements (acceleration and 

angular velocity) are processed in the INS mechanization to derive INS attitude, velocity and 

position. GPS raw observations (code, Doppler and phase) are to derive GPS velocity and 

position. The INS Kalman filter utilizes the differences between the INS and GPS velocities 

and positions as the measurements and the INS error equations as the system model. When 
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GPS is available, the INS Kalman filter estimates all observable INS sensor and navigation 

errors to compensate system outputs. When GPS is unavailable, INS sensor and navigation 

errors will be predicted based on the system model [2]. 

 

In the tightly coupled integration both INS data and GPS raw measurements are processed 

together. Similarly to the loosely coupled integration algorithm, the INS navigation states are 

first derived from the INS raw measurements based on the INS mechanization. Then, in the 

INS/GPS Kalman filter the INS sensor and navigation errors as well as GPS range and range 

rate errors are estimated using the pseudo ranges and delta ranges calculated by the INS and 

measured by a GPS receiver as the system measurements. The estimated INS errors will be 

applied to correct the INS navigation states. 

 

According to whether the estimated sensor errors are fed back to correct the measurements, 

both loosely and tightly coupled integration algorithm can be implemented with an open loop 

or closed loop. The closed-loop implementation, generally enhances the navigation 

performance because the previous estimation results are used to minimize the error 

approximation due to system model linearization, are mostly applied in INS/GPS integration 

systems. 

 

 

2. Kalman Filtering 
The Kalman Filter (KF) is an efficient stochastic estimator for a large number of problems, 

especially in the field of navigation. It is a recursive predictive estimator that is based on the 

use of state space technique and recursive algorithms. KF consists of two main steps: 

prediction and correction. It depends on minimization of the mean square error between the 

prediction of parameters from a previous time instant and external observations at a present 

time instant. 

 

According to linear system theory, a state space model can represent the dynamics of a linear 

system, where a set of first order differential equations express the deviation from a reference 

trajectory as: 

 

          wF    (1) 

             (2) 

 

For a discrete system, the state transition matrix   can be approximated by a Taylor series 

expansion over a short time interval t  , after the first two terms, results in: 
 

tFI   (3) 

Kalman filtering process can be summarized in two-step, the first step is prediction by the 

system model, i.e.: 

                   State estimate                             kk1k
ˆˆ 

  
(4) 

                  Error covariance estimate           k

T

kkk1k
QPP 

  
(5) 

and the second step is the measurement update of the system model. The elements of the 

update process are as follow: 

Hz
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                    Kalman gain matrix         1

k

T

kkk

T

kkk
RHPHHPK

                

 

(6) 

                   Error covariance update               
  

kkkk
PHKIP

 
(7) 

                   State update                                 
  

kkkkkk
ˆHzKˆˆ

 
(8) 

 

In this paper, we will derive the error model for the MEMS based IMU with different 

techniques to be involved in the KF algorithm and the effect on the performance of the final 

navigation track of the vehicle. 

 

 

3. Error Models for MEMS IMU  
Errors in INS result from the following two sources: 1) the sensor itself and 2) the numerical 

integration process in the INS mechanization. MEMS inertial sensors have both deterministic 

and random errors. The deterministic errors can be obtained using calibration procedures and 

then removed from the raw measurements, but the random errors must be modeled 

stochastically to reduce their effect on the positioning accuracy [1].  

 

The MEMS sensor measurement equation models can be considered as: 

( )b b b

a a af f b diag f S w     

( )b b b

ib ib g ib g ab diag S w       

where bf is the measured accelerometer is vector and 
bf   is the true accelerometer vector.

b

ib  is the measured gyroscope vector and b

ib is the true gyroscope vector. ab and gb are the 

biases of accelerometer and gyroscope respectively. aS and gS are scale factors of  

accelerometer and gyroscope respectively[2].Finally, the accelerometer and gyroscope 

additive white Gaussian noise are represented by wa and wg respectively. 

 

In this section, 3 models for MEMS sensor errors will be reviewed as follows: 

 

3.1 Random Walk 
 In this case the sensor error is assumed to be a white noise as shown in Fig. (1), the 

continuous-time state equation for random walk is given by [6]: 
 

 ̇    
 

The corresponding discrete-time process state equation is: 

 

            

 

 

 

 

Figure (1)   White noise and random walk 

 (9) 

(10) 

(11) 

(12) 
 

White Noise Random Walk 
 ⬚ 
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3.2 Gauss-Markov Process 
 

In this method, the sensor error is modelled as a stationary Gaussian that has an exponentially 

decaying autocorrelation is called first-order Gaussian Markov process. For a process of 

correlation time T and root mean square value (data standard deviation) σ, the continuous-

time model is described by:  

 ̇  
  

 
       

The corresponding discrete-time process model is given by:  
 

      
              

Therefore, Gaussian Markov process is very important as it fits large number of physical 

processes and it has a relatively simple mathematical description. Autocorrelation function 

(ACF) and closed loop system representing first order GM process is shown in Fig. (2-a) and 

(2-b) respectively. 

 
a. Autocorrelation function (ACF) 

 
b. Closed loop system 

 

Fig.  (2)   1
st
 order GM process 

 

3.3 Autoregressive Process 
The term “autoregressive” comes from the fact that each signal sample is regressed on (or 

predicted from) the previous values of itself. The AR transfer function relationship can be 

obtained in time domain as [1]: 

0

1

( ) ( ) ( )
p

k

k

y n a y n k b w n


     

This is written as  

(13) 
 

(14) 
 

(15) 
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                                               1 2( ) ( 1) ( 2) ... ( 1)py n a y n a y n a y n         

In time and frequency domain, the AR transfer function relationship can be shown in the 

Fig. (3): 

 

Figure (3)   Transfer function relationship 

 of autoregressive function 

 

Several methods have been reported for estimating the parameter values by fitting an AR 

model to the input data. Three main methods are usually used: the Yule-Walker method, the 

covariance method, and Burg’s method. In principle, all of these estimation techniques should 

lead to approximately the same parameter values if fairly large data samples are used. 

 

The Yule-Walker method has inadequate performance in the case of short data records 

because of the data windowing applied by its algorithm. Moreover, that method may 

introduce a large bias in the AR estimated coefficients since it does not guarantee a stable 

solution of the model. The covariance method is similar to the Yule-Walker method in that it 

minimizes the prediction error in the least-squares sense, but it does not consider any 

windowing of the data. 

 

However, unstable AR models may be obtained if the covariance method is used. Burg’s 

method was introduced to overcome most of the drawbacks of the other AR modeling 

techniques by providing both stable models and high resolution (i.e., more accurate estimates) 

for short data records [8]. 

 

 

4. Experimental Work 
In this paper, SINS error modeling will study only parameters of 2-D land vehicle navigation 

(latitude "υ", longitude "λ", north velocity " nV ", east velocity " Ve " and yaw (azimuth) angle 

"ψ" of the state vector. X-accelerometer, Y-accelerometer and Z-Gyro are IMU errors that are 

modeled stochastically and included in the SINS error model. 

 

First, the IMU data is collected in stationary for long time (approximately 8 hours) and 

studied to get the required parameters and coefficients (as: correlation time, data standard 

deviation and variance , AR coefficients) used in stochastic error modeling in Kalman filter 

equations. 

 

4.1 1
st
 order GM Model 

The KF state vector consists of 8 states (5 states of the INS error model and additional 3 states 

of sensor error model) as shown in Eq. (17): 
T

x y z[       V    V    y   f  f  ]n ex            

The state transition matrix (Φ) which is the dynamic part in the system can be calculated in 

the KF error state model as shown in Eq. (18): 

(16) 
 

(17) 
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β is the reciprocal of the correlation time (τ) which is derived from static sensor data 

autocorrelation function. 

 

The KF measurement vector (Z) can be derived using the difference between the GPS-derived 

position estimates, and the INS mechanization-derived position to obtain the error estimates 

represented as shown in Eq. (19): 
T

k INS GPS INS GPSZ   [(   ) (   )]       

 

The measurement design matrix (H) for GM model is shown in Eq.(20): 

 

2 8 2 2 2 6H   [I   0  ]      

4.2 Random Walk Model 
This KF model is the same as GM model but with small differences in the state transition 

matrix elements   (Φ (6, 6), Φ (7, 7) and Φ (8, 8)) are equal "one". 

 

4.3 Autoregressive Model 
 First-order GM model is usually proposed for navigational and tactical grade inertial sensors. 

For MEMS inertial sensors, the assumption that the sensor random errors follow the 

stochastic nature of a first-order GM model is not always valid. Using a stationary run, the 

autocorrelation sequences of the MEMS grade Crossbow IMU300CC module were calculated 

as shown in Fig. 5. 

 

By comparing these ACFs, it can be shown that the random errors associated with these 

MEMS inertial sensors may be more adequate to be modeled with AR error modeling 

technique than a first-order GM process. 

 

Two main issues in AR stochastic error modeling should be determined: 1) parameter 

estimation method and 2) AR order. Parameter estimation method could be, as mentioned 

before, Yule-walker, Covariance or Burg’s method which is used here because it gives better 

performance [8]. Stationary sensor measurements are used also for selecting the order AR 

model. Fig. 6 shows that 2
nd

 order AR error model (in our case) will be suitable for modeling 

inertial sensor errors. It should be noted the increasing order of AR error model will increase 

states of K.F. which may results in filter instabilities. 

 

(18) 
 

(19) 
 

(20) 
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Figure (5): Autocorrelation sequences of X-accelerometer (above) 

and Z-Gyro (down) 

 

 

The KF state vector consists of 8 states (5 states of the INS error model and additional 2 states 

for modeling each one of the 3 sensors) as shown in Eq. (21): 

 

                       
T

x1 x2 y1 y2 z1 z2[       V    V    y   f  f  f  f   ]n ex             

The state transition matrix (Φ) which is the dynamic part in the system can be calculated as 

shown in Eq. (22). 

 

 

 

 

(21) 
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Figure (6)   AR Model Prediction RMSE of X-accelerometer (above) 

and Z-Gyro (down) 
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 are the coefficients of 2
nd

 order AR error model for ax , ay and ωz  

respectively. 

 

The measurement design matrix (H) for AR model is shown in Eq. (23):  

2 11 2 2 2 9H  [I  0 ]    

(22) 
 

(23) 
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4.4. Results Discussion 
The trajectories of the integrated system using 2

nd
 

order AR model, 1
st
 order GM model and 

RW model were generated with the 1-sec update then it is compared with the reference 

Precise Point Positioning (PPP) trajectory. After that, the system trajectories were generated 

with 3-sec and 6-sec update intervals that are illustrated in from Fig. 7 to Fig. 9. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (7)   : RW, 1st order GM and 2nd order AR integration models with 1sec. update 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (8)   RW, 1st order GM and 2nd order AR integration models with 3sec. update 
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Figure (9)   RW, 1st order GM and 2nd order AR integration models with 6sec. update 

 

 

4.5 Conclusion  
From the above figures we can conclude that 2

nd
 order AR model gives better solution than 1

st
 

order GM model and RW model especially at maneuvering points. It is shown that increasing 

update intervals deteriorates the integration performance and it clearly appears when 

increasing update intervals to 6 seconds. So, it is advisable to use this INS/GPS integration 

scheme with 2
nd

 order AR model for the above used sensors until 5 seconds (as maximum) to 

get results with acceptable error levels. 
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