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Abstract: The Multi-Carrier Code Division Multiple Access (MC-CDMA) is becoming a 

very attractive multiple access technique for high-rate data transmission in the future wireless 

communication systems. MC-CDMA systems transmitting over multipath channels suffer 

from intersymbol interference (ISI) and multiple access interference (MAI). Recently, MC-

CDMA with equalization has attracted much attention for its ability to obtain an excellent 

performance even in strong frequency selective fading channels. In this paper, the proposed 

architecture uses the minimum mean square error (MMSE) with parallel interference 

cancellation (PIC) for downlink MC-CDMA system and compared with another system based 

on the rake receiver with PIC for downlink MC-CDMA system. A comparison between such 

architectures is presented. The effect of the tentative decision functions, the number of 

cancelled users and the effect of the loading users on the performance of the two proposed 

receivers are discussed and presented in this paper. Simulation results show that the 

combination of tentative decisions with PIC and equalization provides an efficient solution to 

suppress the MAI and ISI in downlink MC-CDMA systems over frequency selective fading 

channels. 
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Notations 
The symbols                     designate complex conjugate transposition, transposition of 

a matrix, and the inverse of a matrix, respectively. Vectors and matrices are represented in 

boldface.           denote the inverse fast Fourier transform and the fast Fourier transform 

operators, respectively.   

 

 

1. Introduction 
Multicarrier code-division multiple-access (MC-CDMA) system has been proposed as one of 

the candidates for the future generations of wireless communications because of its attractive 

features such as high data rate, high capacity, and low complexity of implementation due to 

using fast Fourier transform (FFT)-based carrier modulation[1,2,6]. In these schemes each 

user is assigned to a unique identification code sequence and the transmitted signal is split in 

different subcarriers. etc.[1,3,4,8]. MC modulation and demodulation can be easily 
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implemented using inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) 

algorithms, respectively, depending on the spreading, frequency mapping and detection 

strategy [3]. 

MC-CDMA communication system is inherently interference limited. As all users spread 

their transmissions over a common bandwidth, a dominant impairment is the interference 

between users, referred to as the MAI. In addition, in a frequency selective fading channel the 

bit error rate (BER) performance of a single carrier transmission significantly degrades due to 

severe ISI. Direct sequence code division multiple access (DS-CDMA) can exploit the 

channel frequency selectivity by the use of coherent rake receiver that resolves the 

propagation paths having different time delays and coherently combines them to achieve the 

path diversity effect [5,7]. Recent studies have been shifted from DS-CDMA to multi-carrier 

(MC) transmission techniques to overcome severe frequency selectivity of the fading channel 

and suppress the interference effect in a wireless channel [6, 9].  

Moreover, after equalization, inter-chip interference (ICI) arises, and dispreading may not 

properly restore the original signal [5]. Suppressing the MAI, the ICI and the ISI will reduce 

thetransmitted power required to meet the target signal-to-noise ratio (SNR), and enable more 

channels to be transmitted with a limited power. 

In order to combat the MAI, the ICI, and the ISI, various receiver architectures have been 

proposed. The RAKE receiver is commonly used for the detection of transmitted symbols in 

MC-CDMA systems. However, in practice, the number of fingers in the RAKE receiver is 

limited due to the hardware complexity [7]. Such limited number of RAKE receiver fingers 

degrades the receiver performance when the multipath effect is severe. Recently, single 

carrier block transmission with frequency domain minimum mean square error (MMSE) 

equalization has proved to be a promising candidate for broadband wireless communications, 

especially when the implementation issues such as power consumption and system 

complexity are taken into consideration [7,10]. 

Equalization with MC-CDMA can be used to compensate for ISI resulting from time-

dispersive channels. The price to be paid is a reduction in the data rate due to the insertion of 

the cyclic prefix for MC-CDMA systems [2, 6]. However, the presence of some residual ICI 

after frequency domain equalization (FDE) degrades the orthogonality among the spreading 

codes, and hence the performance deteriorates [11-13]. For the reduction of the ICI, a joint 

frequency domain equalization and frequency domain ICI cancellation (FD-ICI) has been 

studied [11-13]. In [11-13], the ICI is generated and subtracted after the FDE in the frequency 

domain. With regard to nonlinear solutions, block decision feedback equalizers for cyclic 

prefix CDMA (CP-CDMA) systems and large multiple input multiple output (MIMO) 

systems have been proposed [14, 15].  

The objective of this paper is to enhance the performance of the downlink MC-CDMA 

systems by mitigating the MAI and the ISI. A hybrid algorithm of detection comprising both 

linear equalization and tentative decisions with PIC is suggested and studied in the paper. 

Two efficient interference cancellation architectures RAKE-PIC and MMSE-PIC are 

proposed to be used in this hybrid algorithm. In addition, the mathematical form of the MAI 

before equalization (or before the RAKE receiver) is simpler than its mathematical form after 

equalization [16,17]. Thus, the PIC scheme composed of the regeneration and subtraction of 

the MAI before equalization has a lower complexity and is more appropriate in 

implementation [17]. The efficiency of all algorithms comes from the frequency domain 

implementation of all filters. The effective of the tentative decision (hard, tanh, null zone, unit 

clipper and soft) functions on the two proposed receivers are studied in this paper and show 

the advantage of any decision function to each other. All of the proposed algorithms are 

studied and compared to existing algorithms. 

The remainder of this paper is organized as follows. Section 2 investigates some different 

decision functions. In Section 3, the system model of downlink MC-CDMA is presented. In 
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Section 4, the proposed two interference cancellation architectures are presented. The 

computer simulations and the conclusions are given in Sections 5 and 6, respectively. 

 

 

2. Decision Functions 
The performance of PIC depends on the tentative decision function used. So, due to error 

propagation, PIC with a hard decision function may perform worse than PIC with linear or 

soft decision functions [18]. Hard-decision interference cancellation can completely cancel 

interference only when the hard decisions made are correct which is not the case in all 

decisions. 

The most popular decision functions are: 

 

2.1 The hard decision function 
 

           {
     

      
                                                                                                    (1) 

 

It makes a hard decision in the favor of one of the two possible symbols. 

 

2.2 The null zone decision function 
 

          {   

                                Cn  

                      [-C
n
   Cn] 

-                                 -Cn  

                                                                     (2) 

 

It makes a hard decision when the soft bit estimate lies outside the interval [−Cn, Cn], and sets 

the decision result to zero when the soft bit estimate lies inside this interval. Cn is the null 

zone decision threshold (       ) [18, 19]. 

 

2.3 The linear decision function 
 

                                                                                                                                 (3) 

 

It performs worse than the other decision functions. 

 

2.4 The unit clipper decision function 
 

          {
                      
         [    ] 

                       
                                                                                      (4) 

 

It makes a soft bit decision when the soft bit estimate lies inside the interval [-1,1] to avoid 

the propagation of errors, and makes a hard decision when the soft bit estimate lies outside the 

interval [-1,1] to avoid the noise enhancement [20]. 

 

2.5 The tanh decision function 

 

                  
       

       
                                                                                             (5) 

where tanh is hyperbolic tangent function. 
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It is adopted as the optimum decision function for nonfrequency selective fading channels 

with the MAI modeled as AWGN in the systems having a large number of users. 

 

 

3. System Model 
The downlink MC-DMA block transmission with K active users over a frequency selective 

fading channel is considered. A schematic diagram of the baseband block transmission system 

is depicted in Fig. 1. Each user transmits BPSK information symbols. Those symbols are 

spread using a certain spreading code. After spreading, the resulting signal is scrambled using 

a complex scrambling sequence, after that the inverse fast Fourier transform(IFFT) applied to 

the resulting signal and a cyclic prefix of NCP chips is added at the beginning of each block. 

The length of the cyclic prefix must be greater than the maximum excess delay of the channel 

to accommodate for the interblock interference (IBI). At the receiver, the cyclic prefix is 

removed and the received symbols are sent to an FFT block to demultiplex the multicarrier 

signal.  

The baseband channel response can, then, be expressed as follows [18]: 

 

     ∑          
   
                                                                                                          (6) 

 

where h1 and τl represent the complex fading and the propagation delay of the lth path, and L 

is the number of multipath components of the channel impulse response h. In this paper, we 

assume block fading, where the path gains stay constant over each block duration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1   Downlink MC-CDMA System 

 

The received block after removal of cyclic prefix can be formulated as: 

 

r = HCd+n,                                                                                                                               (7) 
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where d is an NM × 1 vector representing the block of the transmitted chip sequence, r is the 

received vector, n is the additive noise, and HC is an NM × NM circulant matrix describing 

the multipath channel. HC can be written as follows: 

 

 

 

 

    

 

 

Hc =                                                                                                                                          (8) 

 

 

 

 

The vector d can be represented as: 

 

                                                                                                                                     (9) 

 

where      is an NM × NM Inverse Fast Fourier transform, C is an NM × NM scrambling 

code matrix, S is an NM × KM block diagonal matrix whose diagonals contain the spreading 

vectors, and b is a KM × 1 vector consisting of the users’ data. The structures of the 

individual components in Eq. (9) are given bellow [21]: 

 

      [ ̅  ̅    ̅]                                                                                                              (10) 

 

 ̅  [          ]                                                                                                                  (11) 

 

   [                     ]                                                                                     (12) 

 

  [                   ]                                                                                              (13) 

 

      [                 ]                                                                                           (14) 

 

     [                         ]                                                                     (15) 

 

where sK is the spreading code of the kth user. Equation (7) can be written in terms of the 

MAI as follows: 

 

      
               

                 ⏟    
                

       ⏟  
   

   ⏟
     

                   (16) 

 

where bdes is an M ×1 vector consisting of the desired user’s bits, bint is a (K −1)M ×1 vector 

consisting of the interfering users’ bits, Sdes is an NM × M matrix consisting of the spreading 

code of the desired user, and U is an NM × (K − 1)M matrix consisting of the spreading codes 

of the interfering users.  

From Eq. (16), it is found that only the first term contains the desired data, the second term is 

due to the MAI, and the third term is a noise term. 
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4. Interference cancellation for Downlink MC-CDMA 
 

4.1. RAKE Receiver with PIC  
In this section, the first suggested scheme of the interference cancellation is introduced. This 

scheme uses the RAKE receiver and PIC to estimate, regenerate, and cancel all the interfering 

users. Then, the RAKE receiver is used to provide the enhanced desired user’s data. This 

scheme is called (RAKE-PIC). It is shown in Fig. 2. The steps of the RAKE-PIC algorithm 

can be summarized as follows: 

 

 The cyclic prefix is removed from the received signal. 

 After removing the cyclic prefix, the FFT is applied to the received signal. 

 

            With the aid of Eq. (16), we get: 

 

                                                                                                                         (17) 

 

             where   is a diagonal matrix containing the FFT of the circulant sequence of Hc and 

            Ddes, Dint and N are the Fourier transforms of ddes, dint,and n, respectively. 

 The resulting signal after the FFT is first sent to the frequency domain channel 

estimator which estimates the channel coefficients. 

 The estimate of the channel coefficients is used at stage one to estimate the symbols of 

the interfering users with FD-RAKE receiver. The estimates of the symbols obtained 

here are the first decision made, and we refer to this as a tentative decision. This step 

can be written as follows: 

              ̂         { 
       ⏟  

             

},                                                                             (18) 

 

            where fdec(.) is the tentative decision function (tanh decision is considered). 

 The estimates of the interfering users’ symbols are used with the channel estimate to 

regenerate the interfering users’ signals (MAI) as follows: 

 

                           ̂    ,                                                                                           (19) 

 

 The MAI is then subtracted from R to get the frequency domain interference free 

signal as follows: 

 

               ,                                                                                                           (20) 

 

 A better estimate of the symbols of interest can be obtained by applying the RAKE 

detection on the interference free signal Z as follows: 

 

        ̂        {     
      },                                                                                       (21)  

 

       where         is a hard decision function. 

 

The main advantage of this receiver lies in its low complexity as compared to the other 

suggested schemes. However, the performance of this receiver deteriorates as the number of 

users increases. This can be explained by the fact that, for heavy loads, the RAKE receiver 

sees too much interference which makes its decisions about interfering users unreliable. 
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Fig. 2   Structure of the RAKE-PIC for downlink MC-CDMA systems. 

 

 

4.2 MMSE Equalizer with PIC 
In this section, we suggest the combination of both MMSE equalization and PIC to form a 

new interference cancellation scheme which mitigates the interference in downlink MC-

CDMA systems as shown in Fig. 3. 

The proposed scheme consists of two parts. In the first part, MMSE equalizer is used to 

mitigate the effect of frequency-selective channel and give the initial data estimates of all 

users. In the second part, PIC is used to regenerate, and cancel MAI in frequency domain 

before equalization. Finally, the MMSE equalizer is used to provide the desired user’s data. 

The suggested scheme is called MMSE-PIC. Its algorithm can be summarized as follows: 

 

 The cyclic prefix is removed from the received signal. 

 The FFT is applied on the received signal as in Eq. (17). 

 The resulting signal after FFT is first sent to the frequency domain channel estimator 

which estimates the channel coefficients. 

 The MMSE equalizer is used to estimate the sequence of the interfering users (MAI). 

This step can be written as: 

 

 ̂         {  
          }                                                                            (22) 

 

            The MMSE equalizer operator is given by: 

 

                                                                                           (23) 

 

 The estimates of the interfering users’ symbols coupled with channel estimation are 

used to regenerate the interfering users' signal (MAI) as follows: 
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Fig. 3. Structure of the MMSE-PIC for downlink MC-CDMA systems. 

 

                    (   ̂   )                                                                                               (24) 

 

          The MAI is then subtracted from RT to get a frequency domain interference free signal 

          as follows: 

 

                                                                                                                                (25) 

 

 A better estimate of the symbol of interest can be obtained after MMSE equalizer, 

descrambling, and despreading as follows: 

 

              ̂        {    
         }                                                                                (26) 

 

The performance of the proposed MMSE-PIC scheme is the best as compared to the RAKE-

PIC receiver, especially when the number of users is high. However, its complexity is greater 

than that of the RAKE-PIC, receiver and the statistics of the additive noise and the transmitted 

data are required. 

 

 

5. Simulation Results 
Several simulation experiments are carried out in this section to test the performance of the 

proposed algorithms and compare them to each other. The simulation environment is based on 

the downlink synchronous MC-CDMA system in which each user transmits BPSK 

information symbols. The propagation channel is assumed to be a frequency selective fading 

channel with L = 3 paths and a uniform delay profile. More details of the simulation 

parameters are given in Table 1. All users are assigned the same power. 

Figure 4 illustrates the BER versus the threshold of the null zone decision function (cn) at 

different SNR values and different number of users for the MMSE-PIC algorithm. The 
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observation from this figure is show that cn opt = 0.2 is always the best choice regardless of 

the value of the SNR. Fig. 4 shows that cn opt is nonsensitive to SNR-changes and to system-

load changes. 

 

Table 1. Simulation parameters 

 

 

 
 

 

 

The effect of the tentative decision function on the performance of the RAKE-PIC algorithm 

for the loaded users K = 32 (full load) is studied and shown in Fig. 5. It is found that the best 

performance of the RAKE-PIC algorithm can be obtained with the tanh, unit clipper and soft 

decision functions that have the same performance. However it has been shown that the Null-

Zone decision gives the same performance as the three previously mentioned decisions at 25 

dB of SNR. On the other hand, the effect of the tentative decision function on the 

performance of the MMSE-PIC algorithm for K = 32 (full load) is studied and shown in Fig. 

6. It is found that the best performance of the MMSE-PIC algorithm can be obtained with the 

hard and null zone decision functions. 
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Figure 7 introduces comparisons between the three different proposed algorithms for K = 16 

and K = 32, respectively. From the obtained results, it is clear that for low SNR values, the 

three proposed algorithms have the same performance. At high SNR values, the MMSE-PIC 

algorithm gives the best performance. From Fig. 7a, it can be observed that the performance 

of the RAKE–PIC and the MMSE algorithms is the same when the system load is low. This 

observation may be due to the propagation of errors. 

When the number of users is small, the RAKE receiver provides reliable decisions and the 

resulting propagation of errors will be small and the MMSE-PIC gives good performance 

when the system load is high that shown in fig. 7b at K=32(full load) the performance is the 

same as the performance in fig. 7a at K=16 (half load) . 

The effects of user loads on the performance of the MMSE-PIC algorithms are studied and 

presented in Fig. 8. 
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Fig. 8. BER vs the number of active users for the different tentative 

decisions for   MMSE-PIC algorithm. SNR = 20 dB. 
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algorithm degrades a little bit by increasing the number of users, but it is still better than the 

RAKE-PIC and MMSE algorithms. 

 

 
 

 

 

 

Figure 10 depicts the BER versus the number of canceled users, at a fixed SNR per user of 20 

dB. This figure shows that the performance of the suggested algorithms improves as the 

number of canceled users increases. 

 
Fig. 10   BER vs the number of canceled users for the different 

reception schemes, SNR =20 dB. 
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decision provide better performance than other algorithms even at heavy loads. This indicates 

that a reliable communication is possible with the proposed algorithms. 
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